基于KPCA与RVM感应电机故障诊断研究
针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。...
Saved in:
| Published in | 电机与控制学报 Vol. 20; no. 9; pp. 89 - 95 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
湖南城市学院机械与电气工程学院,湖南益阳413000
2016
中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-449X |
| DOI | 10.15938/j.emc.2016.09.013 |
Cover
| Abstract | 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。 |
|---|---|
| AbstractList | 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。 TP206; 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析( KPCA)和相关向量机( RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。 |
| Abstract_FL | According to the characteristics of induction motor,such as nonlinear,strong coupling and time-varying,a fault diagnosis method based on kernel principal component analysis ( KPCA) and relevance vector machine ( RVM) was proposed.Firstly,the induction motor stator current was decomposed using wavelet,and the KPCA approach was adopted to extract the feature vector and remove the redundant infor-mation effectively.Secondly, the relevance vector machine was used to classify the fault feature vectors and to identify the states of induction motor.The experiments were setup to verify the feasibility and prac-ticability of this method under different running condition.The results show that the method based on KP-CA-RVM has better classification effectively and better ability of generalization than other three methods and is an effective method for induction motor fault diagnosis. |
| Author | 阳同光 桂卫华 |
| AuthorAffiliation | 湖南城市学院机械与电气工程学院,湖南益阳413000 中南大学信息科学与工程学院,湖南长沙410083 |
| AuthorAffiliation_xml | – name: 湖南城市学院机械与电气工程学院,湖南益阳413000; 中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083 |
| Author_FL | YANG Tong-guang GUI Wei-hua |
| Author_FL_xml | – sequence: 1 fullname: YANG Tong-guang – sequence: 2 fullname: GUI Wei-hua |
| Author_xml | – sequence: 1 fullname: 阳同光 桂卫华 |
| BookMark | eNotjz1PwkAch2_ARES-gKOTS-v_etd7GUnjW8RoDDFuzbV3ICiHQozgrIsDU3UwJLg6GCeN6eeBVr-FNTj9lie_J88KKtmeNQitYXCxL4nY7LimG7seYOaCdAGTEipjAO5QKk-XUXUwaEcAzGeESK-M3Pk0naXj_aOgNvsaH58cZHfTeZrkyUc2SbPH-5_nyff7Q_b0lr8k-evnKlpqqouBqf5vBTW2txrBrlM_3NkLanUnZkAcI7QyhmpBqCe4URI0Bq4N-Iz5oHQcacOp5MzEwASPsBGRlD5EgGPKiUcqaGNxe6NsU9lW2Old920hDHVndH47jP76QBZ1Bbq-QOOznm1dtQv4st_uqv4oZBxAEIkp-QUj1GAH |
| ClassificationCodes | TP206 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.15938/j.emc.2016.09.013 |
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Research on fault diagnosis of induction motor based KPCA and RVM |
| DocumentTitle_FL | Research on fault diagnosis of induction motor based KPCA and RVM |
| EndPage | 95 |
| ExternalDocumentID | djykzxb201609013 670083914 |
| GrantInformation_xml | – fundername: 国家高技术研究发展计划项目; 国家自然科学基金; 湖南教育厅科学研究项目 funderid: (2009AA11Z217); (61273158); (11C0725) |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c603-e8daee4d834287ea90d107de056650adcbde74976ec0687b1e8b9950b01c47323 |
| ISSN | 1007-449X |
| IngestDate | Thu May 29 04:05:40 EDT 2025 Wed Feb 14 10:14:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | 相关向量机 releveant vector machine 故障诊断 induction motor 核主成分分析 faults diag-nosis 感应电机 kernel principal component analysis |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c603-e8daee4d834287ea90d107de056650adcbde74976ec0687b1e8b9950b01c47323 |
| Notes | YANG Tong-guang1,2, GUI Wei-hua2 (1. College of Mechanical and Electrical Engineering, Hunan City University ,Yiyang 413000, China; 2. College of Information Science and Engineering, Central South University, Changsha 410083, China) 23-1408/TM kemel principal component analysis; releveant vector machine; induction motor; faults diagnosis According to the characteristics of induction motor, such as nonlinear, strong coupling and timevarying, a fault diagnosis method based on kernel principal component analysis (KPCA) and relevance vector machine (RVM) was proposed. Firstly, the induction motor stator current was decomposed using wavelet, and the KPCA approach was adopted to extract the feature vector and remove the redundant infor- mation effectively. Secondly, the relevance vector machine was used to classify the fault feature vectors and to identify the states of induction motor. The experiments were setup to verify the feasibility and prac- ticability of this method under different running condition. The resul |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_djykzxb201609013 chongqing_primary_670083914 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | 电机与控制学报 |
| PublicationTitleAlternate | Electric Machines and Control |
| PublicationYear | 2016 |
| Publisher | 湖南城市学院机械与电气工程学院,湖南益阳413000 中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083 |
| Publisher_xml | – name: 中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083 – name: 湖南城市学院机械与电气工程学院,湖南益阳413000 |
| SSID | ssib006563392 ssib025702231 ssib000271328 ssib051374584 ssib036435450 ssib017479520 ssib001129775 ssib023166998 |
| Score | 2.088005 |
| Snippet | 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采... TP206; 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析( KPCA)和相关向量机( RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 89 |
| SubjectTerms | 感应电机 故障诊断 核主成分分析 相关向量机 |
| Title | 基于KPCA与RVM感应电机故障诊断研究 |
| URI | http://lib.cqvip.com/qk/90977A/201609/670083914.html https://d.wanfangdata.com.cn/periodical/djykzxb201609013 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-449X databaseCode: ADMLS dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib025702231 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQeuGCQIAoBVQkfEIbvLv22j466UYVEIQgoNyifTitWpHyCBLkDBcOPQUOqFK5ckCcQCi_p03gXzDjXZIVrRAgRZbXnnHsnYnzeUYzJuRakqY88n3rMatzjwsdeDpKpcdtmCjGufb76NFt34nWH_CbXdFdWJVcdMkwrWejY-NK_keq0AZyxSjZf5DsfFBogDrIF0qQMJR_JWMaC6pbtGFozLFU8a27zeJBwcO9h20aR1RxJAJSoNCcxhLLhsAu3XTMUBFUQYum2mBjrKhpUVV0RdSsIZdhJbvRtBFVUe1xY5ZzcBOIqZE4AaWAESswoIlcl6FG_BK6-34gCd26GFVNxwQffR2JjU9V4JqAvVFWVFw1XBQRleUui_ZR0INudRsOWEXddGVPLa4YKv-dixs5j-z7Qrs071t1-wjzUvqRS15bRLn-lk8b45IAFeLl50sBGnFqZMmstW_frzpj_WoKI4SksoKyAAKH4cIZDWc6qcUCdQNijqLKKRbvCQwqztYQQCDg1jm98EOJ3mrnly9fTBnehcu6cWRRmAZkc2ew8QTAjYs1G_STwUYFFnVOk1PleWbVFMp5hpwYbZ4l9cP9ycFkF5Xx4NsuqOH01f7hZDwbf5nuTaZvX_94v_f985vpu0-zD-PZx6_nSKcVd5rrXnkxh5dFLPSsyhNrea5CPG_bRLPcZzK3gKUB7yd5luZWcsC5NmORkqlvVaq1QJN7xmUYhOdJbbAzsBfIal8CwBasL3KpuNJ5mrC-6mciRfOoZGqZrMyX2ntc5F_pzSW4TK6Wi--Vv8pnvXzr5fboRYqviwHWDS_-cYQVchIpC5vaJVIbPn1uLwPKHKZXSq34CZMSWwM |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EKPCA%E4%B8%8ERVM%E6%84%9F%E5%BA%94%E7%94%B5%E6%9C%BA%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E9%98%B3%E5%90%8C%E5%85%89+%E6%A1%82%E5%8D%AB%E5%8D%8E&rft.date=2016&rft.issn=1007-449X&rft.volume=20&rft.issue=9&rft.spage=89&rft.epage=95&rft_id=info:doi/10.15938%2Fj.emc.2016.09.013&rft.externalDocID=670083914 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg |