Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography

•An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilte...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 63; no. 1; pp. 19 - 31
Main Authors Pérez, Noel Pérez, Guevara López, Miguel A., Silva, Augusto, Ramos, Isabel
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2015
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2014.12.004

Cover

Abstract •An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method.•The uFilter method statistically improved the breast cancer classification in mammography.•The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test. This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann–Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.
AbstractList Highlights • An innovative feature selection method (named uFilter) is proposed. • A set of image-based features, from mammography lesions, were explored and successfully ranked. • Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method. • The uFilter method statistically improved the breast cancer classification in mammography. • The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test.
This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx).OBJECTIVEThis work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx).A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons.MATERIALS AND METHODSA total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons.A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features.RESULTSA head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features.The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.CONCLUSIONSThe experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.
This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.
Objective This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann-Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). Materials and methods A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. Results A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p <0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. Conclusions The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.
•An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully ranked.•Classification's performance of four different machine learning algorithms increased in almost all scenarios when using the uFilter method.•The uFilter method statistically improved the breast cancer classification in mammography.•The efficiency of the uFilter method was confirmed by the Wilcoxon statistical test. This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the Mann–Whitney U-test for reducing dimensionality and ranking features in binary classification problems. Also, it presented a practical uFilter application on breast cancer computer-aided diagnosis (CADx). A total of 720 datasets (ranked subsets of features) were formed by the application of the chi-square (CHI2) discretization, information-gain (IG), one-rule (1Rule), Relief, uFilter and its theoretical basis method (named U-test). Each produced dataset was used for training feed-forward backpropagation neural network, support vector machine, linear discriminant analysis and naive Bayes machine learning algorithms to produce classification scores for further statistical comparisons. A head-to-head comparison based on the mean of area under receiver operating characteristics curve scores against the U-test method showed that the uFilter method significantly outperformed the U-test method for almost all classification schemes (p<0.05); it was superior in 50%; tied in a 37.5% and lost in a 12.5% of the 24 comparative scenarios. Also, the performance of the uFilter method, when compared with CHI2 discretization, IG, 1Rule and Relief methods, was superior or at least statistically similar on the explored datasets while requiring less number of features. The experimental results indicated that uFilter method statistically outperformed the U-test method and it demonstrated similar, but not superior, performance than traditional feature selection methods (CHI2 discretization, IG, 1Rule and Relief). The uFilter method revealed competitive and appealing cost-effectiveness results on selecting relevant features, as a support tool for breast cancer CADx methods especially in unbalanced datasets contexts. Finally, the redundancy analysis as a complementary step to the uFilter method provided us an effective way for finding optimal subsets of features without decreasing the classification performances.
Author Pérez, Noel Pérez
Silva, Augusto
Ramos, Isabel
Guevara López, Miguel A.
Author_xml – sequence: 1
  givenname: Noel Pérez
  surname: Pérez
  fullname: Pérez, Noel Pérez
  email: nperez@inegi.up.pt
  organization: Institute of Mechanical Engineering and Industrial Management (INEGI), Campus da FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
– sequence: 2
  givenname: Miguel A.
  surname: Guevara López
  fullname: Guevara López, Miguel A.
  organization: Institute of Mechanical Engineering and Industrial Management (INEGI), Campus da FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
– sequence: 3
  givenname: Augusto
  surname: Silva
  fullname: Silva, Augusto
  organization: Institute of Electronics and Telematics Engineering of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
– sequence: 4
  givenname: Isabel
  surname: Ramos
  fullname: Ramos, Isabel
  organization: Faculty of Medicine – Centro Hospitalar São Joao, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25555756$$D View this record in MEDLINE/PubMed
BookMark eNqVks1q3DAURkVJaSZp36AULbuxK8mybIVSCKE_gZQuGuhSyPL1jKa2NJXkwGTVd-gb9kkqM8mmUJJqYxDfd2zfc0_QkfMOEHpJSUkJFW-2pQ5pgr5khPKSspIQ_gStaNtUBWsFOUIrIquqqETdHKOTGLeEkIZT8QwdszqfphYrdHs57YK_sW6N0wbwZ-3c75-_vm1scrDHMelkY7JGjzhBTHjwAQ-g0xwARxjBJOvdGT53WO8yR5sNtg53AXQOG-0MBNxbvXY-2oi9w5OeJr8OerfZP0dPBz1GeHH3PEXXH95fX3wqrr58vLw4vyqMICwVmtREAKHQyVrUhPF-qFgluha4NH1HB0l6yfpBCMNl3fVdvqBd25lqIKKF6hS9PmDz9_2Y80-oyUYD46gd-Dkq2jSk4iyTHxFljWgaQR8RFYJKyWUrcvTVXXTusi-1C3bSYa_uJeTA2SFggo8xwKCMXQbvXQrajooStRhXW3UwrhbjijKVjecy_6t8z3-g9u5Qgzz5GwtBRWMh--ptyFZV7-3_Asxo3bIp32EPcevn4LJVRVXMBfV12cVlFSknmUJlBrz9N-Dh9_8BBADyKw
CitedBy_id crossref_primary_10_1016_j_bspc_2019_101583
crossref_primary_10_1016_j_compbiomed_2019_02_017
crossref_primary_10_1007_s11042_020_09105_z
crossref_primary_10_1016_j_ygeno_2017_01_004
crossref_primary_10_1038_s41598_020_76635_9
crossref_primary_10_3390_jimaging7090190
crossref_primary_10_1007_s00521_020_05631_x
crossref_primary_10_1177_1687814016634243
crossref_primary_10_1002_mp_13886
crossref_primary_10_1016_j_imu_2020_100408
crossref_primary_10_1109_TGRS_2020_2976896
crossref_primary_10_1007_s12517_020_06342_2
crossref_primary_10_1061_JMENEA_MEENG_5516
crossref_primary_10_2174_1573405613666170912115617
crossref_primary_10_2196_17758
crossref_primary_10_3390_jpm14010101
crossref_primary_10_1155_2022_1779337
crossref_primary_10_1016_j_bspc_2022_104043
crossref_primary_10_3390_fishes9080307
crossref_primary_10_1016_j_cmpb_2017_10_012
crossref_primary_10_1109_TNB_2019_2930647
crossref_primary_10_1109_ACCESS_2022_3152789
crossref_primary_10_1038_srep27327
crossref_primary_10_1109_ACCESS_2019_2903634
crossref_primary_10_1016_j_cmpb_2018_12_019
crossref_primary_10_1016_j_measurement_2022_112269
crossref_primary_10_3390_electronics11152435
crossref_primary_10_1186_s13638_019_1582_2
crossref_primary_10_1016_j_cmpb_2024_108581
crossref_primary_10_26565_2313_6693_2021_43_04
crossref_primary_10_1016_j_marpol_2021_104913
crossref_primary_10_1155_2021_6079163
crossref_primary_10_1016_j_csbj_2022_07_022
crossref_primary_10_3758_s13414_020_02091_2
crossref_primary_10_1007_s11042_023_18078_8
crossref_primary_10_1016_j_ins_2016_12_046
crossref_primary_10_1038_s41598_017_15359_9
crossref_primary_10_1155_2017_3781951
crossref_primary_10_1016_j_compbiomed_2024_108454
crossref_primary_10_1016_j_envpol_2023_123017
crossref_primary_10_1016_j_eswa_2020_114485
crossref_primary_10_26565_2313_6693_2021_42_04
crossref_primary_10_1016_j_knosys_2019_105279
crossref_primary_10_1080_17538947_2024_2390427
crossref_primary_10_1109_JSTARS_2019_2916045
crossref_primary_10_3389_fonc_2022_985284
crossref_primary_10_1155_2021_5577636
crossref_primary_10_3390_diagnostics13111954
crossref_primary_10_1155_2017_9512741
crossref_primary_10_4018_IJACI_2017040104
crossref_primary_10_1142_S1793545819500214
crossref_primary_10_3390_app131810401
crossref_primary_10_1016_j_asoc_2022_109464
Cites_doi 10.1016/j.artmed.2004.10.001
10.5194/npg-15-863-2008
10.1016/j.artmed.2006.03.002
10.1016/j.ejor.2004.08.010
10.1039/a802531b
10.1023/A:1022631118932
10.1016/j.media.2012.02.005
10.1023/A:1008862617082
10.1002/pmic.200400857
10.1118/1.2820630
10.1016/j.patcog.2003.03.001
10.1007/s10916-011-9693-2
10.1016/j.artmed.2008.04.004
10.1118/1.2214177
10.1007/BF02985802
10.1016/S0167-8655(03)00047-3
10.1038/nrd1657
10.1109/TSMC.1973.4309314
10.1118/1.2188080
10.1118/1.1738960
10.1118/1.1997327
10.1093/bioinformatics/btm344
10.1016/S0893-6080(02)00164-8
10.1148/radiol.2442060712
10.1186/1475-925X-1-4
10.1007/s11548-013-0838-2
10.1016/j.cmpb.2010.01.005
10.1214/aoms/1177730491
10.1145/1656274.1656278
10.1016/S1088-467X(97)00008-5
10.1016/j.compbiomed.2012.07.001
10.1007/s00521-012-0834-4
10.1016/j.compmedimag.2005.03.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.artmed.2014.12.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Computer and Information Systems Abstracts

Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 31
ExternalDocumentID 25555756
10_1016_j_artmed_2014_12_004
S0933365714001419
1_s2_0_S0933365714001419
Genre Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c602t-a0506e01eb9565024df3236b8e49cdb1f90d92df66c495bdbf901b8bc3f068e3
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Thu Oct 02 10:46:17 EDT 2025
Tue Oct 07 09:18:32 EDT 2025
Thu Oct 02 06:41:12 EDT 2025
Thu Apr 03 06:55:03 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Oct 01 00:45:52 EDT 2025
Fri Feb 23 02:25:15 EST 2024
Sun Feb 23 10:19:32 EST 2025
Tue Oct 14 19:30:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Breast cancer CADx
Mann–Whitney U-test
Machine learning algorithms
Feature selection methods
Redundancy analysis
uFilter method
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-a0506e01eb9565024df3236b8e49cdb1f90d92df66c495bdbf901b8bc3f068e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ObjectType-Article-1
ObjectType-Feature-2
PMID 25555756
PQID 1661994986
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1770342502
proquest_miscellaneous_1727677612
proquest_miscellaneous_1661994986
pubmed_primary_25555756
crossref_citationtrail_10_1016_j_artmed_2014_12_004
crossref_primary_10_1016_j_artmed_2014_12_004
elsevier_sciencedirect_doi_10_1016_j_artmed_2014_12_004
elsevier_clinicalkeyesjournals_1_s2_0_S0933365714001419
elsevier_clinicalkey_doi_10_1016_j_artmed_2014_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shi, Sahiner, Chan, Ge, Hadjiiski, Helvie (bib0235) 2008; 35
Gibbons, Chakraborti (bib0335) 2011
Dutta, Hines, Gardner, Boilot (bib0060) 2002; 1
Kaifeng, Wenkai, Wenlong, Shanwen, Huanqin, Yanda (bib0030) 2004; 24
Song, Lee, Kim, Park (bib0285) 2005; vol. 3498
Mavroforakis, Georgiou, Dimitropoulos, Cavouras, Theodoridis (bib0220) 2006; 37
Garcı́a López, Garcı́a Torres, Melián Batista, Moreno Pérez, Moreno-Vega (bib0295) 2006; 169
Hwang (bib0300) 2001
Lee, Chung, Chang, Lo, Lee, Hsu (bib0085) 2003; 16
Kim, Ryu (bib0270) 2005; vol. 3613
Blanco, Coello, Iturriaga, Maspoch, de la Pezuela (bib0015) 1998; 123
Koller, Sahami (bib0120) 1996
Wei, Sahiner, Hadjiiski, Chan, Petrick, Helvie (bib0080) 2005; 32
de Oliveira, Machado, Chavez, Lopes, Deserno, Araujo Ade (bib0150) 2010; 99
Malar, Kandaswamy, Chakravarthy, Giri Dharan (bib0185) 2012; 42
Jesneck, Lo, Baker (bib0240) 2007; 244
(bib0145) 2014
Wang, Summers (bib0310) 2012; 16
López, Novoa, Guevara, Quintana, Silva (bib0170) 2008; vol. 5197
Duda, Hart, Stork (bib0305) 2000
Hollander, Wolfe (bib0345) 2013
Jain, Chandrasekaran (bib0110) 1982; vol. 2
Salama, Abdelhalim, Zeid (bib0260) 2012; 32
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0290) 2009; 11
(bib0315) 2007
Pérez, Guevara, Silva (bib0225) 2012
Chanwoo, Stern (bib0035) 2010
Holte (bib0180) 1993; 11
Yu, Liu (bib0050) 2004; 5
Ping, Verma, Kuldeep (bib0215) 2004
Christobel (bib0265) 2011; 3
Setiono, Liu (bib0095) 1995
John, Kohavi, Pfleger (bib0340) 1994
Pérez, Guevara, Silva (bib0210) 2013
Papadopoulos, Fotiadis, Likas (bib0200) 2005; 34
Bellotti, De Carlo, Tangaro, Gargano, Maggipinto, Castellano (bib0195) 2006; 33
AbuBaker, Qahwaji, Ipson (bib0350) 2007
Abonyi, Szeifert (bib0275) 2003; 24
Guyon, Elisseeff (bib0045) 2003; 3
Guyon, Elisseeff (bib0010) 2006; vol. 207
Demsar (bib0330) 2006; 7
Saeys, Inza, Larranaga (bib0090) 2007; 23
Hall, Smith (bib0115) 1999
Holmberg, Gustafsson, Hornsten, Winquist, Nilsson, Ljung (bib0055) 1998; 12
López, Novoa, Guevara, Silva (bib0065) 2008; vol. 4756/2008
Gupta, Chyn, Markey (bib0245) 2006; 33
Ramos-Pollan, Guevara-Lopez, Suarez-Ortega, Diaz-Herrero, Franco-Valiente, Rubio-Del-Solar (bib0140) 2012; 36
Pei, Essa, Starner, Rehg (bib0040) 2008
Fu, Lee, Wong, Yeh, Wang, Wu (bib0230) 2005; 29
Prados, Kalousis, Sanchez, Allard, Carrette, Hilario (bib0130) 2004; 4
Moura, Guevara López (bib0255) 2013; 8
Kirk (bib0135) 2007
Mann, Whitney (bib0325) 1947; 18
Devijver, Kittler (bib0005) 1982
Catarious, Baydush, Floyd (bib0250) 2004; 31
Pérez, Guevara, Silva, Ramos, Loureiro (bib0205) 2014
Soltanian-Zadeh, Rafiee-Rad, Pourabdollah-Nejad (bib0075) 2004; 37
Mohanty, Senapati, Lenka (bib0355) 2013; 22
Xu, Xia, Xie (bib0280) 2004; vol. 3173
Hastie, Tibshirani, Friedman, Franklin (bib0320) 2005; 27
Haralick, Shanmuga, Dinstein (bib0165) 1973; Smc3
Hashemi, Tax, Duin, Javaherian, de Groot (bib0025) 2008; 15
Press, Flannery, Teukolsky, Vetterling (bib0105) 1988
Committee (bib0160) 2003
Heath, Bowyer, Kopans, Moore, Kegelmeyer (bib0155) 2001
Verma, Panchal (bib0190) 2008
Kira, Rendell (bib0125) 1992
Dash, Liu (bib0175) 1997; 1
Ghazavi, Liao (bib0070) 2008; 43
Koehn, Carter (bib0020) 2005; 4
Liu, Li, Wong (bib0100) 2002; 13
Dutta (10.1016/j.artmed.2014.12.004_bib0060) 2002; 1
Prados (10.1016/j.artmed.2014.12.004_bib0130) 2004; 4
López (10.1016/j.artmed.2014.12.004_bib0170) 2008; vol. 5197
Garcı́a López (10.1016/j.artmed.2014.12.004_bib0295) 2006; 169
Heath (10.1016/j.artmed.2014.12.004_bib0155) 2001
Hollander (10.1016/j.artmed.2014.12.004_bib0345) 2013
Haralick (10.1016/j.artmed.2014.12.004_bib0165) 1973; Smc3
Fu (10.1016/j.artmed.2014.12.004_bib0230) 2005; 29
Liu (10.1016/j.artmed.2014.12.004_bib0100) 2002; 13
Moura (10.1016/j.artmed.2014.12.004_bib0255) 2013; 8
Pérez (10.1016/j.artmed.2014.12.004_bib0210) 2013
Hall (10.1016/j.artmed.2014.12.004_bib0115) 1999
López (10.1016/j.artmed.2014.12.004_bib0065) 2008; vol. 4756/2008
Ping (10.1016/j.artmed.2014.12.004_bib0215) 2004
Hashemi (10.1016/j.artmed.2014.12.004_bib0025) 2008; 15
Kim (10.1016/j.artmed.2014.12.004_bib0270) 2005; vol. 3613
Mohanty (10.1016/j.artmed.2014.12.004_bib0355) 2013; 22
Kirk (10.1016/j.artmed.2014.12.004_bib0135) 2007
Wei (10.1016/j.artmed.2014.12.004_bib0080) 2005; 32
Song (10.1016/j.artmed.2014.12.004_bib0285) 2005; vol. 3498
Chanwoo (10.1016/j.artmed.2014.12.004_bib0035) 2010
Christobel (10.1016/j.artmed.2014.12.004_bib0265) 2011; 3
Salama (10.1016/j.artmed.2014.12.004_bib0260) 2012; 32
Koller (10.1016/j.artmed.2014.12.004_bib0120) 1996
Catarious (10.1016/j.artmed.2014.12.004_bib0250) 2004; 31
Koehn (10.1016/j.artmed.2014.12.004_bib0020) 2005; 4
Mavroforakis (10.1016/j.artmed.2014.12.004_bib0220) 2006; 37
Guyon (10.1016/j.artmed.2014.12.004_bib0045) 2003; 3
Mann (10.1016/j.artmed.2014.12.004_bib0325) 1947; 18
Kaifeng (10.1016/j.artmed.2014.12.004_bib0030) 2004; 24
Bellotti (10.1016/j.artmed.2014.12.004_bib0195) 2006; 33
Pérez (10.1016/j.artmed.2014.12.004_bib0205) 2014
Jain (10.1016/j.artmed.2014.12.004_bib0110) 1982; vol. 2
Papadopoulos (10.1016/j.artmed.2014.12.004_bib0200) 2005; 34
Ramos-Pollan (10.1016/j.artmed.2014.12.004_bib0140) 2012; 36
Jesneck (10.1016/j.artmed.2014.12.004_bib0240) 2007; 244
Gupta (10.1016/j.artmed.2014.12.004_bib0245) 2006; 33
John (10.1016/j.artmed.2014.12.004_bib0340) 1994
(10.1016/j.artmed.2014.12.004_bib0315) 2007
de Oliveira (10.1016/j.artmed.2014.12.004_bib0150) 2010; 99
Malar (10.1016/j.artmed.2014.12.004_bib0185) 2012; 42
Devijver (10.1016/j.artmed.2014.12.004_bib0005) 1982
Hastie (10.1016/j.artmed.2014.12.004_bib0320) 2005; 27
Pérez (10.1016/j.artmed.2014.12.004_bib0225) 2012
Xu (10.1016/j.artmed.2014.12.004_bib0280) 2004; vol. 3173
Committee (10.1016/j.artmed.2014.12.004_bib0160) 2003
Demsar (10.1016/j.artmed.2014.12.004_bib0330) 2006; 7
Blanco (10.1016/j.artmed.2014.12.004_bib0015) 1998; 123
Shi (10.1016/j.artmed.2014.12.004_bib0235) 2008; 35
Press (10.1016/j.artmed.2014.12.004_bib0105) 1988
Holte (10.1016/j.artmed.2014.12.004_bib0180) 1993; 11
Saeys (10.1016/j.artmed.2014.12.004_bib0090) 2007; 23
(10.1016/j.artmed.2014.12.004_bib0145) 2014
Yu (10.1016/j.artmed.2014.12.004_bib0050) 2004; 5
Gibbons (10.1016/j.artmed.2014.12.004_bib0335) 2011
Soltanian-Zadeh (10.1016/j.artmed.2014.12.004_bib0075) 2004; 37
Ghazavi (10.1016/j.artmed.2014.12.004_bib0070) 2008; 43
Lee (10.1016/j.artmed.2014.12.004_bib0085) 2003; 16
Abonyi (10.1016/j.artmed.2014.12.004_bib0275) 2003; 24
Guyon (10.1016/j.artmed.2014.12.004_bib0010) 2006; vol. 207
Kira (10.1016/j.artmed.2014.12.004_bib0125) 1992
Holmberg (10.1016/j.artmed.2014.12.004_bib0055) 1998; 12
Hwang (10.1016/j.artmed.2014.12.004_bib0300) 2001
Hall (10.1016/j.artmed.2014.12.004_bib0290) 2009; 11
AbuBaker (10.1016/j.artmed.2014.12.004_bib0350) 2007
Setiono (10.1016/j.artmed.2014.12.004_bib0095) 1995
Dash (10.1016/j.artmed.2014.12.004_bib0175) 1997; 1
Verma (10.1016/j.artmed.2014.12.004_bib0190) 2008
Duda (10.1016/j.artmed.2014.12.004_bib0305) 2000
Wang (10.1016/j.artmed.2014.12.004_bib0310) 2012; 16
Pei (10.1016/j.artmed.2014.12.004_bib0040) 2008
References_xml – volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib0050
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– start-page: 388
  year: 1995
  end-page: 391
  ident: bib0095
  article-title: CHI2: feature selection and discretization of numeric attributes
  publication-title: IEEE Proceedings of the Seventh International Conference on Tools with Artificial Intelligence
– start-page: 212
  year: 2001
  end-page: 218
  ident: bib0155
  article-title: The digital database for screening mammography
  publication-title: Proceedings of the Fifth International Workshop on Digital Mammography
– start-page: 867022-1
  year: 2013
  end-page: 867022-14
  ident: bib0210
  article-title: Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis
  publication-title: SPIE medical imaging 2013
– volume: vol. 4756/2008
  start-page: 803
  year: 2008
  end-page: 811
  ident: bib0065
  article-title: Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques
  publication-title: Progress in pattern recognition image analysis and applications
– volume: 8
  start-page: 561
  year: 2013
  end-page: 574
  ident: bib0255
  article-title: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
  publication-title: Int J Comput Assist Radiol Surg
– volume: 13
  start-page: 51
  year: 2002
  end-page: 60
  ident: bib0100
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome Inform
– volume: 4
  start-page: 206
  year: 2005
  end-page: 220
  ident: bib0020
  article-title: The evolving role of natural products in drug discovery
  publication-title: Nat Rev Drug Discov
– year: 1982
  ident: bib0005
  article-title: Pattern recognition: a statistical approach
– year: 1988
  ident: bib0105
  article-title: Numerical recipes in C
– start-page: 121
  year: 1994
  end-page: 129
  ident: bib0340
  article-title: Irrelevant features and the subset selection problem
  publication-title: Machine Learning, Proceedings of the Eleventh International Conference
– volume: 37
  start-page: 1973
  year: 2004
  end-page: 1986
  ident: bib0075
  article-title: Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms
  publication-title: Pattern Recognit
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0290
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor Newslett
– start-page: 977
  year: 2011
  end-page: 979
  ident: bib0335
  article-title: Nonparametric statistical inference
  publication-title: International encyclopedia of statistical science
– volume: 15
  start-page: 863
  year: 2008
  end-page: 871
  ident: bib0025
  article-title: Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier
  publication-title: Nonlinear Process Geophys
– volume: vol. 2
  start-page: 835
  year: 1982
  end-page: 855
  ident: bib0110
  article-title: 39 Dimensionality and sample size considerations in pattern recognition practice
  publication-title: Handbook of statistics
– start-page: 2303
  year: 2004
  end-page: 2308
  ident: bib0215
  article-title: A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography
  publication-title: IEEE International Joint Conference on Neural Networks, vol. 3
– volume: 244
  start-page: 390
  year: 2007
  end-page: 398
  ident: bib0240
  article-title: Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors
  publication-title: Radiology
– volume: 3
  start-page: 24
  year: 2011
  end-page: 28
  ident: bib0265
  article-title: An empirical comparison of data mining classification methods
  publication-title: Int J Comput Inf Syst
– volume: 1
  start-page: 4
  year: 2002
  ident: bib0060
  article-title: Bacteria classification using Cyranose 320 electronic nose
  publication-title: BioMed Eng Online
– start-page: 947
  year: 2008
  end-page: 967
  ident: bib0190
  article-title: Neural networks for the classification of benign and malignant patters in digital mammograms
  publication-title: Intelligent information technologies: concepts, methodologies, tools, and applications
– volume: 34
  start-page: 141
  year: 2005
  end-page: 150
  ident: bib0200
  article-title: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
  publication-title: Artif Intell Med
– start-page: 209
  year: 2014
  end-page: 217
  ident: bib0205
  article-title: Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection
  publication-title: IEEE 2014 Federated Conference on Computer Science and Information Systems (FedCSIS)
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0045
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 2320
  year: 2004
  end-page: 2332
  ident: bib0130
  article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
  publication-title: Proteomics
– volume: 16
  start-page: 933
  year: 2012
  end-page: 951
  ident: bib0310
  article-title: Machine learning and radiology
  publication-title: Med Image Anal
– volume: 33
  start-page: 1810
  year: 2006
  end-page: 1817
  ident: bib0245
  article-title: Breast cancer CADx based on BI-RAds descriptors from two mammographic views
  publication-title: Med Phys
– volume: 24
  start-page: 36
  year: 2004
  end-page: 38
  ident: bib0030
  article-title: Hydrocarbon prediction method based on Svm feature selection
  publication-title: Nat Gas Ind
– volume: 11
  start-page: 63
  year: 1993
  end-page: 91
  ident: bib0180
  article-title: Very simple classification rules perform well on most commonly used datasets
  publication-title: Mach Learn
– volume: 35
  start-page: 280
  year: 2008
  end-page: 290
  ident: bib0235
  article-title: Characterization of mammographic masses based on level set segmentation with new image features and patient information
  publication-title: Med Phys
– volume: 42
  start-page: 898
  year: 2012
  end-page: 905
  ident: bib0185
  article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
  publication-title: Comput Biol Med
– start-page: 2001
  year: 2008
  end-page: 2004
  ident: bib0040
  article-title: Discriminative feature selection for hidden Markov models using Segmental Boosting
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008)
– volume: vol. 3498
  start-page: 780
  year: 2005
  end-page: 789
  ident: bib0285
  article-title: New methodology of computer aided diagnostic system on breast cancer
  publication-title: Advances in neural networks – ISNN 2005
– volume: 27
  start-page: 83
  year: 2005
  end-page: 85
  ident: bib0320
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math Intell
– start-page: 81
  year: 2007
  end-page: 109
  ident: bib0315
  publication-title: Estimating data parameters applied statistics using SPSS, STATISTICA, MATLAB and R
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: bib0175
  article-title: Feature selection for classification
  publication-title: Intell Data Anal
– start-page: 408
  year: 2001
  ident: bib0300
  article-title: Introduction to neural networks for signal processing
  publication-title: Handbook of neural network signal processing
– year: 2007
  ident: bib0135
  article-title: Statistics: an introduction
– volume: 22
  start-page: 303
  year: 2013
  end-page: 310
  ident: bib0355
  article-title: An improved data mining technique for classification and detection of breast cancer from mammograms
  publication-title: Neural Comput Appl
– volume: 33
  start-page: 3066
  year: 2006
  end-page: 3075
  ident: bib0195
  article-title: A completely automated CAD system for mass detection in a large mammographic database
  publication-title: Med Phys
– start-page: 896
  year: 2007
  end-page: 899
  ident: bib0350
  article-title: Texture-based feature extraction for the microcalcification from digital mammogram images
  publication-title: IEEE International Conference on Signal Processing and Communications (ICSPC 2007)
– year: 1999
  ident: bib0115
  article-title: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper
  publication-title: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference
– volume: 37
  start-page: 145
  year: 2006
  end-page: 162
  ident: bib0220
  article-title: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
  publication-title: Artif Intell Med
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0330
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 29
  start-page: 419
  year: 2005
  end-page: 429
  ident: bib0230
  article-title: Image segmentation feature selection and pattern classification for mammographic microcalcifications
  publication-title: Comput Med Imaging Graphics
– volume: 18
  start-page: 50
  year: 1947
  end-page: 60
  ident: bib0325
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
– volume: 32
  start-page: 2
  year: 2012
  ident: bib0260
  article-title: Breast cancer diagnosis on three different datasets using multi-classifiers
  publication-title: Breast Cancer (WDBC)
– year: 1996
  ident: bib0120
  article-title: Toward optimal feature selection
– volume: 99
  start-page: 289
  year: 2010
  end-page: 297
  ident: bib0150
  article-title: MammoSys: a content-based image retrieval system using breast density patterns
  publication-title: Comput Methods Progr Biomed
– volume: 123
  start-page: 135R
  year: 1998
  end-page: 150R
  ident: bib0015
  article-title: Near-infrared spectroscopy in the pharmaceutical industry
  publication-title: Analyst
– volume: vol. 207
  start-page: 1
  year: 2006
  end-page: 25
  ident: bib0010
  article-title: An introduction to feature extraction
  publication-title: Feature extraction
– year: 2014
  ident: bib0145
  article-title: Breast cancer digital repository
– volume: vol. 5197
  start-page: 453
  year: 2008
  end-page: 460
  ident: bib0170
  article-title: Computer aided diagnosis system to detect breast cancer pathological lesions
  publication-title: Progress in pattern recognition, image analysis and applications
– start-page: 249
  year: 1992
  end-page: 256
  ident: bib0125
  article-title: A practical approach to feature selection
  publication-title: ML92 Proceedings of the ninth international workshop on Machine learning
– volume: 43
  start-page: 195
  year: 2008
  end-page: 206
  ident: bib0070
  article-title: Medical data mining by fuzzy modeling with selected features
  publication-title: Artif Intell Med
– year: 2013
  ident: bib0345
  article-title: Nonparametric statistical methods
– year: 2000
  ident: bib0305
  article-title: Pattern classification
– volume: 169
  start-page: 477
  year: 2006
  end-page: 489
  ident: bib0295
  article-title: Solving feature subset selection problem by a Parallel Scatter Search
  publication-title: Eur J Oper Res
– volume: 36
  start-page: 2259
  year: 2012
  end-page: 2269
  ident: bib0140
  article-title: Discovering mammography-based machine learning classifiers for breast cancer diagnosis
  publication-title: J Med Syst
– volume: 16
  start-page: 121
  year: 2003
  end-page: 132
  ident: bib0085
  article-title: Classification of clustered microcalcifications using a Shape Cognitron neural network
  publication-title: Neural Netw
– volume: vol. 3173
  start-page: 953
  year: 2004
  end-page: 958
  ident: bib0280
  article-title: Application of CMAC-based networks on medical image classification
  publication-title: Advances in neural networks – ISNN 2004
– start-page: 4574
  year: 2010
  end-page: 4577
  ident: bib0035
  article-title: Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring
  publication-title: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)
– year: 2012
  ident: bib0225
  article-title: Evaluation of features selection methods for breast cancer classification
  publication-title: 15th International Conference on Experimental Mechanics (ICEM15)
– volume: 24
  start-page: 2195
  year: 2003
  end-page: 2207
  ident: bib0275
  article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers
  publication-title: Pattern Recognit Lett
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib0090
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– year: 2003
  ident: bib0160
  article-title: American College of Radiology (ACR) ACR BIRADS – mammography
  publication-title: ACR breast imaging reporting and data system, breast imaging atlas
– volume: 31
  start-page: 1512
  year: 2004
  end-page: 1520
  ident: bib0250
  article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
  publication-title: Med Phys
– volume: vol. 3613
  start-page: 392
  year: 2005
  end-page: 401
  ident: bib0270
  article-title: Optimized fuzzy classification using genetic algorithm
  publication-title: Fuzzy systems and knowledge discovery
– volume: Smc3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib0165
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern
– volume: 12
  start-page: 319
  year: 1998
  end-page: 324
  ident: bib0055
  article-title: Bacteria classification based on feature extraction from sensor data
  publication-title: Biotechnol Tech
– volume: 32
  start-page: 2827
  year: 2005
  end-page: 2838
  ident: bib0080
  article-title: Computer-aided detection of breast masses on full field digital mammograms
  publication-title: Med Phys
– year: 2007
  ident: 10.1016/j.artmed.2014.12.004_bib0135
– volume: 34
  start-page: 141
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0200
  article-title: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.10.001
– volume: 15
  start-page: 863
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0025
  article-title: Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier
  publication-title: Nonlinear Process Geophys
  doi: 10.5194/npg-15-863-2008
– volume: 13
  start-page: 51
  year: 2002
  ident: 10.1016/j.artmed.2014.12.004_bib0100
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome Inform
– volume: 37
  start-page: 145
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0220
  article-title: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2006.03.002
– year: 2000
  ident: 10.1016/j.artmed.2014.12.004_bib0305
– volume: 169
  start-page: 477
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0295
  article-title: Solving feature subset selection problem by a Parallel Scatter Search
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2004.08.010
– volume: 123
  start-page: 135R
  year: 1998
  ident: 10.1016/j.artmed.2014.12.004_bib0015
  article-title: Near-infrared spectroscopy in the pharmaceutical industry
  publication-title: Analyst
  doi: 10.1039/a802531b
– volume: 11
  start-page: 63
  year: 1993
  ident: 10.1016/j.artmed.2014.12.004_bib0180
  article-title: Very simple classification rules perform well on most commonly used datasets
  publication-title: Mach Learn
  doi: 10.1023/A:1022631118932
– volume: 16
  start-page: 933
  year: 2012
  ident: 10.1016/j.artmed.2014.12.004_bib0310
  article-title: Machine learning and radiology
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.02.005
– volume: 12
  start-page: 319
  year: 1998
  ident: 10.1016/j.artmed.2014.12.004_bib0055
  article-title: Bacteria classification based on feature extraction from sensor data
  publication-title: Biotechnol Tech
  doi: 10.1023/A:1008862617082
– volume: 4
  start-page: 2320
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0130
  article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
  publication-title: Proteomics
  doi: 10.1002/pmic.200400857
– year: 1982
  ident: 10.1016/j.artmed.2014.12.004_bib0005
– start-page: 388
  year: 1995
  ident: 10.1016/j.artmed.2014.12.004_bib0095
  article-title: CHI2: feature selection and discretization of numeric attributes
– volume: 35
  start-page: 280
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0235
  article-title: Characterization of mammographic masses based on level set segmentation with new image features and patient information
  publication-title: Med Phys
  doi: 10.1118/1.2820630
– volume: vol. 207
  start-page: 1
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0010
  article-title: An introduction to feature extraction
– volume: 37
  start-page: 1973
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0075
  article-title: Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2003.03.001
– start-page: 896
  year: 2007
  ident: 10.1016/j.artmed.2014.12.004_bib0350
  article-title: Texture-based feature extraction for the microcalcification from digital mammogram images
– year: 2003
  ident: 10.1016/j.artmed.2014.12.004_bib0160
  article-title: American College of Radiology (ACR) ACR BIRADS – mammography
– volume: vol. 3173
  start-page: 953
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0280
  article-title: Application of CMAC-based networks on medical image classification
– volume: vol. 4756/2008
  start-page: 803
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0065
  article-title: Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques
– volume: vol. 3613
  start-page: 392
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0270
  article-title: Optimized fuzzy classification using genetic algorithm
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.artmed.2014.12.004_bib0045
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 36
  start-page: 2259
  year: 2012
  ident: 10.1016/j.artmed.2014.12.004_bib0140
  article-title: Discovering mammography-based machine learning classifiers for breast cancer diagnosis
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9693-2
– volume: 43
  start-page: 195
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0070
  article-title: Medical data mining by fuzzy modeling with selected features
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2008.04.004
– start-page: 947
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0190
  article-title: Neural networks for the classification of benign and malignant patters in digital mammograms
– start-page: 867022-1
  year: 2013
  ident: 10.1016/j.artmed.2014.12.004_bib0210
  article-title: Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis
– start-page: 408
  year: 2001
  ident: 10.1016/j.artmed.2014.12.004_bib0300
  article-title: Introduction to neural networks for signal processing
– volume: 33
  start-page: 3066
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0195
  article-title: A completely automated CAD system for mass detection in a large mammographic database
  publication-title: Med Phys
  doi: 10.1118/1.2214177
– volume: 27
  start-page: 83
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0320
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math Intell
  doi: 10.1007/BF02985802
– start-page: 212
  year: 2001
  ident: 10.1016/j.artmed.2014.12.004_bib0155
  article-title: The digital database for screening mammography
– year: 1988
  ident: 10.1016/j.artmed.2014.12.004_bib0105
– volume: vol. 5197
  start-page: 453
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0170
  article-title: Computer aided diagnosis system to detect breast cancer pathological lesions
– year: 1996
  ident: 10.1016/j.artmed.2014.12.004_bib0120
– volume: 24
  start-page: 2195
  year: 2003
  ident: 10.1016/j.artmed.2014.12.004_bib0275
  article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(03)00047-3
– volume: 4
  start-page: 206
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0020
  article-title: The evolving role of natural products in drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1657
– volume: Smc3
  start-page: 610
  year: 1973
  ident: 10.1016/j.artmed.2014.12.004_bib0165
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– year: 2012
  ident: 10.1016/j.artmed.2014.12.004_bib0225
  article-title: Evaluation of features selection methods for breast cancer classification
– start-page: 81
  year: 2007
  ident: 10.1016/j.artmed.2014.12.004_bib0315
– volume: 33
  start-page: 1810
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0245
  article-title: Breast cancer CADx based on BI-RAds descriptors from two mammographic views
  publication-title: Med Phys
  doi: 10.1118/1.2188080
– volume: 31
  start-page: 1512
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0250
  article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
  publication-title: Med Phys
  doi: 10.1118/1.1738960
– volume: vol. 3498
  start-page: 780
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0285
  article-title: New methodology of computer aided diagnostic system on breast cancer
– start-page: 2001
  year: 2008
  ident: 10.1016/j.artmed.2014.12.004_bib0040
  article-title: Discriminative feature selection for hidden Markov models using Segmental Boosting
– volume: vol. 2
  start-page: 835
  year: 1982
  ident: 10.1016/j.artmed.2014.12.004_bib0110
  article-title: 39 Dimensionality and sample size considerations in pattern recognition practice
– volume: 24
  start-page: 36
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0030
  article-title: Hydrocarbon prediction method based on Svm feature selection
  publication-title: Nat Gas Ind
– volume: 32
  start-page: 2827
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0080
  article-title: Computer-aided detection of breast masses on full field digital mammograms
  publication-title: Med Phys
  doi: 10.1118/1.1997327
– start-page: 977
  year: 2011
  ident: 10.1016/j.artmed.2014.12.004_bib0335
  article-title: Nonparametric statistical inference
– volume: 3
  start-page: 24
  issue: 2
  year: 2011
  ident: 10.1016/j.artmed.2014.12.004_bib0265
  article-title: An empirical comparison of data mining classification methods
  publication-title: Int J Comput Inf Syst
– volume: 23
  start-page: 2507
  year: 2007
  ident: 10.1016/j.artmed.2014.12.004_bib0090
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0050
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– volume: 16
  start-page: 121
  year: 2003
  ident: 10.1016/j.artmed.2014.12.004_bib0085
  article-title: Classification of clustered microcalcifications using a Shape Cognitron neural network
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(02)00164-8
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.artmed.2014.12.004_bib0330
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– year: 2013
  ident: 10.1016/j.artmed.2014.12.004_bib0345
– year: 1999
  ident: 10.1016/j.artmed.2014.12.004_bib0115
  article-title: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper
– volume: 244
  start-page: 390
  year: 2007
  ident: 10.1016/j.artmed.2014.12.004_bib0240
  article-title: Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors
  publication-title: Radiology
  doi: 10.1148/radiol.2442060712
– volume: 1
  start-page: 4
  year: 2002
  ident: 10.1016/j.artmed.2014.12.004_bib0060
  article-title: Bacteria classification using Cyranose 320 electronic nose
  publication-title: BioMed Eng Online
  doi: 10.1186/1475-925X-1-4
– volume: 8
  start-page: 561
  year: 2013
  ident: 10.1016/j.artmed.2014.12.004_bib0255
  article-title: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0838-2
– start-page: 249
  year: 1992
  ident: 10.1016/j.artmed.2014.12.004_bib0125
  article-title: A practical approach to feature selection
– start-page: 2303
  year: 2004
  ident: 10.1016/j.artmed.2014.12.004_bib0215
  article-title: A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography
– start-page: 121
  year: 1994
  ident: 10.1016/j.artmed.2014.12.004_bib0340
  article-title: Irrelevant features and the subset selection problem
– volume: 99
  start-page: 289
  year: 2010
  ident: 10.1016/j.artmed.2014.12.004_bib0150
  article-title: MammoSys: a content-based image retrieval system using breast density patterns
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2010.01.005
– volume: 18
  start-page: 50
  year: 1947
  ident: 10.1016/j.artmed.2014.12.004_bib0325
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177730491
– volume: 11
  start-page: 10
  year: 2009
  ident: 10.1016/j.artmed.2014.12.004_bib0290
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/1656274.1656278
– volume: 32
  start-page: 2
  year: 2012
  ident: 10.1016/j.artmed.2014.12.004_bib0260
  article-title: Breast cancer diagnosis on three different datasets using multi-classifiers
  publication-title: Breast Cancer (WDBC)
– volume: 1
  start-page: 131
  year: 1997
  ident: 10.1016/j.artmed.2014.12.004_bib0175
  article-title: Feature selection for classification
  publication-title: Intell Data Anal
  doi: 10.1016/S1088-467X(97)00008-5
– volume: 42
  start-page: 898
  year: 2012
  ident: 10.1016/j.artmed.2014.12.004_bib0185
  article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2012.07.001
– start-page: 209
  year: 2014
  ident: 10.1016/j.artmed.2014.12.004_bib0205
  article-title: Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection
– volume: 22
  start-page: 303
  year: 2013
  ident: 10.1016/j.artmed.2014.12.004_bib0355
  article-title: An improved data mining technique for classification and detection of breast cancer from mammograms
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0834-4
– year: 2014
  ident: 10.1016/j.artmed.2014.12.004_bib0145
– volume: 29
  start-page: 419
  year: 2005
  ident: 10.1016/j.artmed.2014.12.004_bib0230
  article-title: Image segmentation feature selection and pattern classification for mammographic microcalcifications
  publication-title: Comput Med Imaging Graphics
  doi: 10.1016/j.compmedimag.2005.03.002
– start-page: 4574
  year: 2010
  ident: 10.1016/j.artmed.2014.12.004_bib0035
  article-title: Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring
SSID ssj0007416
Score 2.3608243
Snippet •An innovative feature selection method (named uFilter) is proposed.•A set of image-based features, from mammography lesions, were explored and successfully...
Highlights • An innovative feature selection method (named uFilter) is proposed. • A set of image-based features, from mammography lesions, were explored and...
This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves the...
Objective This work addresses the theoretical description and experimental evaluation of a new feature selection method (named uFilter). The uFilter improves...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Algorithms
Bayes Theorem
Breast
Breast cancer CADx
Breast Neoplasms - diagnostic imaging
Cancer
Chi-Square Distribution
Classification
Databases, Factual
Diagnosis
Diagnosis, Computer-Assisted - methods
Discretization
Discriminant Analysis
Feature selection methods
Female
Humans
Internal Medicine
Linear Models
Machine Learning
Machine learning algorithms
Mammography - methods
Mann–Whitney U-test
Models, Statistical
Neural networks
Other
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted - methods
Redundancy analysis
Reproducibility of Results
Statistical tests
uFilter method
Title Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365714001419
https://www.clinicalkey.es/playcontent/1-s2.0-S0933365714001419
https://dx.doi.org/10.1016/j.artmed.2014.12.004
https://www.ncbi.nlm.nih.gov/pubmed/25555756
https://www.proquest.com/docview/1661994986
https://www.proquest.com/docview/1727677612
https://www.proquest.com/docview/1770342502
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuPMpreVRG4hrWiV8Jt1VFtYDaC0XqzYodW1pEs1WTHuCA-A_8Q34JM469gCgt4hhrbEeesecbex6EPJeB-bqUoai0D4XQyhWNZ7zQvK20Ei1v43PBwaFavhdvjuXxFtnLsTDoVpnO_ulMj6d1apmn1Zyfrlbzd2iLcyUx4xx6K2IQnxAaqxi8-PLTzQMRR8y3x3mB1Dl8Lvp4wXigc9DBS8RLwVSu7QL19Df4GdXQ_m1yM-FHuph-8Q7Z8v0OuZVrM9C0VXfI9YP0aH6XfN5cHFBAexTLIn__-g0r4_X-E8WIopisGUYF2DlSQLE0-Jjvkw6xSg6w7iVd9DTnH6ernlp0Zh-pQ6E5o93ksLca6LqnJy3I9pQI-x452n91tLcsUsmFwilWjUXLJFOeld6C3SRBf3eBV1zZ2ovGdbYMDeuaqgtKObCsbGehobS1dTwwVXt-n2z3694_JNS3oas0-vhzK5wPYFZ512rpA-94w-oZ4XmhjUvpyLEqxkeT_c4-mIk9BtljysoAe2ak2PQ6ndJxXEEvMw9NDjWFw9GAvriin76onx_SDh9MaQagNH9I4a89fxPkf5jzWRYyA3scH27a3q_PYS4AUU0jmlpdQgNAVGkNgPUyGo0ZH4GvM_JgkuLNKoJpKQG6q0f__f-PyQ34ktP91BOyPZ6d-6eA2Ea7G7fkLrm2eP12efgDnsRC3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkaAXHuXR5WkkrmadOLZjblVFtUC3FxapNyt2bGkryFZNeoAD4j_wD_kljB17AVFaxDUZO5Fn7PnG_jyD0HPuqasL7kkpnSeVFJYoRxmRrCmlqBrWxOOC-aGYva_eHPGjDbSX78IEWmVa-8c1Pa7W6ck0jeb0ZLmcvguxOBM8ZJwLbEV1BV2teClDBPbiy0-eR4AcMeEeYySI5_tzkeQFHYLTCQyvKu4Kpnpt5_inv-HP6If2b6EbCUDi3fEfb6MN122jm7k4A05zdRtdm6dT8zvo83rnAAPcw6Eu8vev30JpvM59wuFKUczWDL0C7hwwwFjsXUz4iftYJgd09xLvdjgnIMfLDpvAZh-wDVZzituRsbfs8arDHxsw7jET9l202H-12JuRVHOBWEHLgTSUU-Fo4QwEThwceOtZyYSpXaVsawqvaKvK1gthIbQyrYEHhamNZZ6K2rF7aLNbdW4HYdf4tpSB5M9MZZ2HuMrZRnLnWcsUrSeI5YHWNuUjD2UxPuhMPDvWo3p0UI8uSg3qmSCybnUy5uO4RJ5nHep81xRWRw0O45J28rx2rk9TvNeF7kFS_2GGv7b8zZL_4ZvPspFpmOTh5Kbp3OoMvgUoSqlK1eICGUCiQkpArBfJyJDyEfQ6QfdHK16PIsSWHLC7ePDf__8UXZ8t5gf64PXh24doC97wcbPqEdocTs_cY4Bvg3kSp-cPs55EdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Mann-Whitney+statistical+test+for+feature+selection%3A+an+approach+in+breast+cancer+diagnosis+on+mammography&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=P%C3%A9rez%2C+Noel+P%C3%A9rez&rft.au=Guevara+L%C3%B3pez%2C+Miguel+A&rft.au=Silva%2C+Augusto&rft.au=Ramos%2C+Isabel&rft.date=2015-01-01&rft.eissn=1873-2860&rft.volume=63&rft.issue=1&rft.spage=19&rft_id=info:doi/10.1016%2Fj.artmed.2014.12.004&rft_id=info%3Apmid%2F25555756&rft.externalDocID=25555756
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365715X00029%2Fcov150h.gif