跨系统协同过滤推荐算法的隐私保护技术研究
针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 9; pp. 2804 - 2807 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
河北工业大学计算机科学与软件学院,天津300401
2017
河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.09.053 |
Cover
Abstract | 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。 |
---|---|
AbstractList | TP309.2; 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型.模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥.以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方与系统无法进行非法串通.实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低. 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理密钥。以该模型为安全基础,结合随机扰乱技术,提出一种跨系统协同过滤推荐算法,其相似度计算方法可以有效防止不良商家伪造商品评分信息;安全矢量积的引入使得第三方系统无法进行非法串通。实验证明,算法在防止用户信息泄露给协同推荐系统的同时,计算用户相似度更加精确,预测误差也显著降低。 |
Abstract_FL | To solve the privacy security problem of the recommendation algorithm between systems,this paper developed a secure computation model based on the theory of secure multi-party computation.The model used Lblock,a lightweight block cipher algorithm,to encrypt the provided data by the third part,and used RSA public key cryptosystem to manage keys of Lblock.Applying this model to the collaborative filtering between systems with randomized perturbation techniques,the paper developed a new algorithm whose calculation method of similarity could protect the system from the attack of artificial users.It used secure vector to prevent the untrusted third party from colluding.Experiments show that algorithm not only has stronger ability to protect the user's privacy disclosing to the system which is cooperated,but also has better quality of recommendation. |
Author | 刘国丽 李昂 李艳萍 于丽梅 |
AuthorAffiliation | 河北工业大学计算机科学与软件学院,天津300401 河北工业大学廊坊分校,河北廊坊065000 |
AuthorAffiliation_xml | – name: 河北工业大学计算机科学与软件学院,天津300401;河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000 |
Author_FL | Li Ang Liu Guoli Li Yanping Yu Limei |
Author_FL_xml | – sequence: 1 fullname: Liu Guoli – sequence: 2 fullname: Li Ang – sequence: 3 fullname: Li Yanping – sequence: 4 fullname: Yu Limei |
Author_xml | – sequence: 1 fullname: 刘国丽 李昂 李艳萍 于丽梅 |
BookMark | eNo9jz9Lw0Achm-oYFv9EuLgkvi7u-QuBy5S_AcFl-7lmuRqg161QSSbgiCUVjsoQlF0KFgXHQo6dOiXsbn6LYxUnF54eXhfngLK6aYOEVrFYFPBxHpkN-JY2xgAW5QJ1yaAuQ3CBpfmUP6_X0SFOI4AHIIF5NHG7HNoRmMzfpp2b6a9zmxylY4H6fVw1u2Zt_t0dGf6l9_9nnm5-Jo8pu1B2j5PH97N8615_VhCC0oexuHyXxZRZXurUtq1yvs7e6XNsuUzoJbCwleM1xzqOoKHQc0TRArmKQe7QAIgnhRBiHnAiY897AQBUworpkIqGWE1WkRr89kzqZXU9WrUPG3p7LAaxVGSJNGvKohMNENX5qh_0NT1k0YGH7caR7KVVBknHgeXA_0BNzhuUQ |
ClassificationCodes | TP309.2 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.09.053 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems |
DocumentTitle_FL | Privacy-preserving technology research on collaborative filtering recommendation algorithm between systems |
EndPage | 2807 |
ExternalDocumentID | jsjyyyj201709053 672870570 |
GrantInformation_xml | – fundername: 河北省高等学校科学技术研究项目 funderid: (ZD20131070) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c603-f19cf67b435497edb892a968f41502d028a9de17d72c1814dd6ff1f6fe3a626b3 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 09:57:50 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Keywords | 协同过滤推荐 隐私保持 randomized perturbation 随机扰动 安全多方计算 secure multi-party computation similarity collaborative filter 相似度 privacy-preserving |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c603-f19cf67b435497edb892a968f41502d028a9de17d72c1814dd6ff1f6fe3a626b3 |
Notes | collaborative filter ; privacy-preserving ; secure multi-party computation ; randomized perturbation ; similarity 51-1196/TP To solve the privacy security problem of the recommendation algorithm between systems, this paper developed a secure computation model based on the theory of secure multi-party computation. The model used LBlock, a lightweight block ci- pher algorithm, to encrypt the provided data by the third part, and used RSA public key cryptosystem to manage keys of LBlock. Applying this model to the collaborative fihering between systems with randomized perturbation techniques, the paper developed a new algorithm whose calculation method of similarity could protect the system from the attack of artificial users. It used secure vector to prevent the untrusted third party from colluding. Experiments show that algorithm not only has stronger ability to protect the user' s privacy disclosing to the system which is cooperated, but also has better quality of recommendation. Liu Guoli1,2, Li Ang1, Li Yanping |
PageCount | 4 |
ParticipantIDs | wanfang_journals_jsjyyyj201709053 chongqing_primary_672870570 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 河北工业大学计算机科学与软件学院,天津300401 河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000 |
Publisher_xml | – name: 河北工业大学计算机科学与软件学院,天津300401 – name: 河北工业大学廊坊分校,河北廊坊065000%河北工业大学计算机科学与软件学院,天津,300401%河北工业大学廊坊分校,河北廊坊,065000 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.088799 |
Snippet | 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型。模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系统管理... TP309.2; 针对跨系统协同过滤推荐中用户信息安全问题,提出一个安全计算模型.模型基于安全多方计算理论,使用轻量级分组密码算法LBlock加密第三方提供的数据,并用RSA密码系... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2804 |
SubjectTerms | 协同过滤推荐 安全多方计算 相似度 随机扰动 隐私保持 |
Title | 跨系统协同过滤推荐算法的隐私保护技术研究 |
URI | http://lib.cqvip.com/qk/93231X/201709/672870570.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201709053 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1001-3695 databaseCode: ABDBF dateStart: 20130901 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssib025702191 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDxItvMUYlQvq4cWemn-ClZ3eWIOgpQm7LzM5OQg4bNckhOSkIQjCagyIERQ8B40UPARVyyM-YnfgXVnXPbsawhOhlKHqqq-vRM1XddFcRMiljnnoyjSswfUSFScUqcRqrigqyjLcF52kLLwrffyCmH7J7s3x2aPhn6dTSynIy1VobeK_kf6wKbWBXvCX7D5btE4UGgMG-8AQLw_NUNqaRoqGkRtFI0jCgYWiBkOoGjThVdaosoKtU1Sxyg8LiPxKIYxgCKrLdFSIDGnQ3EdUOJ6CaY4s2VAGyRqDAkRCB0oghQV23dEyPoMHDEwDoGjUNi1ylmllA01CUo2EcF4Yz3l_jQsfQINvwdB3h6WQcQAomi5VVUa2srCEN65Y1ELd-hCKQUZAWAZDWH_AGmjVKDQBqrNSZIS-IUpDFTsanrgxQb9PE3Q61E9yqz7e0OKoeBePWVLygoa2EoDJjX5k6NeJEdVila6-EbOk4voEj1DVDu4aihAM208ipX-sNpy1vAHDMglZs8TivhOfeAuGqkfbcVrEH7D5PXfZByhV0LuIZTHc0yFcGWmjrK3GIqf4QeNpR2tS_LonzsWzkC0sLq6urC4hU1YAyTEZ9CTHeCBk1YT1sHIXiELmWUzP6mPXoaOmLdQtEyddgMUVwnn1fw71AcluZwUVVDF66zCIFn2fIZCHEnZNEwJQp84uduccQCNp7eZ0s7syVQsiZC-RcsfabMO5DvkiG1uYvkfO9uioThZu9TO4e_tjJd_fyvY8HG68PNl8e7r_o7m13X-0cbmzmX991d9_mW89_b23mn5_92v_QXd_urj_tvv-Wf3qTf_l-hcw0opnadKWoclJpiWpQyTzdyoRMYNnCtGynidJ-rIXKILKu-imE_7FO2_A7lX4LonGWpiLLvExk7SAWvkiCq2Sks9hpXyMTkrWzRLOWlyWCcS_VSZZlMmVccdBK0hoj431dNB-5ZDZNIfGoA2h_jNwutNMsfnFLzePWvn4KnHFyFmG3TXmDjCw_WWnfhMB9OblVzJE_P8u1FQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%B7%A8%E7%B3%BB%E7%BB%9F%E5%8D%8F%E5%90%8C%E8%BF%87%E6%BB%A4%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95%E7%9A%84%E9%9A%90%E7%A7%81%E4%BF%9D%E6%8A%A4%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%88%98%E5%9B%BD%E4%B8%BD&rft.au=%E6%9D%8E%E6%98%82&rft.au=%E6%9D%8E%E8%89%B3%E8%90%8D&rft.au=%E4%BA%8E%E4%B8%BD%E6%A2%85&rft.date=2017&rft.pub=%E6%B2%B3%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5300401&rft.issn=1001-3695&rft.volume=34&rft.issue=9&rft.spage=2804&rft.epage=2807&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.09.053&rft.externalDocID=jsjyyyj201709053 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |