跨系统协同过滤推荐算法的隐私保护技术研究

针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 9; pp. 2804 - 2807
Main Author 刘国丽 李昂 李艳萍 于丽梅
Format Journal Article
LanguageChinese
Published 河北工业大学计算机科学与软件学院,天津300401 2017
河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.09.053

Cover

Abstract 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。
AbstractList TP309.2; 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型.模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥.以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方与系统无法进行非法串通.实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低.
针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。
Abstract_FL To solve the privacy security problem of the recommendation algorithm between systems,this paper developed a secure computation model based on the theory of secure multi-party computation.The model used Lblock,a lightweight block cipher algorithm,to encrypt the provided data by the third part,and used RSA public key cryptosystem to manage keys of Lblock.Applying this model to the collaborative filtering between systems with randomized perturbation techniques,the paper developed a new algorithm whose calculation method of similarity could protect the system from the attack of artificial users.It used secure vector to prevent the untrusted third party from colluding.Experiments show that algorithm not only has stronger ability to protect the user's privacy disclosing to the system which is cooperated,but also has better quality of recommendation.
Author 刘国丽 李昂 李艳萍 于丽梅
AuthorAffiliation 河北工业大学计算机科学与软件学院,天津300401 河北工业大学廊坊分校,河北廊坊065000
AuthorAffiliation_xml – name: 河北工业大学计算机科学与软件学院,天津300401;河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000
Author_FL Li Ang
Liu Guoli
Li Yanping
Yu Limei
Author_FL_xml – sequence: 1
  fullname: Liu Guoli
– sequence: 2
  fullname: Li Ang
– sequence: 3
  fullname: Li Yanping
– sequence: 4
  fullname: Yu Limei
Author_xml – sequence: 1
  fullname: 刘国丽 李昂 李艳萍 于丽梅
BookMark eNo9jz9Lw0Achm-oYFv9EuLgkvi7u-QuBy5S_AcFl-7lmuRqg161QSSbgiCUVjsoQlF0KFgXHQo6dOiXsbn6LYxUnF54eXhfngLK6aYOEVrFYFPBxHpkN-JY2xgAW5QJ1yaAuQ3CBpfmUP6_X0SFOI4AHIIF5NHG7HNoRmMzfpp2b6a9zmxylY4H6fVw1u2Zt_t0dGf6l9_9nnm5-Jo8pu1B2j5PH97N8615_VhCC0oexuHyXxZRZXurUtq1yvs7e6XNsuUzoJbCwleM1xzqOoKHQc0TRArmKQe7QAIgnhRBiHnAiY897AQBUworpkIqGWE1WkRr89kzqZXU9WrUPG3p7LAaxVGSJNGvKohMNENX5qh_0NT1k0YGH7caR7KVVBknHgeXA_0BNzhuUQ
ClassificationCodes TP309.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.09.053
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems
DocumentTitle_FL Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems
EndPage 2807
ExternalDocumentID jsjyyyj201709053
672870570
GrantInformation_xml – fundername: 河北省高等学校科学技术研究项目
  funderid: (ZD20131070)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c603-f19cf67b435497edb892a968f41502d028a9de17d72c1814dd6ff1f6fe3a626b3
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:57:50 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 协同过滤推荐
隐私保持
randomized perturbation
随机扰动
安全多方计算
secure multi-party computation
similarity
collaborative filter
相似度
privacy-preserving
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603-f19cf67b435497edb892a968f41502d028a9de17d72c1814dd6ff1f6fe3a626b3
Notes collaborative filter ; privacy-preserving ; secure multi-party computation ; randomized perturbation ; similarity
51-1196/TP
To solve the privacy security problem of the recommendation algorithm between systems, this paper developed a secure computation model based on the theory of secure multi-party computation. The model used LBlock, a lightweight block ci- pher algorithm, to encrypt the provided data by the third part, and used RSA public key cryptosystem to manage keys of LBlock. Applying this model to the collaborative fihering between systems with randomized perturbation techniques, the paper developed a new algorithm whose calculation method of similarity could protect the system from the attack of artificial users. It used secure vector to prevent the untrusted third party from colluding. Experiments show that algorithm not only has stronger ability to protect the user' s privacy disclosing to the system which is cooperated, but also has better quality of recommendation.
Liu Guoli1,2, Li Ang1, Li Yanping
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201709053
chongqing_primary_672870570
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 河北工业大学计算机科学与软件学院,天津300401
河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000
Publisher_xml – name: 河北工业大学计算机科学与软件学院,天津300401
– name: 河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.088799
Snippet 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理...
TP309.2; 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型.模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2804
SubjectTerms 协同过滤推荐
安全多方计算
相似度
随机扰动
隐私保持
Title 跨系统协同过滤推荐算法的隐私保护技术研究
URI http://lib.cqvip.com/qk/93231X/201709/672870570.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201709053
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDxItvMUYlQvq4cWemn-ClZ3eWIOgpQm7LzM5OQg4bNckhOSkIQjCagyIERQ8B40UPARVyyM-YnfgXVnXPbsawhOhlKHqqq-vRM1XddFcRMiljnnoyjSswfUSFScUqcRqrigqyjLcF52kLLwrffyCmH7J7s3x2aPhn6dTSynIy1VobeK_kf6wKbWBXvCX7D5btE4UGgMG-8AQLw_NUNqaRoqGkRtFI0jCgYWiBkOoGjThVdaosoKtU1Sxyg8LiPxKIYxgCKrLdFSIDGnQ3EdUOJ6CaY4s2VAGyRqDAkRCB0oghQV23dEyPoMHDEwDoGjUNi1ylmllA01CUo2EcF4Yz3l_jQsfQINvwdB3h6WQcQAomi5VVUa2srCEN65Y1ELd-hCKQUZAWAZDWH_AGmjVKDQBqrNSZIS-IUpDFTsanrgxQb9PE3Q61E9yqz7e0OKoeBePWVLygoa2EoDJjX5k6NeJEdVila6-EbOk4voEj1DVDu4aihAM208ipX-sNpy1vAHDMglZs8TivhOfeAuGqkfbcVrEH7D5PXfZByhV0LuIZTHc0yFcGWmjrK3GIqf4QeNpR2tS_LonzsWzkC0sLq6urC4hU1YAyTEZ9CTHeCBk1YT1sHIXiELmWUzP6mPXoaOmLdQtEyddgMUVwnn1fw71AcluZwUVVDF66zCIFn2fIZCHEnZNEwJQp84uduccQCNp7eZ0s7syVQsiZC-RcsfabMO5DvkiG1uYvkfO9uioThZu9TO4e_tjJd_fyvY8HG68PNl8e7r_o7m13X-0cbmzmX991d9_mW89_b23mn5_92v_QXd_urj_tvv-Wf3qTf_l-hcw0opnadKWoclJpiWpQyTzdyoRMYNnCtGynidJ-rIXKILKu-imE_7FO2_A7lX4LonGWpiLLvExk7SAWvkiCq2Sks9hpXyMTkrWzRLOWlyWCcS_VSZZlMmVccdBK0hoj431dNB-5ZDZNIfGoA2h_jNwutNMsfnFLzePWvn4KnHFyFmG3TXmDjCw_WWnfhMB9OblVzJE_P8u1FQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%B7%A8%E7%B3%BB%E7%BB%9F%E5%8D%8F%E5%90%8C%E8%BF%87%E6%BB%A4%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95%E7%9A%84%E9%9A%90%E7%A7%81%E4%BF%9D%E6%8A%A4%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%88%98%E5%9B%BD%E4%B8%BD&rft.au=%E6%9D%8E%E6%98%82&rft.au=%E6%9D%8E%E8%89%B3%E8%90%8D&rft.au=%E4%BA%8E%E4%B8%BD%E6%A2%85&rft.date=2017&rft.pub=%E6%B2%B3%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5300401&rft.issn=1001-3695&rft.volume=34&rft.issue=9&rft.spage=2804&rft.epage=2807&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.09.053&rft.externalDocID=jsjyyyj201709053
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg