A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan

[Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffi...

Full description

Saved in:
Bibliographic Details
Published inEnvironment International Vol. 175; p. 107937
Main Authors Jung, Chau-Ren, Chen, Wei-Ting, Young, Li-Hao, Hsiao, Ta-Chih
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.05.2023
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0160-4120
1873-6750
1873-6750
DOI10.1016/j.envint.2023.107937

Cover

Abstract [Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffic-related variables were important predictors.•MAIAC AOD and AE were not strong predictors for UFP. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
AbstractList Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R ) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO , meridional wind, the total length of roads, PM , and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R²) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R² of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO₂, meridional wind, the total length of roads, PM₂.₅, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
[Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffic-related variables were important predictors.•MAIAC AOD and AE were not strong predictors for UFP. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
ArticleNumber 107937
Author Jung, Chau-Ren
Hsiao, Ta-Chih
Chen, Wei-Ting
Young, Li-Hao
Author_xml – sequence: 1
  givenname: Chau-Ren
  orcidid: 0000-0003-0673-9968
  surname: Jung
  fullname: Jung, Chau-Ren
  email: crjung@mail.cmu.edu.tw
  organization: Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
– sequence: 2
  givenname: Wei-Ting
  orcidid: 0000-0002-9292-0933
  surname: Chen
  fullname: Chen, Wei-Ting
  organization: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Li-Hao
  orcidid: 0000-0002-3328-8181
  surname: Young
  fullname: Young, Li-Hao
  organization: Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
– sequence: 4
  givenname: Ta-Chih
  orcidid: 0000-0003-4103-6272
  surname: Hsiao
  fullname: Hsiao, Ta-Chih
  organization: Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
BackLink https://cir.nii.ac.jp/crid/1871709542859421056$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37088007$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQtVARTQP_ACEfOHBJ8OfaywGpqvioVIlLOVte7zhxtGsHe9Oqd344TjflwAG42PLMe288M-8CncUUAaHXlKwpoc373RriXYjTmhHGa0i1XD1DC6oVXzVKkjO0qDCyEpSRc3RRyo4QwoSWL9A5V0RrQtQC_bzE24cuhx6PqYcB-5QxlCmMdgpxg6ct4HgYO8jYpeggTrkmUsTJ48NQHz5EwHubp-AGKLizBXpc86N122NqAJvjUckOm5TDtB0LDhHPSgO-teHexpfoubdDgVene4m-f_50e_V1dfPty_XV5c3KNYRNKwZac9CS6NZx4WnvNWNSQkuZFranSrReN6Rj1Lu-49ZZqpTjwBtoOKeSL9H1rNsnuzP7XLvMDybZYB4DKW_MqRPDOgDfOQmstaJvhGaCWE65J975RvVV692stc_px6GOzIyhOBgGGyEdimGaC8ZZo8R_QImUtNGVskRvTtBDN0L_-49PC6uADzPA5VRKBm9cmB5XUucZBkOJObrD7MzsDnN0h5ndUcniD_KT_j9ob2daDKGWO57VZVSRVgqmZSsYJbKpsI8zDOoK7wJkU1yAapo-ZHBTnXH4e51f50fg1Q
CitedBy_id crossref_primary_10_1016_j_scs_2024_105572
crossref_primary_10_1016_j_aeaoa_2023_100221
crossref_primary_10_1016_j_jhazmat_2024_135341
crossref_primary_10_1016_j_jhazmat_2025_137599
crossref_primary_10_3390_computation11120249
crossref_primary_10_1016_j_enbuild_2024_114072
crossref_primary_10_1016_j_envint_2024_109182
crossref_primary_10_1016_j_atmosenv_2024_120587
Cites_doi 10.1016/j.envint.2019.05.021
10.1016/j.commatsci.2018.07.052
10.1016/j.atmosenv.2014.07.049
10.5194/acp-11-10791-2011
10.1016/j.rse.2017.07.023
10.1016/j.scitotenv.2012.02.063
10.3390/rs13183657
10.1080/10473289.2002.10470842
10.1016/S1352-2310(03)00510-7
10.37796/2211-8039.1031
10.5194/acp-15-4983-2015
10.1002/jgrd.50707
10.1016/j.atmosenv.2013.03.043
10.1016/j.envres.2021.111135
10.1007/s11356-017-9363-0
10.1023/A:1010933404324
10.3155/1047-3289.58.11.1449
10.1016/S1352-2310(00)00418-0
10.1016/j.envres.2015.12.016
10.1007/978-1-4614-7138-7
10.18637/jss.v077.i01
10.1021/es1023042
10.3390/atmos7080096
10.1016/j.scitotenv.2019.134570
10.1029/2005JD006328
10.1080/10473289.2006.10464485
10.1289/ehp.0901623
10.1016/S0021-8502(97)10037-4
10.1080/02786826.2011.581256
10.1016/j.atmosenv.2012.01.058
10.1016/j.envpol.2017.11.016
10.1021/acs.est.6b03476
10.1002/0471497398.mm421
10.1007/s11270-015-2726-6
10.1175/JAMC-D-22-0102.1
10.1002/2016JD026021
10.1016/j.atmosenv.2005.10.061
10.1021/es505791g
10.1016/j.envint.2021.106569
10.1038/s12276-020-0405-1
10.1021/acs.est.6b05920
10.1021/acs.est.1c03237
10.4209/aaqr.2018.09.0348
10.1016/j.atmosenv.2015.12.050
10.1021/es401489h
10.5194/acp-20-8533-2020
10.2151/jmsj.2022-028
10.1016/j.atmosenv.2011.08.066
10.1016/j.atmosenv.2008.07.050
10.1021/es304495s
10.1016/j.atmosenv.2020.117418
10.1029/2021GL093886
10.1016/j.envpol.2017.11.093
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.envint.2023.107937
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
ExternalDocumentID oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d
37088007
10_1016_j_envint_2023_107937
S0160412023002106
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AEGFY
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c602t-2e883e85089c34f1df82255e91284ad1749f860b21fcdb3aca177c3e36e633153
IEDL.DBID DOA
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:22:47 EDT 2025
Sun Sep 28 02:07:16 EDT 2025
Sat Sep 27 23:05:58 EDT 2025
Thu Apr 03 07:01:23 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 01 02:38:19 EDT 2025
Thu Jun 26 22:29:14 EDT 2025
Fri Feb 23 02:37:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feature importance
Ultrafine particles
Meteorological variables
Estimation model
Satellite-based measurement
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-2e883e85089c34f1df82255e91284ad1749f860b21fcdb3aca177c3e36e633153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0673-9968
0000-0002-3328-8181
0000-0003-4103-6272
0000-0002-9292-0933
OpenAccessLink https://doaj.org/article/2beefbc5e29a4d648240a313f0fcf67d
PMID 37088007
PQID 2805516828
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d
proquest_miscellaneous_2834232674
proquest_miscellaneous_2805516828
pubmed_primary_37088007
crossref_citationtrail_10_1016_j_envint_2023_107937
crossref_primary_10_1016_j_envint_2023_107937
nii_cinii_1871709542859421056
elsevier_sciencedirect_doi_10_1016_j_envint_2023_107937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-01
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environment International
PublicationTitleAlternate Environ Int
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Hoek, Beelen, Kos, Dijkema, Zee, Fischer, Brunekreef (b0085) 2011; 45
Charron, Harrison (b0030) 2003; 37
Hsu, Cheng (b0100) 2019; 19
Meyer, H., 2023. CAST: Caret Applications for Spatio-Temporal models [WWW Document].
Sullivan, Crippa, Hallar, Clarisse, Whitburn, VanDamme, Leaitch, Walker, Khlystov, Pryor (b0265) 2016; 12
Montagne, Hoek, Klompmaker, Wang, Meliefste, Brunekreef (b0205) 2015; 49
(accessed 3.27.23).
Abraham, A., 2005. Artificial neural networks. Handb. Meas. Syst. Des. 10.1002/0471497398.MM421.
TEPA, 2022. Historical air pollution data download [WWW Document]. Taiwan Environ. Prot. Adm.
Hussein, Karppinen, Kukkonen, Härkönen, Aalto, Hämeri, Kerminen, Kulmala (b0105) 2006; 40
Kloog, Koutrakis, Coull, Lee, Schwartz (b0145) 2011; 45
Zhang, T., Zhu, Z., Gong, W., Xiang, H., Li, Y., Cui, Z., 2016. Characteristics of ultrafine particles and their relationships with meteorological factors and trace gases in Wuhan, Central China. Atmos. 7, 96 7, 96. 10.3390/ATMOS7080096.
HEI Review Panel (b0075) 2013
Nordio, Kloog, Coull, Chudnovsky, Grillo, Bertazzi, Baccarelli, Schwartz (b0215) 2013; 74
(accessed 7.6.22).
Sundström, Nikandrova, Atlaskina, Nieminen, Vakkari, Laakso, Beukes, Arola, VanZyl, Josipovic, Venter, Jaars, Pienaar, Piketh, Wiedensohler, Chiloane, DeLeeuw, Kulmala (b0275) 2015; 15
Liu, Sun, Liu, Liang, Wang, Wang, Shi (b0185) 2017; 24
Hamidieh (b0070) 2018; 154
Jung, Nishihama, Nakayama, Tamura, Isobe, Michikawa, Iwai-Shimada, Kobayashi, Sekiyama, Taniguchi, Yamazaki (b0125) 2021; 197
Chen, T., He, T., 2022. xgboost: eXtreme Gradient Boosting [WWW Document].
Zhu, Hinds, Kim, Sioutas (b0335) 2002; 52
Kerckhoffs, Hoek, Messier, Brunekreef, Meliefste, Klompmaker, Vermeulen (b0130) 2016; 50
Kittelson (b0140) 1998; 29
R Core Team (b0225) 2022
Hsieh, Chen, Chen, Wu (b0090) 2022; 100
(accessed 6.15.22).
Pope, Dockery (b0220) 2006; 56
Saha, Hankey, Marshall, Robinson, Presto (b0240) 2021; 55
Schuster, Dubovik, Holben (b0250) 2006; 111
Breiman (b0025) 2001; 45
Hsu, Chen, Wu, Hsieh (b0095) 2023; 62
Xiao, Wang, Chang, Meng, Geng, Lyapustin, Liu (b0310) 2017; 199
Jung, Hwang, Chen (b0120) 2018; 237
Liaw, Wiener (b0180) 2002; 2
vanDonkelaar, Martin, Brauer, Kahn, Levy, Verduzco, Villeneuve (b0285) 2010; 118
James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to Statistical Learning with Application in R, Current medicinal chemistry. Springer Nature, Switzerland AG. 10.1007/978-1-4614-7138-7.
Kumar, Chu, Foster, Peters, Willis (b0160) 2011; 45
Gani, Bhandari, Patel, Seraj, Soni, Arub, Habib, Hildebrandt Ruiz, Apte (b0060) 2020; 20
Shi, Evans, Khan, Harrison (b0255) 2001; 35
Lai, Lin (b0170) 2020; 227
Kulmala, Arola, Nieminen, Riuttanen, Sogacheva, DeLeeuw, Kerminen, Lehtinen (b0155) 2011; 11
LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Krajevic, T., Nykodym, T., Aboyoun, P., Kurka, M., Malohlava, M., Rehak, L., Eckstrand, E., Hill, B., Vidrio, S., Jadhawani, S., Wang, A., Peck, R., Wong, W., Gorecki, J., Dowle, M., Tang, Y., DiPerna, L., Fryda, T., Maurerova, V., H2O.ai, 2022. R interface for the “H2O” Scalable Machine Learning Platform [WWW Document].
Stanier, Khlystov, Pandis (b0260) 2010
Wang, Zhu, Salinas, Ramirez, Karnae, John (b0295) 2008; 58
(accessed 8.24.20).
Allahyari, Moshtagh (b0015) 2021; 11
Morawska, Ristovski, Jayaratne, Keogh, Ling (b0210) 2008; 42
Saraswat, Apte, Kandlikar, Brauer, Henderson, Marshall (b0245) 2013; 47
Rivera, Basagaña, Aguilera, Agis, Bouso, Foraster, Medina-Ramón, Pey, Künzli, Hoek (b0235) 2012; 54
Weichenthal, Ryswyk, Goldstein, Bagg, Shekkarizfard, Hatzopoulou (b0300) 2016; 146
Abernethy, Allen, McKendry, Brauer (b0005) 2013; 47
Kerckhoffs, Hoek, Gehring, Vermeulen (b0135) 2021; 154
Crippa, Spracklen, Pryor (b0045) 2013; 118
Kuhn, M., 2019. The caret Package [WWW Document].
Wright, Ziegler (b0305) 2017; 77
Gerling, Löschau, Wiedensohler, Weber (b0065) 2020; 703
VanNunen, Vermeulen, Tsai, Probst-Hensch, Ineichen, Davey, Imboden, Ducret-Stich, Naccarati, Raffaele, Ranzi, Ivaldi, Galassi, Nieuwenhuijsen, Curto, Donaire-Gonzalez, Cirach, Chatzi, Kampouri, Vlaanderen, Meliefste, Buijtenhuijs, Brunekreef, Morley, Vineis, Gulliver, Hoek (b0290) 2017; 51
Bhargava, Tamrakar, Aglawe, Lad, Srivastava, Mishra, Tiwari, Chaudhury, Goryacheva, Mishra (b0020) 2018; 234
deJesus, Rahman, Mazaheri, Thompson, Knibbs, Jeong, Evans, Nei, Ding, Qiao, Li, Portin, Niemi, Timonen, Luoma, Petäjä, Kulmala, Kowalski, Peters, Cyrys, Ferrero, Manigrasso, Avino, Buonano, Reche, Querol, Beddows, Harrison, Sowlat, Sioutas, Morawska (b0055) 2019; 129
Heinzerling, Hsu, Yip (b0080) 2016; 227
Ragettli, Ducret-Stich, Foraster, Morelli, Aguilera, Basagaña, Corradi, Ineichen, Tsai, Probst-Hensch, Rivera, Slama, Künzli, Phuleria (b0230) 2014; 96
Molnar, C., 2019. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. [WWW Document].
Zhao, S.P., Yu, Y., Yin, D.Y., Qin, D.H., 2021. Contrasting response of ultrafine particle number and PM2.5 mass concentrations to clean air action in China. Geophys. Res. Lett. 48, e2021GL09388. 10.1029/2021GL093886.
Crippa, Castruccio, Pryor (b0050) 2017; 122
Jung, Chen, Nakayama (b0115) 2021; 13
Young, Wang, Hsu, Lin, Liou, Lai, Lin, Chang, Chiang, Cheng (b0320) 2012; 425
Young, Hsu, Hsiao, Lin, Tsay, Lin, Lin, Jung (b0315) 2022; 856
Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 523(52), 318–328. 10.1038/s12276-020-0405-1.
Sullivan, Pryor (b0270) 2016; 127
(accessed 7.15.22).
Chen, Guestrin (b0040) 2016
Molnar, C., Schratz, P., 2022. Interpretable Machine Learning [WWW Document].
Shi (10.1016/j.envint.2023.107937_b0255) 2001; 35
Young (10.1016/j.envint.2023.107937_b0315) 2022; 856
Hamidieh (10.1016/j.envint.2023.107937_b0070) 2018; 154
10.1016/j.envint.2023.107937_b0010
10.1016/j.envint.2023.107937_b0175
Crippa (10.1016/j.envint.2023.107937_b0045) 2013; 118
10.1016/j.envint.2023.107937_b0330
Kulmala (10.1016/j.envint.2023.107937_b0155) 2011; 11
Saha (10.1016/j.envint.2023.107937_b0240) 2021; 55
Sullivan (10.1016/j.envint.2023.107937_b0265) 2016; 12
Jung (10.1016/j.envint.2023.107937_b0115) 2021; 13
Lai (10.1016/j.envint.2023.107937_b0170) 2020; 227
Xiao (10.1016/j.envint.2023.107937_b0310) 2017; 199
Heinzerling (10.1016/j.envint.2023.107937_b0080) 2016; 227
Pope (10.1016/j.envint.2023.107937_b0220) 2006; 56
Rivera (10.1016/j.envint.2023.107937_b0235) 2012; 54
R Core Team (10.1016/j.envint.2023.107937_b0225) 2022
Morawska (10.1016/j.envint.2023.107937_b0210) 2008; 42
Wright (10.1016/j.envint.2023.107937_b0305) 2017; 77
Hsu (10.1016/j.envint.2023.107937_b0095) 2023; 62
Stanier (10.1016/j.envint.2023.107937_b0260) 2010
Kittelson (10.1016/j.envint.2023.107937_b0140) 1998; 29
Sullivan (10.1016/j.envint.2023.107937_b0270) 2016; 127
Liu (10.1016/j.envint.2023.107937_b0185) 2017; 24
Sundström (10.1016/j.envint.2023.107937_b0275) 2015; 15
Gani (10.1016/j.envint.2023.107937_b0060) 2020; 20
Bhargava (10.1016/j.envint.2023.107937_b0020) 2018; 234
Breiman (10.1016/j.envint.2023.107937_b0025) 2001; 45
deJesus (10.1016/j.envint.2023.107937_b0055) 2019; 129
Allahyari (10.1016/j.envint.2023.107937_b0015) 2021; 11
Jung (10.1016/j.envint.2023.107937_b0120) 2018; 237
10.1016/j.envint.2023.107937_b0190
10.1016/j.envint.2023.107937_b0150
Gerling (10.1016/j.envint.2023.107937_b0065) 2020; 703
Kloog (10.1016/j.envint.2023.107937_b0145) 2011; 45
10.1016/j.envint.2023.107937_b0195
Jung (10.1016/j.envint.2023.107937_b0125) 2021; 197
10.1016/j.envint.2023.107937_b0110
10.1016/j.envint.2023.107937_b0035
HEI Review Panel (10.1016/j.envint.2023.107937_b0075) 2013
vanDonkelaar (10.1016/j.envint.2023.107937_b0285) 2010; 118
Ragettli (10.1016/j.envint.2023.107937_b0230) 2014; 96
Weichenthal (10.1016/j.envint.2023.107937_b0300) 2016; 146
Crippa (10.1016/j.envint.2023.107937_b0050) 2017; 122
Hsieh (10.1016/j.envint.2023.107937_b0090) 2022; 100
Hsu (10.1016/j.envint.2023.107937_b0100) 2019; 19
Liaw (10.1016/j.envint.2023.107937_b0180) 2002; 2
Kerckhoffs (10.1016/j.envint.2023.107937_b0135) 2021; 154
Kumar (10.1016/j.envint.2023.107937_b0160) 2011; 45
10.1016/j.envint.2023.107937_b0280
Zhu (10.1016/j.envint.2023.107937_b0335) 2002; 52
10.1016/j.envint.2023.107937_b0165
VanNunen (10.1016/j.envint.2023.107937_b0290) 2017; 51
Abernethy (10.1016/j.envint.2023.107937_b0005) 2013; 47
10.1016/j.envint.2023.107937_b0200
Montagne (10.1016/j.envint.2023.107937_b0205) 2015; 49
10.1016/j.envint.2023.107937_b0325
Nordio (10.1016/j.envint.2023.107937_b0215) 2013; 74
Hussein (10.1016/j.envint.2023.107937_b0105) 2006; 40
Wang (10.1016/j.envint.2023.107937_b0295) 2008; 58
Saraswat (10.1016/j.envint.2023.107937_b0245) 2013; 47
Chen (10.1016/j.envint.2023.107937_b0040) 2016
Charron (10.1016/j.envint.2023.107937_b0030) 2003; 37
Hoek (10.1016/j.envint.2023.107937_b0085) 2011; 45
Young (10.1016/j.envint.2023.107937_b0320) 2012; 425
Kerckhoffs (10.1016/j.envint.2023.107937_b0130) 2016; 50
Schuster (10.1016/j.envint.2023.107937_b0250) 2006; 111
References_xml – volume: 56
  start-page: 709
  year: 2006
  end-page: 742
  ident: b0220
  article-title: Health effects of fine particulate air pollution: Lines that connect
  publication-title: J. Air Waste Manag. Assoc.
– reference: TEPA, 2022. Historical air pollution data download [WWW Document]. Taiwan Environ. Prot. Adm.
– reference: Chen, T., He, T., 2022. xgboost: eXtreme Gradient Boosting [WWW Document].
– volume: 154
  start-page: 346
  year: 2018
  end-page: 354
  ident: b0070
  article-title: A data-driven statistical model for predicting the critical temperature of a superconductor
  publication-title: Comput. Mater. Sci.
– reference: Meyer, H., 2023. CAST: Caret Applications for Spatio-Temporal models [WWW Document].
– volume: 52
  start-page: 1032
  year: 2002
  end-page: 1042
  ident: b0335
  article-title: Concentration and size distribution of ultrafine particles near a major highway
  publication-title: J. Air Waste Manage. Assoc.
– reference: (accessed 6.15.22).
– reference: (accessed 8.24.20).
– volume: 15
  start-page: 4983
  year: 2015
  end-page: 4996
  ident: b0275
  article-title: Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa
  publication-title: Atmos. Chem. Phys
– volume: 11
  start-page: 26
  year: 2021
  end-page: 33
  ident: b0015
  article-title: Predicting mental health of prisoners by artificial neural network
  publication-title: BioMedicine
– volume: 29
  start-page: 575
  year: 1998
  end-page: 588
  ident: b0140
  article-title: Engines and nanoparticles: a review
  publication-title: J. Aerosol Sci.
– volume: 49
  start-page: 8712
  year: 2015
  end-page: 8720
  ident: b0205
  article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation
  publication-title: Environ. Sci. Technol.
– volume: 96
  start-page: 275
  year: 2014
  end-page: 283
  ident: b0230
  article-title: Spatio-temporal variation of urban ultrafine particle number concentrations
  publication-title: Atmos. Environ.
– reference: Zhao, S.P., Yu, Y., Yin, D.Y., Qin, D.H., 2021. Contrasting response of ultrafine particle number and PM2.5 mass concentrations to clean air action in China. Geophys. Res. Lett. 48, e2021GL09388. 10.1029/2021GL093886.
– volume: 58
  start-page: 1449
  year: 2008
  end-page: 1457
  ident: b0295
  article-title: Roadside measurements of ultrafine particles at a busy urban intersection
  publication-title: J. Air Waste Manage. Assoc.
– reference: (accessed 7.6.22).
– volume: 47
  start-page: 5217
  year: 2013
  end-page: 5225
  ident: b0005
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 12903
  year: 2013
  end-page: 12911
  ident: b0245
  article-title: Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi
  publication-title: India. Environ. Sci. Technol.
– reference: Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 523(52), 318–328. 10.1038/s12276-020-0405-1.
– volume: 237
  start-page: 1000
  year: 2018
  end-page: 1010
  ident: b0120
  article-title: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015
  publication-title: Environ. Pollut.
– volume: 45
  start-page: 6267
  year: 2011
  end-page: 6275
  ident: b0145
  article-title: Assessing temporally and spatially resolved PM2.5exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
– volume: 118
  start-page: 9968
  year: 2013
  end-page: 9981
  ident: b0045
  article-title: Satellite-derived estimates of ultrafine particle concentrations over eastern North America
  publication-title: J. Geophys. Res. Atmos.
– volume: 425
  start-page: 135
  year: 2012
  end-page: 145
  ident: b0320
  article-title: Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 8533
  year: 2020
  end-page: 8549
  ident: b0060
  article-title: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study
  publication-title: Atmos. Chem. Phys
– volume: 40
  start-page: 1427
  year: 2006
  end-page: 1440
  ident: b0105
  article-title: Meteorological dependence of size-fractionated number concentrations of urban aerosol particles
  publication-title: Atmos. Environ.
– volume: 55
  start-page: 10320
  year: 2021
  end-page: 10331
  ident: b0240
  article-title: High-spatial-resolution estimates of ultrafine particle concentrations across the continental United States
  publication-title: Environ. Sci. Technol.
– reference: (accessed 7.15.22).
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0180
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 146
  start-page: 65
  year: 2016
  end-page: 72
  ident: b0300
  article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach
  publication-title: Environ. Res.
– volume: 11
  start-page: 10791
  year: 2011
  end-page: 10801
  ident: b0155
  article-title: The first estimates of global nucleation mode aerosol concentrations based on satellite measurements
  publication-title: Atmos. Chem. Phys
– volume: 42
  start-page: 8113
  year: 2008
  end-page: 8138
  ident: b0210
  article-title: Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure
  publication-title: Atmos. Environ.
– volume: 54
  start-page: 657
  year: 2012
  end-page: 666
  ident: b0235
  article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model
  publication-title: Atmos. Environ.
– reference: James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to Statistical Learning with Application in R, Current medicinal chemistry. Springer Nature, Switzerland AG. 10.1007/978-1-4614-7138-7.
– volume: 35
  start-page: 1193
  year: 2001
  end-page: 1202
  ident: b0255
  article-title: Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere
  publication-title: Atmos. Environ.
– volume: 51
  start-page: 3336
  year: 2017
  end-page: 3345
  ident: b0290
  article-title: Land use regression models for ultrafine particles in six European areas
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 12894
  year: 2016
  end-page: 12902
  ident: b0130
  article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model
  publication-title: Environ. Sci. Technol.
– volume: 703
  year: 2020
  ident: b0065
  article-title: Statistical modelling of roadside and urban background ultrafine and accumulation mode particle number concentrations using generalized additive models
  publication-title: Sci. Total Environ.
– reference: (accessed 3.27.23).
– year: 2022
  ident: b0225
  article-title: R: A language and environment for statistical computing. [WWW Document]. R Found
  publication-title: Stat. Comput.
– volume: 13
  year: 2021
  ident: b0115
  article-title: A national-scale 1-km resolution PM2.5 estimation model over japan using MAIAC AOD and a two-stage random forest model
  publication-title: Remote Sens.
– volume: 19
  start-page: 1139
  year: 2019
  end-page: 1151
  ident: b0100
  article-title: Synoptic weather patterns and associated air pollution in Taiwan
  publication-title: Aerosol Air Qual. Res.
– year: 2010
  ident: b0260
  article-title: Aerosol science and technology nucleation events during the pittsburgh air quality study: description and relation to key meteorological
  publication-title: Gas Phase, and Aerosol Parameters Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program.
– reference: Molnar, C., 2019. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. [WWW Document].
– reference: Abraham, A., 2005. Artificial neural networks. Handb. Meas. Syst. Des. 10.1002/0471497398.MM421.
– volume: 122
  start-page: 1828
  year: 2017
  end-page: 1837
  ident: b0050
  article-title: Forecasting ultrafine particle concentrations from satellite and in situ observations
  publication-title: J. Geophys. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0025
  article-title: Random Forests
  publication-title: Mach. Learn.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0040
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: Kuhn, M., 2019. The caret Package [WWW Document].
– year: 2013
  ident: b0075
  article-title: Understanding the Health Effects of Ambient Ultrafine Particles
– volume: 856
  year: 2022
  ident: b0315
  article-title: Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan
  publication-title: Sci. Total Environ.
– volume: 129
  start-page: 118
  year: 2019
  end-page: 135
  ident: b0055
  article-title: Ultrafine particles and PM2.5 in the air of cities around the world: are they representative of each other?
  publication-title: Environ. Int.
– volume: 62
  start-page: 427
  year: 2023
  end-page: 439
  ident: b0095
  article-title: The observation-based index to investigate the role of lee vortex in enhancing pollution over Northern Taiwan
  publication-title: J. Appl. Meteorol. Clim.
– volume: 37
  start-page: 4109
  year: 2003
  end-page: 4119
  ident: b0030
  article-title: Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere
  publication-title: Atmos. Environ.
– volume: 77
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0305
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
– volume: 154
  year: 2021
  ident: b0135
  article-title: Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring
  publication-title: Environ. Int.
– volume: 197
  year: 2021
  ident: b0125
  article-title: Indoor air quality of 5,000 households and its determinants. Part B: volatile organic compounds and inorganic gaseous pollutants in the Japan Environment and Children’s study
  publication-title: Environ. Res.
– reference: Molnar, C., Schratz, P., 2022. Interpretable Machine Learning [WWW Document].
– reference: LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Krajevic, T., Nykodym, T., Aboyoun, P., Kurka, M., Malohlava, M., Rehak, L., Eckstrand, E., Hill, B., Vidrio, S., Jadhawani, S., Wang, A., Peck, R., Wong, W., Gorecki, J., Dowle, M., Tang, Y., DiPerna, L., Fryda, T., Maurerova, V., H2O.ai, 2022. R interface for the “H2O” Scalable Machine Learning Platform [WWW Document].
– volume: 111
  year: 2006
  ident: b0250
  article-title: Angstrom exponent and bimodal aerosol size distributions
  publication-title: J. Geophys. Res. Atmos.
– reference: Zhang, T., Zhu, Z., Gong, W., Xiang, H., Li, Y., Cui, Z., 2016. Characteristics of ultrafine particles and their relationships with meteorological factors and trace gases in Wuhan, Central China. Atmos. 7, 96 7, 96. 10.3390/ATMOS7080096.
– volume: 227
  year: 2020
  ident: b0170
  article-title: Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography
  publication-title: Atmos. Environ.
– volume: 127
  start-page: 316
  year: 2016
  end-page: 325
  ident: b0270
  article-title: Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements
  publication-title: Atmos. Environ.
– volume: 24
  start-page: 17976
  year: 2017
  end-page: 17984
  ident: b0185
  article-title: Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies
  publication-title: Environ. Sci. Pollut. Res.
– volume: 118
  start-page: 847
  year: 2010
  end-page: 855
  ident: b0285
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
– volume: 227
  start-page: 32
  year: 2016
  ident: b0080
  article-title: Respiratory health effects of ultrafine particles in children: a literature review
  publication-title: Water. Air. Soil Pollut.
– volume: 45
  start-page: 622
  year: 2011
  end-page: 628
  ident: b0085
  article-title: Land use regression model for ultrafine particles in Amsterdam
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 217
  year: 2016
  end-page: 235
  ident: b0265
  article-title: Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation
  publication-title: J. Geophys. Res.
– volume: 234
  start-page: 406
  year: 2018
  end-page: 419
  ident: b0020
  article-title: Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes
  publication-title: Environ. Pollut.
– volume: 74
  start-page: 227
  year: 2013
  end-page: 236
  ident: b0215
  article-title: Estimating spatio-temporal resolved PM10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy
  publication-title: Italy. Atmos. Environ.
– volume: 100
  start-page: 555
  year: 2022
  end-page: 573
  ident: b0090
  article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan
  publication-title: J. Meteorol. Soc. Japan
– volume: 45
  start-page: 1090
  year: 2011
  end-page: 1108
  ident: b0160
  article-title: Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH
  publication-title: Aerosol Sci. Technol.
– volume: 199
  start-page: 437
  year: 2017
  end-page: 446
  ident: b0310
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
– volume: 129
  start-page: 118
  year: 2019
  ident: 10.1016/j.envint.2023.107937_b0055
  article-title: Ultrafine particles and PM2.5 in the air of cities around the world: are they representative of each other?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.05.021
– volume: 154
  start-page: 346
  year: 2018
  ident: 10.1016/j.envint.2023.107937_b0070
  article-title: A data-driven statistical model for predicting the critical temperature of a superconductor
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.07.052
– volume: 96
  start-page: 275
  year: 2014
  ident: 10.1016/j.envint.2023.107937_b0230
  article-title: Spatio-temporal variation of urban ultrafine particle number concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.07.049
– volume: 11
  start-page: 10791
  year: 2011
  ident: 10.1016/j.envint.2023.107937_b0155
  article-title: The first estimates of global nucleation mode aerosol concentrations based on satellite measurements
  publication-title: Atmos. Chem. Phys
  doi: 10.5194/acp-11-10791-2011
– volume: 199
  start-page: 437
  year: 2017
  ident: 10.1016/j.envint.2023.107937_b0310
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.023
– volume: 425
  start-page: 135
  year: 2012
  ident: 10.1016/j.envint.2023.107937_b0320
  article-title: Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.02.063
– volume: 13
  year: 2021
  ident: 10.1016/j.envint.2023.107937_b0115
  article-title: A national-scale 1-km resolution PM2.5 estimation model over japan using MAIAC AOD and a two-stage random forest model
  publication-title: Remote Sens.
  doi: 10.3390/rs13183657
– volume: 52
  start-page: 1032
  year: 2002
  ident: 10.1016/j.envint.2023.107937_b0335
  article-title: Concentration and size distribution of ultrafine particles near a major highway
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2002.10470842
– volume: 37
  start-page: 4109
  year: 2003
  ident: 10.1016/j.envint.2023.107937_b0030
  article-title: Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(03)00510-7
– year: 2013
  ident: 10.1016/j.envint.2023.107937_b0075
– volume: 11
  start-page: 26
  year: 2021
  ident: 10.1016/j.envint.2023.107937_b0015
  article-title: Predicting mental health of prisoners by artificial neural network
  publication-title: BioMedicine
  doi: 10.37796/2211-8039.1031
– volume: 15
  start-page: 4983
  year: 2015
  ident: 10.1016/j.envint.2023.107937_b0275
  article-title: Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa
  publication-title: Atmos. Chem. Phys
  doi: 10.5194/acp-15-4983-2015
– volume: 118
  start-page: 9968
  year: 2013
  ident: 10.1016/j.envint.2023.107937_b0045
  article-title: Satellite-derived estimates of ultrafine particle concentrations over eastern North America
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50707
– volume: 74
  start-page: 227
  year: 2013
  ident: 10.1016/j.envint.2023.107937_b0215
  article-title: Estimating spatio-temporal resolved PM10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy
  publication-title: Italy. Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.03.043
– volume: 197
  year: 2021
  ident: 10.1016/j.envint.2023.107937_b0125
  article-title: Indoor air quality of 5,000 households and its determinants. Part B: volatile organic compounds and inorganic gaseous pollutants in the Japan Environment and Children’s study
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111135
– volume: 24
  start-page: 17976
  year: 2017
  ident: 10.1016/j.envint.2023.107937_b0185
  article-title: Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9363-0
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.envint.2023.107937_b0025
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 58
  start-page: 1449
  year: 2008
  ident: 10.1016/j.envint.2023.107937_b0295
  article-title: Roadside measurements of ultrafine particles at a busy urban intersection
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.3155/1047-3289.58.11.1449
– volume: 35
  start-page: 1193
  year: 2001
  ident: 10.1016/j.envint.2023.107937_b0255
  article-title: Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00418-0
– volume: 146
  start-page: 65
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0300
  article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.12.016
– ident: 10.1016/j.envint.2023.107937_b0110
  doi: 10.1007/978-1-4614-7138-7
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.envint.2023.107937_b0305
  article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
– volume: 45
  start-page: 622
  year: 2011
  ident: 10.1016/j.envint.2023.107937_b0085
  article-title: Land use regression model for ultrafine particles in Amsterdam
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1023042
– ident: 10.1016/j.envint.2023.107937_b0325
  doi: 10.3390/atmos7080096
– year: 2022
  ident: 10.1016/j.envint.2023.107937_b0225
  article-title: R: A language and environment for statistical computing. [WWW Document]. R Found
  publication-title: Stat. Comput.
– volume: 703
  year: 2020
  ident: 10.1016/j.envint.2023.107937_b0065
  article-title: Statistical modelling of roadside and urban background ultrafine and accumulation mode particle number concentrations using generalized additive models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134570
– ident: 10.1016/j.envint.2023.107937_b0190
– year: 2010
  ident: 10.1016/j.envint.2023.107937_b0260
  article-title: Aerosol science and technology nucleation events during the pittsburgh air quality study: description and relation to key meteorological
  publication-title: Gas Phase, and Aerosol Parameters Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program.
– volume: 111
  year: 2006
  ident: 10.1016/j.envint.2023.107937_b0250
  article-title: Angstrom exponent and bimodal aerosol size distributions
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006328
– volume: 56
  start-page: 709
  year: 2006
  ident: 10.1016/j.envint.2023.107937_b0220
  article-title: Health effects of fine particulate air pollution: Lines that connect
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2006.10464485
– volume: 118
  start-page: 847
  year: 2010
  ident: 10.1016/j.envint.2023.107937_b0285
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0901623
– volume: 29
  start-page: 575
  year: 1998
  ident: 10.1016/j.envint.2023.107937_b0140
  article-title: Engines and nanoparticles: a review
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(97)10037-4
– volume: 45
  start-page: 1090
  year: 2011
  ident: 10.1016/j.envint.2023.107937_b0160
  article-title: Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2011.581256
– volume: 54
  start-page: 657
  year: 2012
  ident: 10.1016/j.envint.2023.107937_b0235
  article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.01.058
– volume: 237
  start-page: 1000
  year: 2018
  ident: 10.1016/j.envint.2023.107937_b0120
  article-title: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.016
– volume: 50
  start-page: 12894
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0130
  article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03476
– ident: 10.1016/j.envint.2023.107937_b0010
  doi: 10.1002/0471497398.mm421
– volume: 227
  start-page: 32
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0080
  article-title: Respiratory health effects of ultrafine particles in children: a literature review
  publication-title: Water. Air. Soil Pollut.
  doi: 10.1007/s11270-015-2726-6
– ident: 10.1016/j.envint.2023.107937_b0200
– volume: 62
  start-page: 427
  year: 2023
  ident: 10.1016/j.envint.2023.107937_b0095
  article-title: The observation-based index to investigate the role of lee vortex in enhancing pollution over Northern Taiwan
  publication-title: J. Appl. Meteorol. Clim.
  doi: 10.1175/JAMC-D-22-0102.1
– volume: 122
  start-page: 1828
  year: 2017
  ident: 10.1016/j.envint.2023.107937_b0050
  article-title: Forecasting ultrafine particle concentrations from satellite and in situ observations
  publication-title: J. Geophys. Res.
  doi: 10.1002/2016JD026021
– ident: 10.1016/j.envint.2023.107937_b0195
– volume: 40
  start-page: 1427
  year: 2006
  ident: 10.1016/j.envint.2023.107937_b0105
  article-title: Meteorological dependence of size-fractionated number concentrations of urban aerosol particles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.10.061
– volume: 49
  start-page: 8712
  year: 2015
  ident: 10.1016/j.envint.2023.107937_b0205
  article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505791g
– volume: 154
  year: 2021
  ident: 10.1016/j.envint.2023.107937_b0135
  article-title: Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106569
– volume: 12
  start-page: 217
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0265
  article-title: Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation
  publication-title: J. Geophys. Res.
– ident: 10.1016/j.envint.2023.107937_b0165
  doi: 10.1038/s12276-020-0405-1
– volume: 51
  start-page: 3336
  year: 2017
  ident: 10.1016/j.envint.2023.107937_b0290
  article-title: Land use regression models for ultrafine particles in six European areas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05920
– start-page: 785
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0040
  article-title: XGBoost: A scalable tree boosting system
– volume: 55
  start-page: 10320
  year: 2021
  ident: 10.1016/j.envint.2023.107937_b0240
  article-title: High-spatial-resolution estimates of ultrafine particle concentrations across the continental United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03237
– volume: 19
  start-page: 1139
  year: 2019
  ident: 10.1016/j.envint.2023.107937_b0100
  article-title: Synoptic weather patterns and associated air pollution in Taiwan
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2018.09.0348
– volume: 127
  start-page: 316
  year: 2016
  ident: 10.1016/j.envint.2023.107937_b0270
  article-title: Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.12.050
– ident: 10.1016/j.envint.2023.107937_b0035
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.envint.2023.107937_b0180
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 47
  start-page: 12903
  year: 2013
  ident: 10.1016/j.envint.2023.107937_b0245
  article-title: Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi
  publication-title: India. Environ. Sci. Technol.
  doi: 10.1021/es401489h
– ident: 10.1016/j.envint.2023.107937_b0175
– ident: 10.1016/j.envint.2023.107937_b0150
– volume: 20
  start-page: 8533
  year: 2020
  ident: 10.1016/j.envint.2023.107937_b0060
  article-title: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study
  publication-title: Atmos. Chem. Phys
  doi: 10.5194/acp-20-8533-2020
– volume: 856
  year: 2022
  ident: 10.1016/j.envint.2023.107937_b0315
  article-title: Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan
  publication-title: Sci. Total Environ.
– volume: 100
  start-page: 555
  year: 2022
  ident: 10.1016/j.envint.2023.107937_b0090
  article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan
  publication-title: J. Meteorol. Soc. Japan
  doi: 10.2151/jmsj.2022-028
– volume: 45
  start-page: 6267
  year: 2011
  ident: 10.1016/j.envint.2023.107937_b0145
  article-title: Assessing temporally and spatially resolved PM2.5exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 42
  start-page: 8113
  year: 2008
  ident: 10.1016/j.envint.2023.107937_b0210
  article-title: Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.07.050
– ident: 10.1016/j.envint.2023.107937_b0280
– volume: 47
  start-page: 5217
  year: 2013
  ident: 10.1016/j.envint.2023.107937_b0005
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304495s
– volume: 227
  year: 2020
  ident: 10.1016/j.envint.2023.107937_b0170
  article-title: Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117418
– ident: 10.1016/j.envint.2023.107937_b0330
  doi: 10.1029/2021GL093886
– volume: 234
  start-page: 406
  year: 2018
  ident: 10.1016/j.envint.2023.107937_b0020
  article-title: Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.093
SSID ssj0002485
ssib017384459
ssib006543614
ssib050731219
Score 2.4654813
Snippet [Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and...
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with...
SourceID doaj
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107937
SubjectTerms Air Pollutants
Air Pollutants - analysis
Air Pollution
Air Pollution - analysis
cost effectiveness
environment
Environmental Monitoring
Environmental sciences
Estimation model
Feature importance
GE1-350
land use
Machine Learning
Meteorological variables
Particle Size
Particulate Matter
Particulate Matter - analysis
Satellite-based measurement
satellites
Taiwan
temperature
traffic
Ultrafine particles
wind
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKTyCEYKE0QJGRuIZNbMdJjqVqVSHBhVbqzXIcexu0dVb7EOqlJ344M7GzZQ9QictKcSabx4xnPicz3xDykbmKG1nYtK6cToWpBEwpyVNtDEQXW9Rm6N7w9Zs8vxRfroqrPXIy1sJgWmX0_cGnD946jkzj05wuum76HbnRRI7tv4eFC9JuI_sX2PSnu_s0D6TsCvzeWYrSY_nckOOFxWQeMyoZhyGkitsJTwOL_06UeuS77u9YdIhJZ8_Jswgm6XG43hdkz_oJefIHxeCEHJzeV7KBaJzKqwl5Gl7Y0VCH9JL8OqbXt1i-RYfmOBTALEUGDkS0fkYBJ9LQPYQarHT0kW6X9o5u5rDh4Jx0MebZUYyOLYX9N0O2pqWxPcWM6vmsX3br65sV7TyNyaH0Qnc_tX9FLs9OL07O09iiITUyY-uU2aritgKUVxsuXN46ABxFYWsMe7qF5U7tKpk1LHembbg2Oi9Lwy2XVnIO3vaA7Pve20NCnRCNkKJhvBXCImlNW9pWl1jPqCvBEsJHzSgT-cuxjcZcjYlqP1TQp0J9qqDPhKTboxaBv-MB-c-o9K0ssm8PA_1ypuIzVKyx1jWmsKzWopWiAlikec5d5oyTZZuQcjQZtWPM8FfdA6c_AguD-8PfHBazJUBggSSDAky8kAn5MNqeAj-AH3e0t_1mpViV4TdPWED_Swb5HpksRUJeB8Pd3igvId4AYHzz39f-ljzGrZAN-o7sr5cbewSIbd28H6bkbySBPDI
  priority: 102
  providerName: Elsevier
Title A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan
URI https://dx.doi.org/10.1016/j.envint.2023.107937
https://cir.nii.ac.jp/crid/1871709542859421056
https://www.ncbi.nlm.nih.gov/pubmed/37088007
https://www.proquest.com/docview/2805516828
https://www.proquest.com/docview/2834232674
https://doaj.org/article/2beefbc5e29a4d648240a313f0fcf67d
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: AIKHN
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: ACRLP
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050731219
  issn: 0160-4120
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6750
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002485
  issn: 0160-4120
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVouYAQgoXCAl0ZiWsgsR3HOS6o1QKip1bqzXIce5tq6626u0JcOPHDmYmdpT3AXrhESuJ82DP2vElm3hDyjnnFrSxdVitvMmGVgCkleWasBeviytr21Ru-ncjZmfhyXp7fKvWFMWGRHjgO3AfWOOcbWzpWG9FKocAEGV5wn3vrZdXi6gtmbHCm0hqMRF2R1TvPRMHyIWmuj-zCFLKAcZSMwyEkiLtjlHru_ju2aS903d8RaG-Jjp-QxwlC0ml89afkngsj8vAWseCIHBz9yV-DpmkCr0bkUfxMR2P20TPya0ovfmDSFu1L4lCAsBR5NxDHhjkFdEhjzRBqMb8xJJJduvR0s4AdD8-k10N0HUWb2FI4f9XHaDqailLMqVnMlzfd-uJqRbtAU0goPTXddxOek7Pjo9NPsywVZsiszNk6Y04p7hRgu9py4YvWA8woS1ejsTMtODm1VzJvWOFt23BjTVFVljsuneQc1tgDsh-Wwb0k1AvRCCkaxlshHFLVtJVrTYVZjEYJNiZ8kIy2ibUci2cs9BCedqmjPDXKU0d5jkm2veo6snbsaP8Rhb5ti5zb_QHQRJ3GUO_SxDGpBpXRCb5EWAK36nY8_hA0DPqH2wJc2AqAr0BqQQEeeSnH5O2gexpmP_7SMcEtNyvNVI5_OsFt_lcbZHlkshJj8iIq7rajvAIrAzDx1f8YgNfkAXYqhoO-Ifvrm407BMi2biZk7_3PYkLuTz9_nZ1M-rn6G3UcPuQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa27gEQQlAYFBgYideoje04yWOZNnVs6wudtDfLcewuU5dW_SG09_3h3MVOoQ8wiZdIcZw4yZ3vPid33xHylbmMG5nYKM-cjoTJBEwpySNtDHgXm-Smqd5wOZajK_H9OrneI8dtLgyGVQbb7216Y61DSz-8zf6iqvo_kBtNxFj-u1m4yH1yIBKwyR1yMDw7H423BhlZuzzF9yDCE9oMuibMC_PJagyqZByakC1ux0M1RP47jmq_rqq_w9HGLZ2-JC8CnqRDf8uvyJ6tu-TZHyyDXXJ48juZDbqG2bzqkuf-mx31qUivycOQ3txjBhdt6uNQwLMUSTgQ1NZTClCR-gIi1GCyYx0Yd-nc0c0MdhyMSRdtqB1FB1lSOH7XBGxaGipUTKmeTefLan1zt6JVTUN8KJ3o6qeu35Cr05PJ8SgKVRoiIwdsHTGbZdxmAPRyw4WLSweYI0lsjp5Pl7DiyV0mBwWLnSkLro2O09Rwy6WVnIPBPSSdel7bd4Q6IQohRcF4KYRF3poytaVOMaVRZ4L1CG8lo0ygMMdKGjPVxqrdKi9PhfJUXp49Em3PWngKj0f6f0Ohb_siAXfTMF9OVXiHihXWusIkluValFJkgIw0j7kbOONkWvZI2qqM2tFnuFT1yPBHoGHwfLiNYT2bAgoWyDMoQMsT2SNfWt1TYArw_46u7XyzUiwb4G9PWEP_qw9SPjKZih556xV3-6A8BZcDmPH9f9_7Z_JkNLm8UBdn4_MP5Cke8cGhH0lnvdzYIwBw6-JTmKC_ALusQGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+model+for+estimating+the+number+concentration+of+ultrafine+particles+based+on+machine+learning+algorithms+in+central+Taiwan&rft.jtitle=Environment+international&rft.au=Chau-Ren+Jung&rft.au=Wei-Ting+Chen&rft.au=Li-Hao+Young&rft.au=Ta-Chih+Hsiao&rft.date=2023-05-01&rft.pub=Elsevier&rft.issn=0160-4120&rft.volume=175&rft.spage=107937&rft_id=info:doi/10.1016%2Fj.envint.2023.107937&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon