Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography
•An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilte...
Saved in:
| Published in | Artificial intelligence in medicine Vol. 63; no. 1; pp. 19 - 31 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.01.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0933-3657 1873-2860 1873-2860 |
| DOI | 10.1016/j.artmed.2014.12.004 |
Cover
| Abstract | •An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method.•The uFilter method statistically improved the breast cancer classification in mammography.•The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test.
This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann–Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx).
A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons.
A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features.
The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances. |
|---|---|
| AbstractList | Highlights • An innovative feature selection method (named uFilter) is proposed. • A set of image-based features, from mammography lesions, were explored and successfully ranked. • Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method. • The uFilter method statistically improved the breast cancer classification in mammography. • The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test. This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx).OBJECTIVEThis work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx).A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons.MATERIALS AND METHODSA total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons.A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features.RESULTSA head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features.The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.CONCLUSIONSThe experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances. This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances. Objective This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). Materials and methods A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. Results A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p <0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. Conclusions The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances. •An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method.•The uFilter method statistically improved the breast cancer classification in mammography.•The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test. This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann–Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances. |
| Author | Pérez, Noel Pérez Silva, Augusto Ramos, Isabel Guevara López, Miguel A. |
| Author_xml | – sequence: 1 givenname: Noel Pérez surname: Pérez fullname: Pérez, Noel Pérez email: nperez@inegi.up.pt organization: Institute of Mechanical Engineering and Industrial Management (INEGI), Campus da FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal – sequence: 2 givenname: Miguel A. surname: Guevara López fullname: Guevara López, Miguel A. organization: Institute of Mechanical Engineering and Industrial Management (INEGI), Campus da FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal – sequence: 3 givenname: Augusto surname: Silva fullname: Silva, Augusto organization: Institute of Electronics and Telematics Engineering of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal – sequence: 4 givenname: Isabel surname: Ramos fullname: Ramos, Isabel organization: Faculty of Medicine – Centro Hospitalar São Joao, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25555756$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVks1q3DAURkVJaSZp36AULbuxK8mybIVSCKE_gZQuGuhSyPL1jKa2NJXkwGTVd-gb9kkqM8mmUJJqYxDfd2zfc0_QkfMOEHpJSUkJFW-2pQ5pgr5khPKSspIQ_gStaNtUBWsFOUIrIquqqETdHKOTGLeEkIZT8QwdszqfphYrdHs57YK_sW6N0wbwZ-3c75-_vm1scrDHMelkY7JGjzhBTHjwAQ-g0xwARxjBJOvdGT53WO8yR5sNtg53AXQOG-0MBNxbvXY-2oi9w5OeJr8OerfZP0dPBz1GeHH3PEXXH95fX3wqrr58vLw4vyqMICwVmtREAKHQyVrUhPF-qFgluha4NH1HB0l6yfpBCMNl3fVdvqBd25lqIKKF6hS9PmDz9_2Y80-oyUYD46gd-Dkq2jSk4iyTHxFljWgaQR8RFYJKyWUrcvTVXXTusi-1C3bSYa_uJeTA2SFggo8xwKCMXQbvXQrajooStRhXW3UwrhbjijKVjecy_6t8z3-g9u5Qgzz5GwtBRWMh--ptyFZV7-3_Asxo3bIp32EPcevn4LJVRVXMBfV12cVlFSknmUJlBrz9N-Dh9_8BBADyKw |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2019_101583 crossref_primary_10_1016_j_compbiomed_2019_02_017 crossref_primary_10_1007_s11042_020_09105_z crossref_primary_10_1016_j_ygeno_2017_01_004 crossref_primary_10_1038_s41598_020_76635_9 crossref_primary_10_3390_jimaging7090190 crossref_primary_10_1007_s00521_020_05631_x crossref_primary_10_1177_1687814016634243 crossref_primary_10_1002_mp_13886 crossref_primary_10_1016_j_imu_2020_100408 crossref_primary_10_1109_TGRS_2020_2976896 crossref_primary_10_1007_s12517_020_06342_2 crossref_primary_10_1061_JMENEA_MEENG_5516 crossref_primary_10_2174_1573405613666170912115617 crossref_primary_10_2196_17758 crossref_primary_10_3390_jpm14010101 crossref_primary_10_1155_2022_1779337 crossref_primary_10_1016_j_bspc_2022_104043 crossref_primary_10_3390_fishes9080307 crossref_primary_10_1016_j_cmpb_2017_10_012 crossref_primary_10_1109_TNB_2019_2930647 crossref_primary_10_1109_ACCESS_2022_3152789 crossref_primary_10_1038_srep27327 crossref_primary_10_1109_ACCESS_2019_2903634 crossref_primary_10_1016_j_cmpb_2018_12_019 crossref_primary_10_1016_j_measurement_2022_112269 crossref_primary_10_3390_electronics11152435 crossref_primary_10_1186_s13638_019_1582_2 crossref_primary_10_1016_j_cmpb_2024_108581 crossref_primary_10_26565_2313_6693_2021_43_04 crossref_primary_10_1016_j_marpol_2021_104913 crossref_primary_10_1155_2021_6079163 crossref_primary_10_1016_j_csbj_2022_07_022 crossref_primary_10_3758_s13414_020_02091_2 crossref_primary_10_1007_s11042_023_18078_8 crossref_primary_10_1016_j_ins_2016_12_046 crossref_primary_10_1038_s41598_017_15359_9 crossref_primary_10_1155_2017_3781951 crossref_primary_10_1016_j_compbiomed_2024_108454 crossref_primary_10_1016_j_envpol_2023_123017 crossref_primary_10_1016_j_eswa_2020_114485 crossref_primary_10_26565_2313_6693_2021_42_04 crossref_primary_10_1016_j_knosys_2019_105279 crossref_primary_10_1080_17538947_2024_2390427 crossref_primary_10_1109_JSTARS_2019_2916045 crossref_primary_10_3389_fonc_2022_985284 crossref_primary_10_1155_2021_5577636 crossref_primary_10_3390_diagnostics13111954 crossref_primary_10_1155_2017_9512741 crossref_primary_10_4018_IJACI_2017040104 crossref_primary_10_1142_S1793545819500214 crossref_primary_10_3390_app131810401 crossref_primary_10_1016_j_asoc_2022_109464 |
| Cites_doi | 10.1016/j.artmed.2004.10.001 10.5194/npg-15-863-2008 10.1016/j.artmed.2006.03.002 10.1016/j.ejor.2004.08.010 10.1039/a802531b 10.1023/A:1022631118932 10.1016/j.media.2012.02.005 10.1023/A:1008862617082 10.1002/pmic.200400857 10.1118/1.2820630 10.1016/j.patcog.2003.03.001 10.1007/s10916-011-9693-2 10.1016/j.artmed.2008.04.004 10.1118/1.2214177 10.1007/BF02985802 10.1016/S0167-8655(03)00047-3 10.1038/nrd1657 10.1109/TSMC.1973.4309314 10.1118/1.2188080 10.1118/1.1738960 10.1118/1.1997327 10.1093/bioinformatics/btm344 10.1016/S0893-6080(02)00164-8 10.1148/radiol.2442060712 10.1186/1475-925X-1-4 10.1007/s11548-013-0838-2 10.1016/j.cmpb.2010.01.005 10.1214/aoms/1177730491 10.1145/1656274.1656278 10.1016/S1088-467X(97)00008-5 10.1016/j.compbiomed.2012.07.001 10.1007/s00521-012-0834-4 10.1016/j.compmedimag.2005.03.002 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| DOI | 10.1016/j.artmed.2014.12.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Computer and Information Systems Abstracts Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1873-2860 |
| EndPage | 31 |
| ExternalDocumentID | 25555756 10_1016_j_artmed_2014_12_004 S0933365714001419 1_s2_0_S0933365714001419 |
| Genre | Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c602t-a0506e01eb9565024df3236b8e49cdb1f90d92df66c495bdbf901b8bc3f068e3 |
| IEDL.DBID | .~1 |
| ISSN | 0933-3657 1873-2860 |
| IngestDate | Thu Oct 02 10:46:17 EDT 2025 Tue Oct 07 09:18:32 EDT 2025 Thu Oct 02 06:41:12 EDT 2025 Thu Apr 03 06:55:03 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Oct 01 00:45:52 EDT 2025 Fri Feb 23 02:25:15 EST 2024 Sun Feb 23 10:19:32 EST 2025 Tue Oct 14 19:30:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Breast cancer CADx Mann–Whitney U-test Machine learning algorithms Feature selection methods Redundancy analysis uFilter method |
| Language | English |
| License | Copyright © 2014 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c602t-a0506e01eb9565024df3236b8e49cdb1f90d92df66c495bdbf901b8bc3f068e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 25555756 |
| PQID | 1661994986 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1770342502 proquest_miscellaneous_1727677612 proquest_miscellaneous_1661994986 pubmed_primary_25555756 crossref_citationtrail_10_1016_j_artmed_2014_12_004 crossref_primary_10_1016_j_artmed_2014_12_004 elsevier_sciencedirect_doi_10_1016_j_artmed_2014_12_004 elsevier_clinicalkeyesjournals_1_s2_0_S0933365714001419 elsevier_clinicalkey_doi_10_1016_j_artmed_2014_12_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Artificial intelligence in medicine |
| PublicationTitleAlternate | Artif Intell Med |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Shi, Sahiner, Chan, Ge, Hadjiiski, Helvie (bib0235) 2008; 35 Gibbons, Chakraborti (bib0335) 2011 Dutta, Hines, Gardner, Boilot (bib0060) 2002; 1 Kaifeng, Wenkai, Wenlong, Shanwen, Huanqin, Yanda (bib0030) 2004; 24 Song, Lee, Kim, Park (bib0285) 2005; vol. 3498 Mavroforakis, Georgiou, Dimitropoulos, Cavouras, Theodoridis (bib0220) 2006; 37 Garcı́a López, Garcı́a Torres, Melián Batista, Moreno Pérez, Moreno-Vega (bib0295) 2006; 169 Hwang (bib0300) 2001 Lee, Chung, Chang, Lo, Lee, Hsu (bib0085) 2003; 16 Kim, Ryu (bib0270) 2005; vol. 3613 Blanco, Coello, Iturriaga, Maspoch, de la Pezuela (bib0015) 1998; 123 Koller, Sahami (bib0120) 1996 Wei, Sahiner, Hadjiiski, Chan, Petrick, Helvie (bib0080) 2005; 32 de Oliveira, Machado, Chavez, Lopes, Deserno, Araujo Ade (bib0150) 2010; 99 Malar, Kandaswamy, Chakravarthy, Giri Dharan (bib0185) 2012; 42 Jesneck, Lo, Baker (bib0240) 2007; 244 (bib0145) 2014 Wang, Summers (bib0310) 2012; 16 López, Novoa, Guevara, Quintana, Silva (bib0170) 2008; vol. 5197 Duda, Hart, Stork (bib0305) 2000 Hollander, Wolfe (bib0345) 2013 Jain, Chandrasekaran (bib0110) 1982; vol. 2 Salama, Abdelhalim, Zeid (bib0260) 2012; 32 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0290) 2009; 11 (bib0315) 2007 Pérez, Guevara, Silva (bib0225) 2012 Chanwoo, Stern (bib0035) 2010 Holte (bib0180) 1993; 11 Yu, Liu (bib0050) 2004; 5 Ping, Verma, Kuldeep (bib0215) 2004 Christobel (bib0265) 2011; 3 Setiono, Liu (bib0095) 1995 John, Kohavi, Pfleger (bib0340) 1994 Pérez, Guevara, Silva (bib0210) 2013 Papadopoulos, Fotiadis, Likas (bib0200) 2005; 34 Bellotti, De Carlo, Tangaro, Gargano, Maggipinto, Castellano (bib0195) 2006; 33 AbuBaker, Qahwaji, Ipson (bib0350) 2007 Abonyi, Szeifert (bib0275) 2003; 24 Guyon, Elisseeff (bib0045) 2003; 3 Guyon, Elisseeff (bib0010) 2006; vol. 207 Demsar (bib0330) 2006; 7 Saeys, Inza, Larranaga (bib0090) 2007; 23 Hall, Smith (bib0115) 1999 Holmberg, Gustafsson, Hornsten, Winquist, Nilsson, Ljung (bib0055) 1998; 12 López, Novoa, Guevara, Silva (bib0065) 2008; vol. 4756/2008 Gupta, Chyn, Markey (bib0245) 2006; 33 Ramos-Pollan, Guevara-Lopez, Suarez-Ortega, Diaz-Herrero, Franco-Valiente, Rubio-Del-Solar (bib0140) 2012; 36 Pei, Essa, Starner, Rehg (bib0040) 2008 Fu, Lee, Wong, Yeh, Wang, Wu (bib0230) 2005; 29 Prados, Kalousis, Sanchez, Allard, Carrette, Hilario (bib0130) 2004; 4 Moura, Guevara López (bib0255) 2013; 8 Kirk (bib0135) 2007 Mann, Whitney (bib0325) 1947; 18 Devijver, Kittler (bib0005) 1982 Catarious, Baydush, Floyd (bib0250) 2004; 31 Pérez, Guevara, Silva, Ramos, Loureiro (bib0205) 2014 Soltanian-Zadeh, Rafiee-Rad, Pourabdollah-Nejad (bib0075) 2004; 37 Mohanty, Senapati, Lenka (bib0355) 2013; 22 Xu, Xia, Xie (bib0280) 2004; vol. 3173 Hastie, Tibshirani, Friedman, Franklin (bib0320) 2005; 27 Haralick, Shanmuga, Dinstein (bib0165) 1973; Smc3 Hashemi, Tax, Duin, Javaherian, de Groot (bib0025) 2008; 15 Press, Flannery, Teukolsky, Vetterling (bib0105) 1988 Committee (bib0160) 2003 Heath, Bowyer, Kopans, Moore, Kegelmeyer (bib0155) 2001 Verma, Panchal (bib0190) 2008 Kira, Rendell (bib0125) 1992 Dash, Liu (bib0175) 1997; 1 Ghazavi, Liao (bib0070) 2008; 43 Koehn, Carter (bib0020) 2005; 4 Liu, Li, Wong (bib0100) 2002; 13 Dutta (10.1016/j.artmed.2014.12.004_bib0060) 2002; 1 Prados (10.1016/j.artmed.2014.12.004_bib0130) 2004; 4 López (10.1016/j.artmed.2014.12.004_bib0170) 2008; vol. 5197 Garcı́a López (10.1016/j.artmed.2014.12.004_bib0295) 2006; 169 Heath (10.1016/j.artmed.2014.12.004_bib0155) 2001 Hollander (10.1016/j.artmed.2014.12.004_bib0345) 2013 Haralick (10.1016/j.artmed.2014.12.004_bib0165) 1973; Smc3 Fu (10.1016/j.artmed.2014.12.004_bib0230) 2005; 29 Liu (10.1016/j.artmed.2014.12.004_bib0100) 2002; 13 Moura (10.1016/j.artmed.2014.12.004_bib0255) 2013; 8 Pérez (10.1016/j.artmed.2014.12.004_bib0210) 2013 Hall (10.1016/j.artmed.2014.12.004_bib0115) 1999 López (10.1016/j.artmed.2014.12.004_bib0065) 2008; vol. 4756/2008 Ping (10.1016/j.artmed.2014.12.004_bib0215) 2004 Hashemi (10.1016/j.artmed.2014.12.004_bib0025) 2008; 15 Kim (10.1016/j.artmed.2014.12.004_bib0270) 2005; vol. 3613 Mohanty (10.1016/j.artmed.2014.12.004_bib0355) 2013; 22 Kirk (10.1016/j.artmed.2014.12.004_bib0135) 2007 Wei (10.1016/j.artmed.2014.12.004_bib0080) 2005; 32 Song (10.1016/j.artmed.2014.12.004_bib0285) 2005; vol. 3498 Chanwoo (10.1016/j.artmed.2014.12.004_bib0035) 2010 Christobel (10.1016/j.artmed.2014.12.004_bib0265) 2011; 3 Salama (10.1016/j.artmed.2014.12.004_bib0260) 2012; 32 Koller (10.1016/j.artmed.2014.12.004_bib0120) 1996 Catarious (10.1016/j.artmed.2014.12.004_bib0250) 2004; 31 Koehn (10.1016/j.artmed.2014.12.004_bib0020) 2005; 4 Mavroforakis (10.1016/j.artmed.2014.12.004_bib0220) 2006; 37 Guyon (10.1016/j.artmed.2014.12.004_bib0045) 2003; 3 Mann (10.1016/j.artmed.2014.12.004_bib0325) 1947; 18 Kaifeng (10.1016/j.artmed.2014.12.004_bib0030) 2004; 24 Bellotti (10.1016/j.artmed.2014.12.004_bib0195) 2006; 33 Pérez (10.1016/j.artmed.2014.12.004_bib0205) 2014 Jain (10.1016/j.artmed.2014.12.004_bib0110) 1982; vol. 2 Papadopoulos (10.1016/j.artmed.2014.12.004_bib0200) 2005; 34 Ramos-Pollan (10.1016/j.artmed.2014.12.004_bib0140) 2012; 36 Jesneck (10.1016/j.artmed.2014.12.004_bib0240) 2007; 244 Gupta (10.1016/j.artmed.2014.12.004_bib0245) 2006; 33 John (10.1016/j.artmed.2014.12.004_bib0340) 1994 (10.1016/j.artmed.2014.12.004_bib0315) 2007 de Oliveira (10.1016/j.artmed.2014.12.004_bib0150) 2010; 99 Malar (10.1016/j.artmed.2014.12.004_bib0185) 2012; 42 Devijver (10.1016/j.artmed.2014.12.004_bib0005) 1982 Hastie (10.1016/j.artmed.2014.12.004_bib0320) 2005; 27 Pérez (10.1016/j.artmed.2014.12.004_bib0225) 2012 Xu (10.1016/j.artmed.2014.12.004_bib0280) 2004; vol. 3173 Committee (10.1016/j.artmed.2014.12.004_bib0160) 2003 Demsar (10.1016/j.artmed.2014.12.004_bib0330) 2006; 7 Blanco (10.1016/j.artmed.2014.12.004_bib0015) 1998; 123 Shi (10.1016/j.artmed.2014.12.004_bib0235) 2008; 35 Press (10.1016/j.artmed.2014.12.004_bib0105) 1988 Holte (10.1016/j.artmed.2014.12.004_bib0180) 1993; 11 Saeys (10.1016/j.artmed.2014.12.004_bib0090) 2007; 23 (10.1016/j.artmed.2014.12.004_bib0145) 2014 Yu (10.1016/j.artmed.2014.12.004_bib0050) 2004; 5 Gibbons (10.1016/j.artmed.2014.12.004_bib0335) 2011 Soltanian-Zadeh (10.1016/j.artmed.2014.12.004_bib0075) 2004; 37 Ghazavi (10.1016/j.artmed.2014.12.004_bib0070) 2008; 43 Lee (10.1016/j.artmed.2014.12.004_bib0085) 2003; 16 Abonyi (10.1016/j.artmed.2014.12.004_bib0275) 2003; 24 Guyon (10.1016/j.artmed.2014.12.004_bib0010) 2006; vol. 207 Kira (10.1016/j.artmed.2014.12.004_bib0125) 1992 Holmberg (10.1016/j.artmed.2014.12.004_bib0055) 1998; 12 Hwang (10.1016/j.artmed.2014.12.004_bib0300) 2001 Hall (10.1016/j.artmed.2014.12.004_bib0290) 2009; 11 AbuBaker (10.1016/j.artmed.2014.12.004_bib0350) 2007 Setiono (10.1016/j.artmed.2014.12.004_bib0095) 1995 Dash (10.1016/j.artmed.2014.12.004_bib0175) 1997; 1 Verma (10.1016/j.artmed.2014.12.004_bib0190) 2008 Duda (10.1016/j.artmed.2014.12.004_bib0305) 2000 Wang (10.1016/j.artmed.2014.12.004_bib0310) 2012; 16 Pei (10.1016/j.artmed.2014.12.004_bib0040) 2008 |
| References_xml | – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: bib0050 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – start-page: 388 year: 1995 end-page: 391 ident: bib0095 article-title: CHI2: feature selection and discretization of numeric attributes publication-title: IEEE Proceedings of the Seventh International Conference on Tools with Artificial Intelligence – start-page: 212 year: 2001 end-page: 218 ident: bib0155 article-title: The digital database for screening mammography publication-title: Proceedings of the Fifth International Workshop on Digital Mammography – start-page: 867022-1 year: 2013 end-page: 867022-14 ident: bib0210 article-title: Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis publication-title: SPIE medical imaging 2013 – volume: vol. 4756/2008 start-page: 803 year: 2008 end-page: 811 ident: bib0065 article-title: Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques publication-title: Progress in pattern recognition image analysis and applications – volume: 8 start-page: 561 year: 2013 end-page: 574 ident: bib0255 article-title: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis publication-title: Int J Comput Assist Radiol Surg – volume: 13 start-page: 51 year: 2002 end-page: 60 ident: bib0100 article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns publication-title: Genome Inform – volume: 4 start-page: 206 year: 2005 end-page: 220 ident: bib0020 article-title: The evolving role of natural products in drug discovery publication-title: Nat Rev Drug Discov – year: 1982 ident: bib0005 article-title: Pattern recognition: a statistical approach – year: 1988 ident: bib0105 article-title: Numerical recipes in C – start-page: 121 year: 1994 end-page: 129 ident: bib0340 article-title: Irrelevant features and the subset selection problem publication-title: Machine Learning, Proceedings of the Eleventh International Conference – volume: 37 start-page: 1973 year: 2004 end-page: 1986 ident: bib0075 article-title: Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms publication-title: Pattern Recognit – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0290 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor Newslett – start-page: 977 year: 2011 end-page: 979 ident: bib0335 article-title: Nonparametric statistical inference publication-title: International encyclopedia of statistical science – volume: 15 start-page: 863 year: 2008 end-page: 871 ident: bib0025 article-title: Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier publication-title: Nonlinear Process Geophys – volume: vol. 2 start-page: 835 year: 1982 end-page: 855 ident: bib0110 article-title: 39 Dimensionality and sample size considerations in pattern recognition practice publication-title: Handbook of statistics – start-page: 2303 year: 2004 end-page: 2308 ident: bib0215 article-title: A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography publication-title: IEEE International Joint Conference on Neural Networks, vol. 3 – volume: 244 start-page: 390 year: 2007 end-page: 398 ident: bib0240 article-title: Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors publication-title: Radiology – volume: 3 start-page: 24 year: 2011 end-page: 28 ident: bib0265 article-title: An empirical comparison of data mining classification methods publication-title: Int J Comput Inf Syst – volume: 1 start-page: 4 year: 2002 ident: bib0060 article-title: Bacteria classification using Cyranose 320 electronic nose publication-title: BioMed Eng Online – start-page: 947 year: 2008 end-page: 967 ident: bib0190 article-title: Neural networks for the classification of benign and malignant patters in digital mammograms publication-title: Intelligent information technologies: concepts, methodologies, tools, and applications – volume: 34 start-page: 141 year: 2005 end-page: 150 ident: bib0200 article-title: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines publication-title: Artif Intell Med – start-page: 209 year: 2014 end-page: 217 ident: bib0205 article-title: Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection publication-title: IEEE 2014 Federated Conference on Computer Science and Information Systems (FedCSIS) – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0045 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 4 start-page: 2320 year: 2004 end-page: 2332 ident: bib0130 article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents publication-title: Proteomics – volume: 16 start-page: 933 year: 2012 end-page: 951 ident: bib0310 article-title: Machine learning and radiology publication-title: Med Image Anal – volume: 33 start-page: 1810 year: 2006 end-page: 1817 ident: bib0245 article-title: Breast cancer CADx based on BI-RAds descriptors from two mammographic views publication-title: Med Phys – volume: 24 start-page: 36 year: 2004 end-page: 38 ident: bib0030 article-title: Hydrocarbon prediction method based on Svm feature selection publication-title: Nat Gas Ind – volume: 11 start-page: 63 year: 1993 end-page: 91 ident: bib0180 article-title: Very simple classification rules perform well on most commonly used datasets publication-title: Mach Learn – volume: 35 start-page: 280 year: 2008 end-page: 290 ident: bib0235 article-title: Characterization of mammographic masses based on level set segmentation with new image features and patient information publication-title: Med Phys – volume: 42 start-page: 898 year: 2012 end-page: 905 ident: bib0185 article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine publication-title: Comput Biol Med – start-page: 2001 year: 2008 end-page: 2004 ident: bib0040 article-title: Discriminative feature selection for hidden Markov models using Segmental Boosting publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008) – volume: vol. 3498 start-page: 780 year: 2005 end-page: 789 ident: bib0285 article-title: New methodology of computer aided diagnostic system on breast cancer publication-title: Advances in neural networks – ISNN 2005 – volume: 27 start-page: 83 year: 2005 end-page: 85 ident: bib0320 article-title: The elements of statistical learning: data mining, inference and prediction publication-title: Math Intell – start-page: 81 year: 2007 end-page: 109 ident: bib0315 publication-title: Estimating data parameters applied statistics using SPSS, STATISTICA, MATLAB and R – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: bib0175 article-title: Feature selection for classification publication-title: Intell Data Anal – start-page: 408 year: 2001 ident: bib0300 article-title: Introduction to neural networks for signal processing publication-title: Handbook of neural network signal processing – year: 2007 ident: bib0135 article-title: Statistics: an introduction – volume: 22 start-page: 303 year: 2013 end-page: 310 ident: bib0355 article-title: An improved data mining technique for classification and detection of breast cancer from mammograms publication-title: Neural Comput Appl – volume: 33 start-page: 3066 year: 2006 end-page: 3075 ident: bib0195 article-title: A completely automated CAD system for mass detection in a large mammographic database publication-title: Med Phys – start-page: 896 year: 2007 end-page: 899 ident: bib0350 article-title: Texture-based feature extraction for the microcalcification from digital mammogram images publication-title: IEEE International Conference on Signal Processing and Communications (ICSPC 2007) – year: 1999 ident: bib0115 article-title: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper publication-title: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference – volume: 37 start-page: 145 year: 2006 end-page: 162 ident: bib0220 article-title: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers publication-title: Artif Intell Med – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0330 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 29 start-page: 419 year: 2005 end-page: 429 ident: bib0230 article-title: Image segmentation feature selection and pattern classification for mammographic microcalcifications publication-title: Comput Med Imaging Graphics – volume: 18 start-page: 50 year: 1947 end-page: 60 ident: bib0325 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann Math Stat – volume: 32 start-page: 2 year: 2012 ident: bib0260 article-title: Breast cancer diagnosis on three different datasets using multi-classifiers publication-title: Breast Cancer (WDBC) – year: 1996 ident: bib0120 article-title: Toward optimal feature selection – volume: 99 start-page: 289 year: 2010 end-page: 297 ident: bib0150 article-title: MammoSys: a content-based image retrieval system using breast density patterns publication-title: Comput Methods Progr Biomed – volume: 123 start-page: 135R year: 1998 end-page: 150R ident: bib0015 article-title: Near-infrared spectroscopy in the pharmaceutical industry publication-title: Analyst – volume: vol. 207 start-page: 1 year: 2006 end-page: 25 ident: bib0010 article-title: An introduction to feature extraction publication-title: Feature extraction – year: 2014 ident: bib0145 article-title: Breast cancer digital repository – volume: vol. 5197 start-page: 453 year: 2008 end-page: 460 ident: bib0170 article-title: Computer aided diagnosis system to detect breast cancer pathological lesions publication-title: Progress in pattern recognition, image analysis and applications – start-page: 249 year: 1992 end-page: 256 ident: bib0125 article-title: A practical approach to feature selection publication-title: ML92 Proceedings of the ninth international workshop on Machine learning – volume: 43 start-page: 195 year: 2008 end-page: 206 ident: bib0070 article-title: Medical data mining by fuzzy modeling with selected features publication-title: Artif Intell Med – year: 2013 ident: bib0345 article-title: Nonparametric statistical methods – year: 2000 ident: bib0305 article-title: Pattern classification – volume: 169 start-page: 477 year: 2006 end-page: 489 ident: bib0295 article-title: Solving feature subset selection problem by a Parallel Scatter Search publication-title: Eur J Oper Res – volume: 36 start-page: 2259 year: 2012 end-page: 2269 ident: bib0140 article-title: Discovering mammography-based machine learning classifiers for breast cancer diagnosis publication-title: J Med Syst – volume: 16 start-page: 121 year: 2003 end-page: 132 ident: bib0085 article-title: Classification of clustered microcalcifications using a Shape Cognitron neural network publication-title: Neural Netw – volume: vol. 3173 start-page: 953 year: 2004 end-page: 958 ident: bib0280 article-title: Application of CMAC-based networks on medical image classification publication-title: Advances in neural networks – ISNN 2004 – start-page: 4574 year: 2010 end-page: 4577 ident: bib0035 article-title: Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring publication-title: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) – year: 2012 ident: bib0225 article-title: Evaluation of features selection methods for breast cancer classification publication-title: 15th International Conference on Experimental Mechanics (ICEM15) – volume: 24 start-page: 2195 year: 2003 end-page: 2207 ident: bib0275 article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers publication-title: Pattern Recognit Lett – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib0090 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – year: 2003 ident: bib0160 article-title: American College of Radiology (ACR) ACR BIRADS – mammography publication-title: ACR breast imaging reporting and data system, breast imaging atlas – volume: 31 start-page: 1512 year: 2004 end-page: 1520 ident: bib0250 article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system publication-title: Med Phys – volume: vol. 3613 start-page: 392 year: 2005 end-page: 401 ident: bib0270 article-title: Optimized fuzzy classification using genetic algorithm publication-title: Fuzzy systems and knowledge discovery – volume: Smc3 start-page: 610 year: 1973 end-page: 621 ident: bib0165 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybern – volume: 12 start-page: 319 year: 1998 end-page: 324 ident: bib0055 article-title: Bacteria classification based on feature extraction from sensor data publication-title: Biotechnol Tech – volume: 32 start-page: 2827 year: 2005 end-page: 2838 ident: bib0080 article-title: Computer-aided detection of breast masses on full field digital mammograms publication-title: Med Phys – year: 2007 ident: 10.1016/j.artmed.2014.12.004_bib0135 – volume: 34 start-page: 141 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0200 article-title: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines publication-title: Artif Intell Med doi: 10.1016/j.artmed.2004.10.001 – volume: 15 start-page: 863 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0025 article-title: Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier publication-title: Nonlinear Process Geophys doi: 10.5194/npg-15-863-2008 – volume: 13 start-page: 51 year: 2002 ident: 10.1016/j.artmed.2014.12.004_bib0100 article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns publication-title: Genome Inform – volume: 37 start-page: 145 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0220 article-title: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers publication-title: Artif Intell Med doi: 10.1016/j.artmed.2006.03.002 – year: 2000 ident: 10.1016/j.artmed.2014.12.004_bib0305 – volume: 169 start-page: 477 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0295 article-title: Solving feature subset selection problem by a Parallel Scatter Search publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.08.010 – volume: 123 start-page: 135R year: 1998 ident: 10.1016/j.artmed.2014.12.004_bib0015 article-title: Near-infrared spectroscopy in the pharmaceutical industry publication-title: Analyst doi: 10.1039/a802531b – volume: 11 start-page: 63 year: 1993 ident: 10.1016/j.artmed.2014.12.004_bib0180 article-title: Very simple classification rules perform well on most commonly used datasets publication-title: Mach Learn doi: 10.1023/A:1022631118932 – volume: 16 start-page: 933 year: 2012 ident: 10.1016/j.artmed.2014.12.004_bib0310 article-title: Machine learning and radiology publication-title: Med Image Anal doi: 10.1016/j.media.2012.02.005 – volume: 12 start-page: 319 year: 1998 ident: 10.1016/j.artmed.2014.12.004_bib0055 article-title: Bacteria classification based on feature extraction from sensor data publication-title: Biotechnol Tech doi: 10.1023/A:1008862617082 – volume: 4 start-page: 2320 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0130 article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents publication-title: Proteomics doi: 10.1002/pmic.200400857 – year: 1982 ident: 10.1016/j.artmed.2014.12.004_bib0005 – start-page: 388 year: 1995 ident: 10.1016/j.artmed.2014.12.004_bib0095 article-title: CHI2: feature selection and discretization of numeric attributes – volume: 35 start-page: 280 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0235 article-title: Characterization of mammographic masses based on level set segmentation with new image features and patient information publication-title: Med Phys doi: 10.1118/1.2820630 – volume: vol. 207 start-page: 1 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0010 article-title: An introduction to feature extraction – volume: 37 start-page: 1973 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0075 article-title: Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms publication-title: Pattern Recognit doi: 10.1016/j.patcog.2003.03.001 – start-page: 896 year: 2007 ident: 10.1016/j.artmed.2014.12.004_bib0350 article-title: Texture-based feature extraction for the microcalcification from digital mammogram images – year: 2003 ident: 10.1016/j.artmed.2014.12.004_bib0160 article-title: American College of Radiology (ACR) ACR BIRADS – mammography – volume: vol. 3173 start-page: 953 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0280 article-title: Application of CMAC-based networks on medical image classification – volume: vol. 4756/2008 start-page: 803 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0065 article-title: Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques – volume: vol. 3613 start-page: 392 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0270 article-title: Optimized fuzzy classification using genetic algorithm – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.artmed.2014.12.004_bib0045 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 36 start-page: 2259 year: 2012 ident: 10.1016/j.artmed.2014.12.004_bib0140 article-title: Discovering mammography-based machine learning classifiers for breast cancer diagnosis publication-title: J Med Syst doi: 10.1007/s10916-011-9693-2 – volume: 43 start-page: 195 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0070 article-title: Medical data mining by fuzzy modeling with selected features publication-title: Artif Intell Med doi: 10.1016/j.artmed.2008.04.004 – start-page: 947 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0190 article-title: Neural networks for the classification of benign and malignant patters in digital mammograms – start-page: 867022-1 year: 2013 ident: 10.1016/j.artmed.2014.12.004_bib0210 article-title: Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis – start-page: 408 year: 2001 ident: 10.1016/j.artmed.2014.12.004_bib0300 article-title: Introduction to neural networks for signal processing – volume: 33 start-page: 3066 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0195 article-title: A completely automated CAD system for mass detection in a large mammographic database publication-title: Med Phys doi: 10.1118/1.2214177 – volume: 27 start-page: 83 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0320 article-title: The elements of statistical learning: data mining, inference and prediction publication-title: Math Intell doi: 10.1007/BF02985802 – start-page: 212 year: 2001 ident: 10.1016/j.artmed.2014.12.004_bib0155 article-title: The digital database for screening mammography – year: 1988 ident: 10.1016/j.artmed.2014.12.004_bib0105 – volume: vol. 5197 start-page: 453 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0170 article-title: Computer aided diagnosis system to detect breast cancer pathological lesions – year: 1996 ident: 10.1016/j.artmed.2014.12.004_bib0120 – volume: 24 start-page: 2195 year: 2003 ident: 10.1016/j.artmed.2014.12.004_bib0275 article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(03)00047-3 – volume: 4 start-page: 206 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0020 article-title: The evolving role of natural products in drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1657 – volume: Smc3 start-page: 610 year: 1973 ident: 10.1016/j.artmed.2014.12.004_bib0165 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – year: 2012 ident: 10.1016/j.artmed.2014.12.004_bib0225 article-title: Evaluation of features selection methods for breast cancer classification – start-page: 81 year: 2007 ident: 10.1016/j.artmed.2014.12.004_bib0315 – volume: 33 start-page: 1810 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0245 article-title: Breast cancer CADx based on BI-RAds descriptors from two mammographic views publication-title: Med Phys doi: 10.1118/1.2188080 – volume: 31 start-page: 1512 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0250 article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system publication-title: Med Phys doi: 10.1118/1.1738960 – volume: vol. 3498 start-page: 780 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0285 article-title: New methodology of computer aided diagnostic system on breast cancer – start-page: 2001 year: 2008 ident: 10.1016/j.artmed.2014.12.004_bib0040 article-title: Discriminative feature selection for hidden Markov models using Segmental Boosting – volume: vol. 2 start-page: 835 year: 1982 ident: 10.1016/j.artmed.2014.12.004_bib0110 article-title: 39 Dimensionality and sample size considerations in pattern recognition practice – volume: 24 start-page: 36 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0030 article-title: Hydrocarbon prediction method based on Svm feature selection publication-title: Nat Gas Ind – volume: 32 start-page: 2827 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0080 article-title: Computer-aided detection of breast masses on full field digital mammograms publication-title: Med Phys doi: 10.1118/1.1997327 – start-page: 977 year: 2011 ident: 10.1016/j.artmed.2014.12.004_bib0335 article-title: Nonparametric statistical inference – volume: 3 start-page: 24 issue: 2 year: 2011 ident: 10.1016/j.artmed.2014.12.004_bib0265 article-title: An empirical comparison of data mining classification methods publication-title: Int J Comput Inf Syst – volume: 23 start-page: 2507 year: 2007 ident: 10.1016/j.artmed.2014.12.004_bib0090 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 5 start-page: 1205 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0050 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – volume: 16 start-page: 121 year: 2003 ident: 10.1016/j.artmed.2014.12.004_bib0085 article-title: Classification of clustered microcalcifications using a Shape Cognitron neural network publication-title: Neural Netw doi: 10.1016/S0893-6080(02)00164-8 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.artmed.2014.12.004_bib0330 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – year: 2013 ident: 10.1016/j.artmed.2014.12.004_bib0345 – year: 1999 ident: 10.1016/j.artmed.2014.12.004_bib0115 article-title: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper – volume: 244 start-page: 390 year: 2007 ident: 10.1016/j.artmed.2014.12.004_bib0240 article-title: Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors publication-title: Radiology doi: 10.1148/radiol.2442060712 – volume: 1 start-page: 4 year: 2002 ident: 10.1016/j.artmed.2014.12.004_bib0060 article-title: Bacteria classification using Cyranose 320 electronic nose publication-title: BioMed Eng Online doi: 10.1186/1475-925X-1-4 – volume: 8 start-page: 561 year: 2013 ident: 10.1016/j.artmed.2014.12.004_bib0255 article-title: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0838-2 – start-page: 249 year: 1992 ident: 10.1016/j.artmed.2014.12.004_bib0125 article-title: A practical approach to feature selection – start-page: 2303 year: 2004 ident: 10.1016/j.artmed.2014.12.004_bib0215 article-title: A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography – start-page: 121 year: 1994 ident: 10.1016/j.artmed.2014.12.004_bib0340 article-title: Irrelevant features and the subset selection problem – volume: 99 start-page: 289 year: 2010 ident: 10.1016/j.artmed.2014.12.004_bib0150 article-title: MammoSys: a content-based image retrieval system using breast density patterns publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2010.01.005 – volume: 18 start-page: 50 year: 1947 ident: 10.1016/j.artmed.2014.12.004_bib0325 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann Math Stat doi: 10.1214/aoms/1177730491 – volume: 11 start-page: 10 year: 2009 ident: 10.1016/j.artmed.2014.12.004_bib0290 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor Newslett doi: 10.1145/1656274.1656278 – volume: 32 start-page: 2 year: 2012 ident: 10.1016/j.artmed.2014.12.004_bib0260 article-title: Breast cancer diagnosis on three different datasets using multi-classifiers publication-title: Breast Cancer (WDBC) – volume: 1 start-page: 131 year: 1997 ident: 10.1016/j.artmed.2014.12.004_bib0175 article-title: Feature selection for classification publication-title: Intell Data Anal doi: 10.1016/S1088-467X(97)00008-5 – volume: 42 start-page: 898 year: 2012 ident: 10.1016/j.artmed.2014.12.004_bib0185 article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2012.07.001 – start-page: 209 year: 2014 ident: 10.1016/j.artmed.2014.12.004_bib0205 article-title: Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection – volume: 22 start-page: 303 year: 2013 ident: 10.1016/j.artmed.2014.12.004_bib0355 article-title: An improved data mining technique for classification and detection of breast cancer from mammograms publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0834-4 – year: 2014 ident: 10.1016/j.artmed.2014.12.004_bib0145 – volume: 29 start-page: 419 year: 2005 ident: 10.1016/j.artmed.2014.12.004_bib0230 article-title: Image segmentation feature selection and pattern classification for mammographic microcalcifications publication-title: Comput Med Imaging Graphics doi: 10.1016/j.compmedimag.2005.03.002 – start-page: 4574 year: 2010 ident: 10.1016/j.artmed.2014.12.004_bib0035 article-title: Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring |
| SSID | ssj0007416 |
| Score | 2.3608243 |
| Snippet | •An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully... Highlights • An innovative feature selection method (named uFilter) is proposed. • A set of image-based features, from mammography lesions, were explored and... This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the... Objective This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 19 |
| SubjectTerms | Algorithms Bayes Theorem Breast Breast cancer CADx Breast Neoplasms - diagnostic imaging Cancer Chi-Square Distribution Classification Databases, Factual Diagnosis Diagnosis, Computer-Assisted - methods Discretization Discriminant Analysis Feature selection methods Female Humans Internal Medicine Linear Models Machine Learning Machine learning algorithms Mammography - methods Mann–Whitney U-test Models, Statistical Neural networks Other Predictive Value of Tests Radiographic Image Interpretation, Computer-Assisted - methods Redundancy analysis Reproducibility of Results Statistical tests uFilter method |
| Title | Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365714001419 https://www.clinicalkey.es/playcontent/1-s2.0-S0933365714001419 https://dx.doi.org/10.1016/j.artmed.2014.12.004 https://www.ncbi.nlm.nih.gov/pubmed/25555756 https://www.proquest.com/docview/1661994986 https://www.proquest.com/docview/1727677612 https://www.proquest.com/docview/1770342502 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuPMpreVRG4hrWiV8Jt1VFtYDaC0XqzYodW1pEs1WTHuCA-A_8Q34JM469gCgt4hhrbEeesecbex6EPJeB-bqUoai0D4XQyhWNZ7zQvK20Ei1v43PBwaFavhdvjuXxFtnLsTDoVpnO_ulMj6d1apmn1Zyfrlbzd2iLcyUx4xx6K2IQnxAaqxi8-PLTzQMRR8y3x3mB1Dl8Lvp4wXigc9DBS8RLwVSu7QL19Df4GdXQ_m1yM-FHuph-8Q7Z8v0OuZVrM9C0VXfI9YP0aH6XfN5cHFBAexTLIn__-g0r4_X-E8WIopisGUYF2DlSQLE0-Jjvkw6xSg6w7iVd9DTnH6ernlp0Zh-pQ6E5o93ksLca6LqnJy3I9pQI-x452n91tLcsUsmFwilWjUXLJFOeld6C3SRBf3eBV1zZ2ovGdbYMDeuaqgtKObCsbGehobS1dTwwVXt-n2z3694_JNS3oas0-vhzK5wPYFZ512rpA-94w-oZ4XmhjUvpyLEqxkeT_c4-mIk9BtljysoAe2ak2PQ6ndJxXEEvMw9NDjWFw9GAvriin76onx_SDh9MaQagNH9I4a89fxPkf5jzWRYyA3scH27a3q_PYS4AUU0jmlpdQgNAVGkNgPUyGo0ZH4GvM_JgkuLNKoJpKQG6q0f__f-PyQ34ktP91BOyPZ6d-6eA2Ea7G7fkLrm2eP12efgDnsRC3w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkaAXHuXR5WkkrmadOLZjblVFtUC3FxapNyt2bGkryFZNeoAD4j_wD_kljB17AVFaxDUZO5Fn7PnG_jyD0HPuqasL7kkpnSeVFJYoRxmRrCmlqBrWxOOC-aGYva_eHPGjDbSX78IEWmVa-8c1Pa7W6ck0jeb0ZLmcvguxOBM8ZJwLbEV1BV2teClDBPbiy0-eR4AcMeEeYySI5_tzkeQFHYLTCQyvKu4Kpnpt5_inv-HP6If2b6EbCUDi3fEfb6MN122jm7k4A05zdRtdm6dT8zvo83rnAAPcw6Eu8vev30JpvM59wuFKUczWDL0C7hwwwFjsXUz4iftYJgd09xLvdjgnIMfLDpvAZh-wDVZzituRsbfs8arDHxsw7jET9l202H-12JuRVHOBWEHLgTSUU-Fo4QwEThwceOtZyYSpXaVsawqvaKvK1gthIbQyrYEHhamNZZ6K2rF7aLNbdW4HYdf4tpSB5M9MZZ2HuMrZRnLnWcsUrSeI5YHWNuUjD2UxPuhMPDvWo3p0UI8uSg3qmSCybnUy5uO4RJ5nHep81xRWRw0O45J28rx2rk9TvNeF7kFS_2GGv7b8zZL_4ZvPspFpmOTh5Kbp3OoMvgUoSqlK1eICGUCiQkpArBfJyJDyEfQ6QfdHK16PIsSWHLC7ePDf__8UXZ8t5gf64PXh24doC97wcbPqEdocTs_cY4Bvg3kSp-cPs55EdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Mann-Whitney+statistical+test+for+feature+selection%3A+an+approach+in+breast+cancer+diagnosis+on+mammography&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=P%C3%A9rez%2C+Noel+P%C3%A9rez&rft.au=Guevara+L%C3%B3pez%2C+Miguel+A&rft.au=Silva%2C+Augusto&rft.au=Ramos%2C+Isabel&rft.date=2015-01-01&rft.eissn=1873-2860&rft.volume=63&rft.issue=1&rft.spage=19&rft_id=info:doi/10.1016%2Fj.artmed.2014.12.004&rft_id=info%3Apmid%2F25555756&rft.externalDocID=25555756 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365715X00029%2Fcov150h.gif |