基于KPCA与RVM感应电机故障诊断研究

针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 20; no. 9; pp. 89 - 95
Main Author 阳同光 桂卫华
Format Journal Article
LanguageChinese
Published 湖南城市学院机械与电气工程学院,湖南益阳413000 2016
中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083
Subjects
Online AccessGet full text
ISSN1007-449X
DOI10.15938/j.emc.2016.09.013

Cover

Abstract 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。
AbstractList 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。
TP206; 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析( KPCA)和相关向量机( RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断方法。
Abstract_FL According to the characteristics of induction motor,such as nonlinear,strong coupling and time-varying,a fault diagnosis method based on kernel principal component analysis ( KPCA) and relevance vector machine ( RVM) was proposed.Firstly,the induction motor stator current was decomposed using wavelet,and the KPCA approach was adopted to extract the feature vector and remove the redundant infor-mation effectively.Secondly, the relevance vector machine was used to classify the fault feature vectors and to identify the states of induction motor.The experiments were setup to verify the feasibility and prac-ticability of this method under different running condition.The results show that the method based on KP-CA-RVM has better classification effectively and better ability of generalization than other three methods and is an effective method for induction motor fault diagnosis.
Author 阳同光 桂卫华
AuthorAffiliation 湖南城市学院机械与电气工程学院,湖南益阳413000 中南大学信息科学与工程学院,湖南长沙410083
AuthorAffiliation_xml – name: 湖南城市学院机械与电气工程学院,湖南益阳413000; 中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083
Author_FL YANG Tong-guang
GUI Wei-hua
Author_FL_xml – sequence: 1
  fullname: YANG Tong-guang
– sequence: 2
  fullname: GUI Wei-hua
Author_xml – sequence: 1
  fullname: 阳同光 桂卫华
BookMark eNotjz1PwkAch2_ARES-gKOTS-v_etd7GUnjW8RoDDFuzbV3ICiHQozgrIsDU3UwJLg6GCeN6eeBVr-FNTj9lie_J88KKtmeNQitYXCxL4nY7LimG7seYOaCdAGTEipjAO5QKk-XUXUwaEcAzGeESK-M3Pk0naXj_aOgNvsaH58cZHfTeZrkyUc2SbPH-5_nyff7Q_b0lr8k-evnKlpqqouBqf5vBTW2txrBrlM_3NkLanUnZkAcI7QyhmpBqCe4URI0Bq4N-Iz5oHQcacOp5MzEwASPsBGRlD5EgGPKiUcqaGNxe6NsU9lW2Old920hDHVndH47jP76QBZ1Bbq-QOOznm1dtQv4st_uqv4oZBxAEIkp-QUj1GAH
ClassificationCodes TP206
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15938/j.emc.2016.09.013
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Research on fault diagnosis of induction motor based KPCA and RVM
DocumentTitle_FL Research on fault diagnosis of induction motor based KPCA and RVM
EndPage 95
ExternalDocumentID djykzxb201609013
670083914
GrantInformation_xml – fundername: 国家高技术研究发展计划项目; 国家自然科学基金; 湖南教育厅科学研究项目
  funderid: (2009AA11Z217); (61273158); (11C0725)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c603-e8daee4d834287ea90d107de056650adcbde74976ec0687b1e8b9950b01c47323
ISSN 1007-449X
IngestDate Thu May 29 04:05:40 EDT 2025
Wed Feb 14 10:14:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 相关向量机
releveant vector machine
故障诊断
induction motor
核主成分分析
faults diag-nosis
感应电机
kernel principal component analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603-e8daee4d834287ea90d107de056650adcbde74976ec0687b1e8b9950b01c47323
Notes YANG Tong-guang1,2, GUI Wei-hua2 (1. College of Mechanical and Electrical Engineering, Hunan City University ,Yiyang 413000, China; 2. College of Information Science and Engineering, Central South University, Changsha 410083, China)
23-1408/TM
kemel principal component analysis; releveant vector machine; induction motor; faults diagnosis
According to the characteristics of induction motor, such as nonlinear, strong coupling and timevarying, a fault diagnosis method based on kernel principal component analysis (KPCA) and relevance vector machine (RVM) was proposed. Firstly, the induction motor stator current was decomposed using wavelet, and the KPCA approach was adopted to extract the feature vector and remove the redundant infor- mation effectively. Secondly, the relevance vector machine was used to classify the fault feature vectors and to identify the states of induction motor. The experiments were setup to verify the feasibility and prac- ticability of this method under different running condition. The resul
PageCount 7
ParticipantIDs wanfang_journals_djykzxb201609013
chongqing_primary_670083914
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电机与控制学报
PublicationTitleAlternate Electric Machines and Control
PublicationYear 2016
Publisher 湖南城市学院机械与电气工程学院,湖南益阳413000
中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083
Publisher_xml – name: 中南大学信息科学与工程学院,湖南长沙410083%中南大学信息科学与工程学院,湖南长沙,410083
– name: 湖南城市学院机械与电气工程学院,湖南益阳413000
SSID ssib006563392
ssib025702231
ssib000271328
ssib051374584
ssib036435450
ssib017479520
ssib001129775
ssib023166998
Score 2.088005
Snippet 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采...
TP206; 针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析( KPCA)和相关向量机( RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 89
SubjectTerms 感应电机
故障诊断
核主成分分析
相关向量机
Title 基于KPCA与RVM感应电机故障诊断研究
URI http://lib.cqvip.com/qk/90977A/201609/670083914.html
https://d.wanfangdata.com.cn/periodical/djykzxb201609013
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-449X
  databaseCode: ADMLS
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib025702231
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQeuGCQIAoBVQkfEIbvLv22j466UYVEIQgoNyifTitWpHyCBLkDBcOPQUOqFK5ckCcQCi_p03gXzDjXZIVrRAgRZbXnnHsnYnzeUYzJuRakqY88n3rMatzjwsdeDpKpcdtmCjGufb76NFt34nWH_CbXdFdWJVcdMkwrWejY-NK_keq0AZyxSjZf5DsfFBogDrIF0qQMJR_JWMaC6pbtGFozLFU8a27zeJBwcO9h20aR1RxJAJSoNCcxhLLhsAu3XTMUBFUQYum2mBjrKhpUVV0RdSsIZdhJbvRtBFVUe1xY5ZzcBOIqZE4AaWAESswoIlcl6FG_BK6-34gCd26GFVNxwQffR2JjU9V4JqAvVFWVFw1XBQRleUui_ZR0INudRsOWEXddGVPLa4YKv-dixs5j-z7Qrs071t1-wjzUvqRS15bRLn-lk8b45IAFeLl50sBGnFqZMmstW_frzpj_WoKI4SksoKyAAKH4cIZDWc6qcUCdQNijqLKKRbvCQwqztYQQCDg1jm98EOJ3mrnly9fTBnehcu6cWRRmAZkc2ew8QTAjYs1G_STwUYFFnVOk1PleWbVFMp5hpwYbZ4l9cP9ycFkF5Xx4NsuqOH01f7hZDwbf5nuTaZvX_94v_f985vpu0-zD-PZx6_nSKcVd5rrXnkxh5dFLPSsyhNrea5CPG_bRLPcZzK3gKUB7yd5luZWcsC5NmORkqlvVaq1QJN7xmUYhOdJbbAzsBfIal8CwBasL3KpuNJ5mrC-6mciRfOoZGqZrMyX2ntc5F_pzSW4TK6Wi--Vv8pnvXzr5fboRYqviwHWDS_-cYQVchIpC5vaJVIbPn1uLwPKHKZXSq34CZMSWwM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EKPCA%E4%B8%8ERVM%E6%84%9F%E5%BA%94%E7%94%B5%E6%9C%BA%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E9%98%B3%E5%90%8C%E5%85%89+%E6%A1%82%E5%8D%AB%E5%8D%8E&rft.date=2016&rft.issn=1007-449X&rft.volume=20&rft.issue=9&rft.spage=89&rft.epage=95&rft_id=info:doi/10.15938%2Fj.emc.2016.09.013&rft.externalDocID=670083914
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg