A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan
[Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffi...
Saved in:
Published in | Environment International Vol. 175; p. 107937 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.05.2023
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0160-4120 1873-6750 1873-6750 |
DOI | 10.1016/j.envint.2023.107937 |
Cover
Abstract | [Display omitted]
•In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffic-related variables were important predictors.•MAIAC AOD and AE were not strong predictors for UFP.
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. |
---|---|
AbstractList | Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R ) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO , meridional wind, the total length of roads, PM , and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R²) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R² of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO₂, meridional wind, the total length of roads, PM₂.₅, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. [Display omitted] •In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and deep neural network.•The training and cross-validation R2 (nRMSE) were 0.99 (6.5%) and 0.78 (31.0%), respectively.•Surface pressure and traffic-related variables were important predictors.•MAIAC AOD and AE were not strong predictors for UFP. Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008–2010 and 2017–2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies. |
ArticleNumber | 107937 |
Author | Jung, Chau-Ren Hsiao, Ta-Chih Chen, Wei-Ting Young, Li-Hao |
Author_xml | – sequence: 1 givenname: Chau-Ren orcidid: 0000-0003-0673-9968 surname: Jung fullname: Jung, Chau-Ren email: crjung@mail.cmu.edu.tw organization: Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan – sequence: 2 givenname: Wei-Ting orcidid: 0000-0002-9292-0933 surname: Chen fullname: Chen, Wei-Ting organization: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Li-Hao orcidid: 0000-0002-3328-8181 surname: Young fullname: Young, Li-Hao organization: Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan – sequence: 4 givenname: Ta-Chih orcidid: 0000-0003-4103-6272 surname: Hsiao fullname: Hsiao, Ta-Chih organization: Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan |
BackLink | https://cir.nii.ac.jp/crid/1871709542859421056$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37088007$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQtVARTQP_ACEfOHBJ8OfaywGpqvioVIlLOVte7zhxtGsHe9Oqd344TjflwAG42PLMe288M-8CncUUAaHXlKwpoc373RriXYjTmhHGa0i1XD1DC6oVXzVKkjO0qDCyEpSRc3RRyo4QwoSWL9A5V0RrQtQC_bzE24cuhx6PqYcB-5QxlCmMdgpxg6ct4HgYO8jYpeggTrkmUsTJ48NQHz5EwHubp-AGKLizBXpc86N122NqAJvjUckOm5TDtB0LDhHPSgO-teHexpfoubdDgVene4m-f_50e_V1dfPty_XV5c3KNYRNKwZac9CS6NZx4WnvNWNSQkuZFranSrReN6Rj1Lu-49ZZqpTjwBtoOKeSL9H1rNsnuzP7XLvMDybZYB4DKW_MqRPDOgDfOQmstaJvhGaCWE65J975RvVV692stc_px6GOzIyhOBgGGyEdimGaC8ZZo8R_QImUtNGVskRvTtBDN0L_-49PC6uADzPA5VRKBm9cmB5XUucZBkOJObrD7MzsDnN0h5ndUcniD_KT_j9ob2daDKGWO57VZVSRVgqmZSsYJbKpsI8zDOoK7wJkU1yAapo-ZHBTnXH4e51f50fg1Q |
CitedBy_id | crossref_primary_10_1016_j_scs_2024_105572 crossref_primary_10_1016_j_aeaoa_2023_100221 crossref_primary_10_1016_j_jhazmat_2024_135341 crossref_primary_10_1016_j_jhazmat_2025_137599 crossref_primary_10_3390_computation11120249 crossref_primary_10_1016_j_enbuild_2024_114072 crossref_primary_10_1016_j_envint_2024_109182 crossref_primary_10_1016_j_atmosenv_2024_120587 |
Cites_doi | 10.1016/j.envint.2019.05.021 10.1016/j.commatsci.2018.07.052 10.1016/j.atmosenv.2014.07.049 10.5194/acp-11-10791-2011 10.1016/j.rse.2017.07.023 10.1016/j.scitotenv.2012.02.063 10.3390/rs13183657 10.1080/10473289.2002.10470842 10.1016/S1352-2310(03)00510-7 10.37796/2211-8039.1031 10.5194/acp-15-4983-2015 10.1002/jgrd.50707 10.1016/j.atmosenv.2013.03.043 10.1016/j.envres.2021.111135 10.1007/s11356-017-9363-0 10.1023/A:1010933404324 10.3155/1047-3289.58.11.1449 10.1016/S1352-2310(00)00418-0 10.1016/j.envres.2015.12.016 10.1007/978-1-4614-7138-7 10.18637/jss.v077.i01 10.1021/es1023042 10.3390/atmos7080096 10.1016/j.scitotenv.2019.134570 10.1029/2005JD006328 10.1080/10473289.2006.10464485 10.1289/ehp.0901623 10.1016/S0021-8502(97)10037-4 10.1080/02786826.2011.581256 10.1016/j.atmosenv.2012.01.058 10.1016/j.envpol.2017.11.016 10.1021/acs.est.6b03476 10.1002/0471497398.mm421 10.1007/s11270-015-2726-6 10.1175/JAMC-D-22-0102.1 10.1002/2016JD026021 10.1016/j.atmosenv.2005.10.061 10.1021/es505791g 10.1016/j.envint.2021.106569 10.1038/s12276-020-0405-1 10.1021/acs.est.6b05920 10.1021/acs.est.1c03237 10.4209/aaqr.2018.09.0348 10.1016/j.atmosenv.2015.12.050 10.1021/es401489h 10.5194/acp-20-8533-2020 10.2151/jmsj.2022-028 10.1016/j.atmosenv.2011.08.066 10.1016/j.atmosenv.2008.07.050 10.1021/es304495s 10.1016/j.atmosenv.2020.117418 10.1029/2021GL093886 10.1016/j.envpol.2017.11.093 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.envint.2023.107937 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
ExternalDocumentID | oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d 37088007 10_1016_j_envint_2023_107937 S0160412023002106 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAHBH AATTM AAXKI AAYWO ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AEGFY AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c602t-2e883e85089c34f1df82255e91284ad1749f860b21fcdb3aca177c3e36e633153 |
IEDL.DBID | DOA |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:22:47 EDT 2025 Sun Sep 28 02:07:16 EDT 2025 Sat Sep 27 23:05:58 EDT 2025 Thu Apr 03 07:01:23 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Tue Jul 01 02:38:19 EDT 2025 Thu Jun 26 22:29:14 EDT 2025 Fri Feb 23 02:37:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature importance Ultrafine particles Meteorological variables Estimation model Satellite-based measurement Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-2e883e85089c34f1df82255e91284ad1749f860b21fcdb3aca177c3e36e633153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0673-9968 0000-0002-3328-8181 0000-0003-4103-6272 0000-0002-9292-0933 |
OpenAccessLink | https://doaj.org/article/2beefbc5e29a4d648240a313f0fcf67d |
PMID | 37088007 |
PQID | 2805516828 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d proquest_miscellaneous_2834232674 proquest_miscellaneous_2805516828 pubmed_primary_37088007 crossref_citationtrail_10_1016_j_envint_2023_107937 crossref_primary_10_1016_j_envint_2023_107937 nii_cinii_1871709542859421056 elsevier_sciencedirect_doi_10_1016_j_envint_2023_107937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-01 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment International |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Hoek, Beelen, Kos, Dijkema, Zee, Fischer, Brunekreef (b0085) 2011; 45 Charron, Harrison (b0030) 2003; 37 Hsu, Cheng (b0100) 2019; 19 Meyer, H., 2023. CAST: Caret Applications for Spatio-Temporal models [WWW Document]. Sullivan, Crippa, Hallar, Clarisse, Whitburn, VanDamme, Leaitch, Walker, Khlystov, Pryor (b0265) 2016; 12 Montagne, Hoek, Klompmaker, Wang, Meliefste, Brunekreef (b0205) 2015; 49 (accessed 3.27.23). Abraham, A., 2005. Artificial neural networks. Handb. Meas. Syst. Des. 10.1002/0471497398.MM421. TEPA, 2022. Historical air pollution data download [WWW Document]. Taiwan Environ. Prot. Adm. Hussein, Karppinen, Kukkonen, Härkönen, Aalto, Hämeri, Kerminen, Kulmala (b0105) 2006; 40 Kloog, Koutrakis, Coull, Lee, Schwartz (b0145) 2011; 45 Zhang, T., Zhu, Z., Gong, W., Xiang, H., Li, Y., Cui, Z., 2016. Characteristics of ultrafine particles and their relationships with meteorological factors and trace gases in Wuhan, Central China. Atmos. 7, 96 7, 96. 10.3390/ATMOS7080096. HEI Review Panel (b0075) 2013 Nordio, Kloog, Coull, Chudnovsky, Grillo, Bertazzi, Baccarelli, Schwartz (b0215) 2013; 74 (accessed 7.6.22). Sundström, Nikandrova, Atlaskina, Nieminen, Vakkari, Laakso, Beukes, Arola, VanZyl, Josipovic, Venter, Jaars, Pienaar, Piketh, Wiedensohler, Chiloane, DeLeeuw, Kulmala (b0275) 2015; 15 Liu, Sun, Liu, Liang, Wang, Wang, Shi (b0185) 2017; 24 Hamidieh (b0070) 2018; 154 Jung, Nishihama, Nakayama, Tamura, Isobe, Michikawa, Iwai-Shimada, Kobayashi, Sekiyama, Taniguchi, Yamazaki (b0125) 2021; 197 Chen, T., He, T., 2022. xgboost: eXtreme Gradient Boosting [WWW Document]. Zhu, Hinds, Kim, Sioutas (b0335) 2002; 52 Kerckhoffs, Hoek, Messier, Brunekreef, Meliefste, Klompmaker, Vermeulen (b0130) 2016; 50 Kittelson (b0140) 1998; 29 R Core Team (b0225) 2022 Hsieh, Chen, Chen, Wu (b0090) 2022; 100 (accessed 6.15.22). Pope, Dockery (b0220) 2006; 56 Saha, Hankey, Marshall, Robinson, Presto (b0240) 2021; 55 Schuster, Dubovik, Holben (b0250) 2006; 111 Breiman (b0025) 2001; 45 Hsu, Chen, Wu, Hsieh (b0095) 2023; 62 Xiao, Wang, Chang, Meng, Geng, Lyapustin, Liu (b0310) 2017; 199 Jung, Hwang, Chen (b0120) 2018; 237 Liaw, Wiener (b0180) 2002; 2 vanDonkelaar, Martin, Brauer, Kahn, Levy, Verduzco, Villeneuve (b0285) 2010; 118 James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to Statistical Learning with Application in R, Current medicinal chemistry. Springer Nature, Switzerland AG. 10.1007/978-1-4614-7138-7. Kumar, Chu, Foster, Peters, Willis (b0160) 2011; 45 Gani, Bhandari, Patel, Seraj, Soni, Arub, Habib, Hildebrandt Ruiz, Apte (b0060) 2020; 20 Shi, Evans, Khan, Harrison (b0255) 2001; 35 Lai, Lin (b0170) 2020; 227 Kulmala, Arola, Nieminen, Riuttanen, Sogacheva, DeLeeuw, Kerminen, Lehtinen (b0155) 2011; 11 LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Krajevic, T., Nykodym, T., Aboyoun, P., Kurka, M., Malohlava, M., Rehak, L., Eckstrand, E., Hill, B., Vidrio, S., Jadhawani, S., Wang, A., Peck, R., Wong, W., Gorecki, J., Dowle, M., Tang, Y., DiPerna, L., Fryda, T., Maurerova, V., H2O.ai, 2022. R interface for the “H2O” Scalable Machine Learning Platform [WWW Document]. Stanier, Khlystov, Pandis (b0260) 2010 Wang, Zhu, Salinas, Ramirez, Karnae, John (b0295) 2008; 58 (accessed 8.24.20). Allahyari, Moshtagh (b0015) 2021; 11 Morawska, Ristovski, Jayaratne, Keogh, Ling (b0210) 2008; 42 Saraswat, Apte, Kandlikar, Brauer, Henderson, Marshall (b0245) 2013; 47 Rivera, Basagaña, Aguilera, Agis, Bouso, Foraster, Medina-Ramón, Pey, Künzli, Hoek (b0235) 2012; 54 Weichenthal, Ryswyk, Goldstein, Bagg, Shekkarizfard, Hatzopoulou (b0300) 2016; 146 Abernethy, Allen, McKendry, Brauer (b0005) 2013; 47 Kerckhoffs, Hoek, Gehring, Vermeulen (b0135) 2021; 154 Crippa, Spracklen, Pryor (b0045) 2013; 118 Kuhn, M., 2019. The caret Package [WWW Document]. Wright, Ziegler (b0305) 2017; 77 Gerling, Löschau, Wiedensohler, Weber (b0065) 2020; 703 VanNunen, Vermeulen, Tsai, Probst-Hensch, Ineichen, Davey, Imboden, Ducret-Stich, Naccarati, Raffaele, Ranzi, Ivaldi, Galassi, Nieuwenhuijsen, Curto, Donaire-Gonzalez, Cirach, Chatzi, Kampouri, Vlaanderen, Meliefste, Buijtenhuijs, Brunekreef, Morley, Vineis, Gulliver, Hoek (b0290) 2017; 51 Bhargava, Tamrakar, Aglawe, Lad, Srivastava, Mishra, Tiwari, Chaudhury, Goryacheva, Mishra (b0020) 2018; 234 deJesus, Rahman, Mazaheri, Thompson, Knibbs, Jeong, Evans, Nei, Ding, Qiao, Li, Portin, Niemi, Timonen, Luoma, Petäjä, Kulmala, Kowalski, Peters, Cyrys, Ferrero, Manigrasso, Avino, Buonano, Reche, Querol, Beddows, Harrison, Sowlat, Sioutas, Morawska (b0055) 2019; 129 Heinzerling, Hsu, Yip (b0080) 2016; 227 Ragettli, Ducret-Stich, Foraster, Morelli, Aguilera, Basagaña, Corradi, Ineichen, Tsai, Probst-Hensch, Rivera, Slama, Künzli, Phuleria (b0230) 2014; 96 Molnar, C., 2019. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. [WWW Document]. Zhao, S.P., Yu, Y., Yin, D.Y., Qin, D.H., 2021. Contrasting response of ultrafine particle number and PM2.5 mass concentrations to clean air action in China. Geophys. Res. Lett. 48, e2021GL09388. 10.1029/2021GL093886. Crippa, Castruccio, Pryor (b0050) 2017; 122 Jung, Chen, Nakayama (b0115) 2021; 13 Young, Wang, Hsu, Lin, Liou, Lai, Lin, Chang, Chiang, Cheng (b0320) 2012; 425 Young, Hsu, Hsiao, Lin, Tsay, Lin, Lin, Jung (b0315) 2022; 856 Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 523(52), 318–328. 10.1038/s12276-020-0405-1. Sullivan, Pryor (b0270) 2016; 127 (accessed 7.15.22). Chen, Guestrin (b0040) 2016 Molnar, C., Schratz, P., 2022. Interpretable Machine Learning [WWW Document]. Shi (10.1016/j.envint.2023.107937_b0255) 2001; 35 Young (10.1016/j.envint.2023.107937_b0315) 2022; 856 Hamidieh (10.1016/j.envint.2023.107937_b0070) 2018; 154 10.1016/j.envint.2023.107937_b0010 10.1016/j.envint.2023.107937_b0175 Crippa (10.1016/j.envint.2023.107937_b0045) 2013; 118 10.1016/j.envint.2023.107937_b0330 Kulmala (10.1016/j.envint.2023.107937_b0155) 2011; 11 Saha (10.1016/j.envint.2023.107937_b0240) 2021; 55 Sullivan (10.1016/j.envint.2023.107937_b0265) 2016; 12 Jung (10.1016/j.envint.2023.107937_b0115) 2021; 13 Lai (10.1016/j.envint.2023.107937_b0170) 2020; 227 Xiao (10.1016/j.envint.2023.107937_b0310) 2017; 199 Heinzerling (10.1016/j.envint.2023.107937_b0080) 2016; 227 Pope (10.1016/j.envint.2023.107937_b0220) 2006; 56 Rivera (10.1016/j.envint.2023.107937_b0235) 2012; 54 R Core Team (10.1016/j.envint.2023.107937_b0225) 2022 Morawska (10.1016/j.envint.2023.107937_b0210) 2008; 42 Wright (10.1016/j.envint.2023.107937_b0305) 2017; 77 Hsu (10.1016/j.envint.2023.107937_b0095) 2023; 62 Stanier (10.1016/j.envint.2023.107937_b0260) 2010 Kittelson (10.1016/j.envint.2023.107937_b0140) 1998; 29 Sullivan (10.1016/j.envint.2023.107937_b0270) 2016; 127 Liu (10.1016/j.envint.2023.107937_b0185) 2017; 24 Sundström (10.1016/j.envint.2023.107937_b0275) 2015; 15 Gani (10.1016/j.envint.2023.107937_b0060) 2020; 20 Bhargava (10.1016/j.envint.2023.107937_b0020) 2018; 234 Breiman (10.1016/j.envint.2023.107937_b0025) 2001; 45 deJesus (10.1016/j.envint.2023.107937_b0055) 2019; 129 Allahyari (10.1016/j.envint.2023.107937_b0015) 2021; 11 Jung (10.1016/j.envint.2023.107937_b0120) 2018; 237 10.1016/j.envint.2023.107937_b0190 10.1016/j.envint.2023.107937_b0150 Gerling (10.1016/j.envint.2023.107937_b0065) 2020; 703 Kloog (10.1016/j.envint.2023.107937_b0145) 2011; 45 10.1016/j.envint.2023.107937_b0195 Jung (10.1016/j.envint.2023.107937_b0125) 2021; 197 10.1016/j.envint.2023.107937_b0110 10.1016/j.envint.2023.107937_b0035 HEI Review Panel (10.1016/j.envint.2023.107937_b0075) 2013 vanDonkelaar (10.1016/j.envint.2023.107937_b0285) 2010; 118 Ragettli (10.1016/j.envint.2023.107937_b0230) 2014; 96 Weichenthal (10.1016/j.envint.2023.107937_b0300) 2016; 146 Crippa (10.1016/j.envint.2023.107937_b0050) 2017; 122 Hsieh (10.1016/j.envint.2023.107937_b0090) 2022; 100 Hsu (10.1016/j.envint.2023.107937_b0100) 2019; 19 Liaw (10.1016/j.envint.2023.107937_b0180) 2002; 2 Kerckhoffs (10.1016/j.envint.2023.107937_b0135) 2021; 154 Kumar (10.1016/j.envint.2023.107937_b0160) 2011; 45 10.1016/j.envint.2023.107937_b0280 Zhu (10.1016/j.envint.2023.107937_b0335) 2002; 52 10.1016/j.envint.2023.107937_b0165 VanNunen (10.1016/j.envint.2023.107937_b0290) 2017; 51 Abernethy (10.1016/j.envint.2023.107937_b0005) 2013; 47 10.1016/j.envint.2023.107937_b0200 Montagne (10.1016/j.envint.2023.107937_b0205) 2015; 49 10.1016/j.envint.2023.107937_b0325 Nordio (10.1016/j.envint.2023.107937_b0215) 2013; 74 Hussein (10.1016/j.envint.2023.107937_b0105) 2006; 40 Wang (10.1016/j.envint.2023.107937_b0295) 2008; 58 Saraswat (10.1016/j.envint.2023.107937_b0245) 2013; 47 Chen (10.1016/j.envint.2023.107937_b0040) 2016 Charron (10.1016/j.envint.2023.107937_b0030) 2003; 37 Hoek (10.1016/j.envint.2023.107937_b0085) 2011; 45 Young (10.1016/j.envint.2023.107937_b0320) 2012; 425 Kerckhoffs (10.1016/j.envint.2023.107937_b0130) 2016; 50 Schuster (10.1016/j.envint.2023.107937_b0250) 2006; 111 |
References_xml | – volume: 56 start-page: 709 year: 2006 end-page: 742 ident: b0220 article-title: Health effects of fine particulate air pollution: Lines that connect publication-title: J. Air Waste Manag. Assoc. – reference: TEPA, 2022. Historical air pollution data download [WWW Document]. Taiwan Environ. Prot. Adm. – reference: Chen, T., He, T., 2022. xgboost: eXtreme Gradient Boosting [WWW Document]. – volume: 154 start-page: 346 year: 2018 end-page: 354 ident: b0070 article-title: A data-driven statistical model for predicting the critical temperature of a superconductor publication-title: Comput. Mater. Sci. – reference: Meyer, H., 2023. CAST: Caret Applications for Spatio-Temporal models [WWW Document]. – volume: 52 start-page: 1032 year: 2002 end-page: 1042 ident: b0335 article-title: Concentration and size distribution of ultrafine particles near a major highway publication-title: J. Air Waste Manage. Assoc. – reference: (accessed 6.15.22). – reference: (accessed 8.24.20). – volume: 15 start-page: 4983 year: 2015 end-page: 4996 ident: b0275 article-title: Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa publication-title: Atmos. Chem. Phys – volume: 11 start-page: 26 year: 2021 end-page: 33 ident: b0015 article-title: Predicting mental health of prisoners by artificial neural network publication-title: BioMedicine – volume: 29 start-page: 575 year: 1998 end-page: 588 ident: b0140 article-title: Engines and nanoparticles: a review publication-title: J. Aerosol Sci. – volume: 49 start-page: 8712 year: 2015 end-page: 8720 ident: b0205 article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation publication-title: Environ. Sci. Technol. – volume: 96 start-page: 275 year: 2014 end-page: 283 ident: b0230 article-title: Spatio-temporal variation of urban ultrafine particle number concentrations publication-title: Atmos. Environ. – reference: Zhao, S.P., Yu, Y., Yin, D.Y., Qin, D.H., 2021. Contrasting response of ultrafine particle number and PM2.5 mass concentrations to clean air action in China. Geophys. Res. Lett. 48, e2021GL09388. 10.1029/2021GL093886. – volume: 58 start-page: 1449 year: 2008 end-page: 1457 ident: b0295 article-title: Roadside measurements of ultrafine particles at a busy urban intersection publication-title: J. Air Waste Manage. Assoc. – reference: (accessed 7.6.22). – volume: 47 start-page: 5217 year: 2013 end-page: 5225 ident: b0005 article-title: A land use regression model for ultrafine particles in Vancouver, Canada publication-title: Environ. Sci. Technol. – volume: 47 start-page: 12903 year: 2013 end-page: 12911 ident: b0245 article-title: Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi publication-title: India. Environ. Sci. Technol. – reference: Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 523(52), 318–328. 10.1038/s12276-020-0405-1. – volume: 237 start-page: 1000 year: 2018 end-page: 1010 ident: b0120 article-title: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 publication-title: Environ. Pollut. – volume: 45 start-page: 6267 year: 2011 end-page: 6275 ident: b0145 article-title: Assessing temporally and spatially resolved PM2.5exposures for epidemiological studies using satellite aerosol optical depth measurements publication-title: Atmos. Environ. – volume: 118 start-page: 9968 year: 2013 end-page: 9981 ident: b0045 article-title: Satellite-derived estimates of ultrafine particle concentrations over eastern North America publication-title: J. Geophys. Res. Atmos. – volume: 425 start-page: 135 year: 2012 end-page: 145 ident: b0320 article-title: Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district publication-title: Sci. Total Environ. – volume: 20 start-page: 8533 year: 2020 end-page: 8549 ident: b0060 article-title: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study publication-title: Atmos. Chem. Phys – volume: 40 start-page: 1427 year: 2006 end-page: 1440 ident: b0105 article-title: Meteorological dependence of size-fractionated number concentrations of urban aerosol particles publication-title: Atmos. Environ. – volume: 55 start-page: 10320 year: 2021 end-page: 10331 ident: b0240 article-title: High-spatial-resolution estimates of ultrafine particle concentrations across the continental United States publication-title: Environ. Sci. Technol. – reference: (accessed 7.15.22). – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0180 article-title: Classification and regression by randomForest publication-title: R News – volume: 146 start-page: 65 year: 2016 end-page: 72 ident: b0300 article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach publication-title: Environ. Res. – volume: 11 start-page: 10791 year: 2011 end-page: 10801 ident: b0155 article-title: The first estimates of global nucleation mode aerosol concentrations based on satellite measurements publication-title: Atmos. Chem. Phys – volume: 42 start-page: 8113 year: 2008 end-page: 8138 ident: b0210 article-title: Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure publication-title: Atmos. Environ. – volume: 54 start-page: 657 year: 2012 end-page: 666 ident: b0235 article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model publication-title: Atmos. Environ. – reference: James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to Statistical Learning with Application in R, Current medicinal chemistry. Springer Nature, Switzerland AG. 10.1007/978-1-4614-7138-7. – volume: 35 start-page: 1193 year: 2001 end-page: 1202 ident: b0255 article-title: Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere publication-title: Atmos. Environ. – volume: 51 start-page: 3336 year: 2017 end-page: 3345 ident: b0290 article-title: Land use regression models for ultrafine particles in six European areas publication-title: Environ. Sci. Technol. – volume: 50 start-page: 12894 year: 2016 end-page: 12902 ident: b0130 article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model publication-title: Environ. Sci. Technol. – volume: 703 year: 2020 ident: b0065 article-title: Statistical modelling of roadside and urban background ultrafine and accumulation mode particle number concentrations using generalized additive models publication-title: Sci. Total Environ. – reference: (accessed 3.27.23). – year: 2022 ident: b0225 article-title: R: A language and environment for statistical computing. [WWW Document]. R Found publication-title: Stat. Comput. – volume: 13 year: 2021 ident: b0115 article-title: A national-scale 1-km resolution PM2.5 estimation model over japan using MAIAC AOD and a two-stage random forest model publication-title: Remote Sens. – volume: 19 start-page: 1139 year: 2019 end-page: 1151 ident: b0100 article-title: Synoptic weather patterns and associated air pollution in Taiwan publication-title: Aerosol Air Qual. Res. – year: 2010 ident: b0260 article-title: Aerosol science and technology nucleation events during the pittsburgh air quality study: description and relation to key meteorological publication-title: Gas Phase, and Aerosol Parameters Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. – reference: Molnar, C., 2019. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. [WWW Document]. – reference: Abraham, A., 2005. Artificial neural networks. Handb. Meas. Syst. Des. 10.1002/0471497398.MM421. – volume: 122 start-page: 1828 year: 2017 end-page: 1837 ident: b0050 article-title: Forecasting ultrafine particle concentrations from satellite and in situ observations publication-title: J. Geophys. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0025 article-title: Random Forests publication-title: Mach. Learn. – start-page: 785 year: 2016 end-page: 794 ident: b0040 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – reference: Kuhn, M., 2019. The caret Package [WWW Document]. – year: 2013 ident: b0075 article-title: Understanding the Health Effects of Ambient Ultrafine Particles – volume: 856 year: 2022 ident: b0315 article-title: Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan publication-title: Sci. Total Environ. – volume: 129 start-page: 118 year: 2019 end-page: 135 ident: b0055 article-title: Ultrafine particles and PM2.5 in the air of cities around the world: are they representative of each other? publication-title: Environ. Int. – volume: 62 start-page: 427 year: 2023 end-page: 439 ident: b0095 article-title: The observation-based index to investigate the role of lee vortex in enhancing pollution over Northern Taiwan publication-title: J. Appl. Meteorol. Clim. – volume: 37 start-page: 4109 year: 2003 end-page: 4119 ident: b0030 article-title: Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere publication-title: Atmos. Environ. – volume: 77 start-page: 1 year: 2017 end-page: 17 ident: b0305 article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. – volume: 154 year: 2021 ident: b0135 article-title: Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring publication-title: Environ. Int. – volume: 197 year: 2021 ident: b0125 article-title: Indoor air quality of 5,000 households and its determinants. Part B: volatile organic compounds and inorganic gaseous pollutants in the Japan Environment and Children’s study publication-title: Environ. Res. – reference: Molnar, C., Schratz, P., 2022. Interpretable Machine Learning [WWW Document]. – reference: LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Krajevic, T., Nykodym, T., Aboyoun, P., Kurka, M., Malohlava, M., Rehak, L., Eckstrand, E., Hill, B., Vidrio, S., Jadhawani, S., Wang, A., Peck, R., Wong, W., Gorecki, J., Dowle, M., Tang, Y., DiPerna, L., Fryda, T., Maurerova, V., H2O.ai, 2022. R interface for the “H2O” Scalable Machine Learning Platform [WWW Document]. – volume: 111 year: 2006 ident: b0250 article-title: Angstrom exponent and bimodal aerosol size distributions publication-title: J. Geophys. Res. Atmos. – reference: Zhang, T., Zhu, Z., Gong, W., Xiang, H., Li, Y., Cui, Z., 2016. Characteristics of ultrafine particles and their relationships with meteorological factors and trace gases in Wuhan, Central China. Atmos. 7, 96 7, 96. 10.3390/ATMOS7080096. – volume: 227 year: 2020 ident: b0170 article-title: Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography publication-title: Atmos. Environ. – volume: 127 start-page: 316 year: 2016 end-page: 325 ident: b0270 article-title: Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements publication-title: Atmos. Environ. – volume: 24 start-page: 17976 year: 2017 end-page: 17984 ident: b0185 article-title: Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies publication-title: Environ. Sci. Pollut. Res. – volume: 118 start-page: 847 year: 2010 end-page: 855 ident: b0285 article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application publication-title: Environ. Health Perspect. – volume: 227 start-page: 32 year: 2016 ident: b0080 article-title: Respiratory health effects of ultrafine particles in children: a literature review publication-title: Water. Air. Soil Pollut. – volume: 45 start-page: 622 year: 2011 end-page: 628 ident: b0085 article-title: Land use regression model for ultrafine particles in Amsterdam publication-title: Environ. Sci. Technol. – volume: 12 start-page: 217 year: 2016 end-page: 235 ident: b0265 article-title: Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation publication-title: J. Geophys. Res. – volume: 234 start-page: 406 year: 2018 end-page: 419 ident: b0020 article-title: Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes publication-title: Environ. Pollut. – volume: 74 start-page: 227 year: 2013 end-page: 236 ident: b0215 article-title: Estimating spatio-temporal resolved PM10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy publication-title: Italy. Atmos. Environ. – volume: 100 start-page: 555 year: 2022 end-page: 573 ident: b0090 article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan publication-title: J. Meteorol. Soc. Japan – volume: 45 start-page: 1090 year: 2011 end-page: 1108 ident: b0160 article-title: Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH publication-title: Aerosol Sci. Technol. – volume: 199 start-page: 437 year: 2017 end-page: 446 ident: b0310 article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China publication-title: Remote Sens. Environ. – volume: 129 start-page: 118 year: 2019 ident: 10.1016/j.envint.2023.107937_b0055 article-title: Ultrafine particles and PM2.5 in the air of cities around the world: are they representative of each other? publication-title: Environ. Int. doi: 10.1016/j.envint.2019.05.021 – volume: 154 start-page: 346 year: 2018 ident: 10.1016/j.envint.2023.107937_b0070 article-title: A data-driven statistical model for predicting the critical temperature of a superconductor publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.07.052 – volume: 96 start-page: 275 year: 2014 ident: 10.1016/j.envint.2023.107937_b0230 article-title: Spatio-temporal variation of urban ultrafine particle number concentrations publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.07.049 – volume: 11 start-page: 10791 year: 2011 ident: 10.1016/j.envint.2023.107937_b0155 article-title: The first estimates of global nucleation mode aerosol concentrations based on satellite measurements publication-title: Atmos. Chem. Phys doi: 10.5194/acp-11-10791-2011 – volume: 199 start-page: 437 year: 2017 ident: 10.1016/j.envint.2023.107937_b0310 article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.023 – volume: 425 start-page: 135 year: 2012 ident: 10.1016/j.envint.2023.107937_b0320 article-title: Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.02.063 – volume: 13 year: 2021 ident: 10.1016/j.envint.2023.107937_b0115 article-title: A national-scale 1-km resolution PM2.5 estimation model over japan using MAIAC AOD and a two-stage random forest model publication-title: Remote Sens. doi: 10.3390/rs13183657 – volume: 52 start-page: 1032 year: 2002 ident: 10.1016/j.envint.2023.107937_b0335 article-title: Concentration and size distribution of ultrafine particles near a major highway publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2002.10470842 – volume: 37 start-page: 4109 year: 2003 ident: 10.1016/j.envint.2023.107937_b0030 article-title: Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(03)00510-7 – year: 2013 ident: 10.1016/j.envint.2023.107937_b0075 – volume: 11 start-page: 26 year: 2021 ident: 10.1016/j.envint.2023.107937_b0015 article-title: Predicting mental health of prisoners by artificial neural network publication-title: BioMedicine doi: 10.37796/2211-8039.1031 – volume: 15 start-page: 4983 year: 2015 ident: 10.1016/j.envint.2023.107937_b0275 article-title: Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa publication-title: Atmos. Chem. Phys doi: 10.5194/acp-15-4983-2015 – volume: 118 start-page: 9968 year: 2013 ident: 10.1016/j.envint.2023.107937_b0045 article-title: Satellite-derived estimates of ultrafine particle concentrations over eastern North America publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50707 – volume: 74 start-page: 227 year: 2013 ident: 10.1016/j.envint.2023.107937_b0215 article-title: Estimating spatio-temporal resolved PM10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy publication-title: Italy. Atmos. Environ. doi: 10.1016/j.atmosenv.2013.03.043 – volume: 197 year: 2021 ident: 10.1016/j.envint.2023.107937_b0125 article-title: Indoor air quality of 5,000 households and its determinants. Part B: volatile organic compounds and inorganic gaseous pollutants in the Japan Environment and Children’s study publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111135 – volume: 24 start-page: 17976 year: 2017 ident: 10.1016/j.envint.2023.107937_b0185 article-title: Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9363-0 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.envint.2023.107937_b0025 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 58 start-page: 1449 year: 2008 ident: 10.1016/j.envint.2023.107937_b0295 article-title: Roadside measurements of ultrafine particles at a busy urban intersection publication-title: J. Air Waste Manage. Assoc. doi: 10.3155/1047-3289.58.11.1449 – volume: 35 start-page: 1193 year: 2001 ident: 10.1016/j.envint.2023.107937_b0255 article-title: Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(00)00418-0 – volume: 146 start-page: 65 year: 2016 ident: 10.1016/j.envint.2023.107937_b0300 article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach publication-title: Environ. Res. doi: 10.1016/j.envres.2015.12.016 – ident: 10.1016/j.envint.2023.107937_b0110 doi: 10.1007/978-1-4614-7138-7 – volume: 77 start-page: 1 year: 2017 ident: 10.1016/j.envint.2023.107937_b0305 article-title: ranger: a fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. doi: 10.18637/jss.v077.i01 – volume: 45 start-page: 622 year: 2011 ident: 10.1016/j.envint.2023.107937_b0085 article-title: Land use regression model for ultrafine particles in Amsterdam publication-title: Environ. Sci. Technol. doi: 10.1021/es1023042 – ident: 10.1016/j.envint.2023.107937_b0325 doi: 10.3390/atmos7080096 – year: 2022 ident: 10.1016/j.envint.2023.107937_b0225 article-title: R: A language and environment for statistical computing. [WWW Document]. R Found publication-title: Stat. Comput. – volume: 703 year: 2020 ident: 10.1016/j.envint.2023.107937_b0065 article-title: Statistical modelling of roadside and urban background ultrafine and accumulation mode particle number concentrations using generalized additive models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134570 – ident: 10.1016/j.envint.2023.107937_b0190 – year: 2010 ident: 10.1016/j.envint.2023.107937_b0260 article-title: Aerosol science and technology nucleation events during the pittsburgh air quality study: description and relation to key meteorological publication-title: Gas Phase, and Aerosol Parameters Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. – volume: 111 year: 2006 ident: 10.1016/j.envint.2023.107937_b0250 article-title: Angstrom exponent and bimodal aerosol size distributions publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD006328 – volume: 56 start-page: 709 year: 2006 ident: 10.1016/j.envint.2023.107937_b0220 article-title: Health effects of fine particulate air pollution: Lines that connect publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.2006.10464485 – volume: 118 start-page: 847 year: 2010 ident: 10.1016/j.envint.2023.107937_b0285 article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0901623 – volume: 29 start-page: 575 year: 1998 ident: 10.1016/j.envint.2023.107937_b0140 article-title: Engines and nanoparticles: a review publication-title: J. Aerosol Sci. doi: 10.1016/S0021-8502(97)10037-4 – volume: 45 start-page: 1090 year: 2011 ident: 10.1016/j.envint.2023.107937_b0160 article-title: Satellite remote sensing for developing time and space resolved estimates of ambient particulate in Cleveland, OH publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2011.581256 – volume: 54 start-page: 657 year: 2012 ident: 10.1016/j.envint.2023.107937_b0235 article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.01.058 – volume: 237 start-page: 1000 year: 2018 ident: 10.1016/j.envint.2023.107937_b0120 article-title: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.016 – volume: 50 start-page: 12894 year: 2016 ident: 10.1016/j.envint.2023.107937_b0130 article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03476 – ident: 10.1016/j.envint.2023.107937_b0010 doi: 10.1002/0471497398.mm421 – volume: 227 start-page: 32 year: 2016 ident: 10.1016/j.envint.2023.107937_b0080 article-title: Respiratory health effects of ultrafine particles in children: a literature review publication-title: Water. Air. Soil Pollut. doi: 10.1007/s11270-015-2726-6 – ident: 10.1016/j.envint.2023.107937_b0200 – volume: 62 start-page: 427 year: 2023 ident: 10.1016/j.envint.2023.107937_b0095 article-title: The observation-based index to investigate the role of lee vortex in enhancing pollution over Northern Taiwan publication-title: J. Appl. Meteorol. Clim. doi: 10.1175/JAMC-D-22-0102.1 – volume: 122 start-page: 1828 year: 2017 ident: 10.1016/j.envint.2023.107937_b0050 article-title: Forecasting ultrafine particle concentrations from satellite and in situ observations publication-title: J. Geophys. Res. doi: 10.1002/2016JD026021 – ident: 10.1016/j.envint.2023.107937_b0195 – volume: 40 start-page: 1427 year: 2006 ident: 10.1016/j.envint.2023.107937_b0105 article-title: Meteorological dependence of size-fractionated number concentrations of urban aerosol particles publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.10.061 – volume: 49 start-page: 8712 year: 2015 ident: 10.1016/j.envint.2023.107937_b0205 article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation publication-title: Environ. Sci. Technol. doi: 10.1021/es505791g – volume: 154 year: 2021 ident: 10.1016/j.envint.2023.107937_b0135 article-title: Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106569 – volume: 12 start-page: 217 year: 2016 ident: 10.1016/j.envint.2023.107937_b0265 article-title: Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation publication-title: J. Geophys. Res. – ident: 10.1016/j.envint.2023.107937_b0165 doi: 10.1038/s12276-020-0405-1 – volume: 51 start-page: 3336 year: 2017 ident: 10.1016/j.envint.2023.107937_b0290 article-title: Land use regression models for ultrafine particles in six European areas publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05920 – start-page: 785 year: 2016 ident: 10.1016/j.envint.2023.107937_b0040 article-title: XGBoost: A scalable tree boosting system – volume: 55 start-page: 10320 year: 2021 ident: 10.1016/j.envint.2023.107937_b0240 article-title: High-spatial-resolution estimates of ultrafine particle concentrations across the continental United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03237 – volume: 19 start-page: 1139 year: 2019 ident: 10.1016/j.envint.2023.107937_b0100 article-title: Synoptic weather patterns and associated air pollution in Taiwan publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2018.09.0348 – volume: 127 start-page: 316 year: 2016 ident: 10.1016/j.envint.2023.107937_b0270 article-title: Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.12.050 – ident: 10.1016/j.envint.2023.107937_b0035 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.envint.2023.107937_b0180 article-title: Classification and regression by randomForest publication-title: R News – volume: 47 start-page: 12903 year: 2013 ident: 10.1016/j.envint.2023.107937_b0245 article-title: Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi publication-title: India. Environ. Sci. Technol. doi: 10.1021/es401489h – ident: 10.1016/j.envint.2023.107937_b0175 – ident: 10.1016/j.envint.2023.107937_b0150 – volume: 20 start-page: 8533 year: 2020 ident: 10.1016/j.envint.2023.107937_b0060 article-title: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study publication-title: Atmos. Chem. Phys doi: 10.5194/acp-20-8533-2020 – volume: 856 year: 2022 ident: 10.1016/j.envint.2023.107937_b0315 article-title: Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan publication-title: Sci. Total Environ. – volume: 100 start-page: 555 year: 2022 ident: 10.1016/j.envint.2023.107937_b0090 article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan publication-title: J. Meteorol. Soc. Japan doi: 10.2151/jmsj.2022-028 – volume: 45 start-page: 6267 year: 2011 ident: 10.1016/j.envint.2023.107937_b0145 article-title: Assessing temporally and spatially resolved PM2.5exposures for epidemiological studies using satellite aerosol optical depth measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.08.066 – volume: 42 start-page: 8113 year: 2008 ident: 10.1016/j.envint.2023.107937_b0210 article-title: Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.07.050 – ident: 10.1016/j.envint.2023.107937_b0280 – volume: 47 start-page: 5217 year: 2013 ident: 10.1016/j.envint.2023.107937_b0005 article-title: A land use regression model for ultrafine particles in Vancouver, Canada publication-title: Environ. Sci. Technol. doi: 10.1021/es304495s – volume: 227 year: 2020 ident: 10.1016/j.envint.2023.107937_b0170 article-title: Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117418 – ident: 10.1016/j.envint.2023.107937_b0330 doi: 10.1029/2021GL093886 – volume: 234 start-page: 406 year: 2018 ident: 10.1016/j.envint.2023.107937_b0020 article-title: Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.093 |
SSID | ssj0002485 ssib017384459 ssib006543614 ssib050731219 |
Score | 2.4654813 |
Snippet | [Display omitted]
•In-situ long-term measurements of ultrafine particles (UFP) were conducted in central Taiwan.•XGBoost model outperformed random forest and... Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with... |
SourceID | doaj proquest pubmed crossref nii elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107937 |
SubjectTerms | Air Pollutants Air Pollutants - analysis Air Pollution Air Pollution - analysis cost effectiveness environment Environmental Monitoring Environmental sciences Estimation model Feature importance GE1-350 land use Machine Learning Meteorological variables Particle Size Particulate Matter Particulate Matter - analysis Satellite-based measurement satellites Taiwan temperature traffic Ultrafine particles wind |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKTyCEYKE0QJGRuIZNbMdJjqVqVSHBhVbqzXIcexu0dVb7EOqlJ344M7GzZQ9QictKcSabx4xnPicz3xDykbmKG1nYtK6cToWpBEwpyVNtDEQXW9Rm6N7w9Zs8vxRfroqrPXIy1sJgWmX0_cGnD946jkzj05wuum76HbnRRI7tv4eFC9JuI_sX2PSnu_s0D6TsCvzeWYrSY_nckOOFxWQeMyoZhyGkitsJTwOL_06UeuS77u9YdIhJZ8_Jswgm6XG43hdkz_oJefIHxeCEHJzeV7KBaJzKqwl5Gl7Y0VCH9JL8OqbXt1i-RYfmOBTALEUGDkS0fkYBJ9LQPYQarHT0kW6X9o5u5rDh4Jx0MebZUYyOLYX9N0O2pqWxPcWM6vmsX3br65sV7TyNyaH0Qnc_tX9FLs9OL07O09iiITUyY-uU2aritgKUVxsuXN46ABxFYWsMe7qF5U7tKpk1LHembbg2Oi9Lwy2XVnIO3vaA7Pve20NCnRCNkKJhvBXCImlNW9pWl1jPqCvBEsJHzSgT-cuxjcZcjYlqP1TQp0J9qqDPhKTboxaBv-MB-c-o9K0ssm8PA_1ypuIzVKyx1jWmsKzWopWiAlikec5d5oyTZZuQcjQZtWPM8FfdA6c_AguD-8PfHBazJUBggSSDAky8kAn5MNqeAj-AH3e0t_1mpViV4TdPWED_Swb5HpksRUJeB8Pd3igvId4AYHzz39f-ljzGrZAN-o7sr5cbewSIbd28H6bkbySBPDI priority: 102 providerName: Elsevier |
Title | A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan |
URI | https://dx.doi.org/10.1016/j.envint.2023.107937 https://cir.nii.ac.jp/crid/1871709542859421056 https://www.ncbi.nlm.nih.gov/pubmed/37088007 https://www.proquest.com/docview/2805516828 https://www.proquest.com/docview/2834232674 https://doaj.org/article/2beefbc5e29a4d648240a313f0fcf67d |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: AIKHN dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: ACRLP dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050731219 issn: 0160-4120 databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002485 issn: 0160-4120 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVouYAQgoXCAl0ZiWsgsR3HOS6o1QKip1bqzXIce5tq6626u0JcOPHDmYmdpT3AXrhESuJ82DP2vElm3hDyjnnFrSxdVitvMmGVgCkleWasBeviytr21Ru-ncjZmfhyXp7fKvWFMWGRHjgO3AfWOOcbWzpWG9FKocAEGV5wn3vrZdXi6gtmbHCm0hqMRF2R1TvPRMHyIWmuj-zCFLKAcZSMwyEkiLtjlHru_ju2aS903d8RaG-Jjp-QxwlC0ml89afkngsj8vAWseCIHBz9yV-DpmkCr0bkUfxMR2P20TPya0ovfmDSFu1L4lCAsBR5NxDHhjkFdEhjzRBqMb8xJJJduvR0s4AdD8-k10N0HUWb2FI4f9XHaDqailLMqVnMlzfd-uJqRbtAU0goPTXddxOek7Pjo9NPsywVZsiszNk6Y04p7hRgu9py4YvWA8woS1ejsTMtODm1VzJvWOFt23BjTVFVljsuneQc1tgDsh-Wwb0k1AvRCCkaxlshHFLVtJVrTYVZjEYJNiZ8kIy2ibUci2cs9BCedqmjPDXKU0d5jkm2veo6snbsaP8Rhb5ti5zb_QHQRJ3GUO_SxDGpBpXRCb5EWAK36nY8_hA0DPqH2wJc2AqAr0BqQQEeeSnH5O2gexpmP_7SMcEtNyvNVI5_OsFt_lcbZHlkshJj8iIq7rajvAIrAzDx1f8YgNfkAXYqhoO-Ifvrm407BMi2biZk7_3PYkLuTz9_nZ1M-rn6G3UcPuQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa27gEQQlAYFBgYideoje04yWOZNnVs6wudtDfLcewuU5dW_SG09_3h3MVOoQ8wiZdIcZw4yZ3vPid33xHylbmMG5nYKM-cjoTJBEwpySNtDHgXm-Smqd5wOZajK_H9OrneI8dtLgyGVQbb7216Y61DSz-8zf6iqvo_kBtNxFj-u1m4yH1yIBKwyR1yMDw7H423BhlZuzzF9yDCE9oMuibMC_PJagyqZByakC1ux0M1RP47jmq_rqq_w9HGLZ2-JC8CnqRDf8uvyJ6tu-TZHyyDXXJ48juZDbqG2bzqkuf-mx31qUivycOQ3txjBhdt6uNQwLMUSTgQ1NZTClCR-gIi1GCyYx0Yd-nc0c0MdhyMSRdtqB1FB1lSOH7XBGxaGipUTKmeTefLan1zt6JVTUN8KJ3o6qeu35Cr05PJ8SgKVRoiIwdsHTGbZdxmAPRyw4WLSweYI0lsjp5Pl7DiyV0mBwWLnSkLro2O09Rwy6WVnIPBPSSdel7bd4Q6IQohRcF4KYRF3poytaVOMaVRZ4L1CG8lo0ygMMdKGjPVxqrdKi9PhfJUXp49Em3PWngKj0f6f0Ohb_siAXfTMF9OVXiHihXWusIkluValFJkgIw0j7kbOONkWvZI2qqM2tFnuFT1yPBHoGHwfLiNYT2bAgoWyDMoQMsT2SNfWt1TYArw_46u7XyzUiwb4G9PWEP_qw9SPjKZih556xV3-6A8BZcDmPH9f9_7Z_JkNLm8UBdn4_MP5Cke8cGhH0lnvdzYIwBw6-JTmKC_ALusQGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+model+for+estimating+the+number+concentration+of+ultrafine+particles+based+on+machine+learning+algorithms+in+central+Taiwan&rft.jtitle=Environment+international&rft.au=Chau-Ren+Jung&rft.au=Wei-Ting+Chen&rft.au=Li-Hao+Young&rft.au=Ta-Chih+Hsiao&rft.date=2023-05-01&rft.pub=Elsevier&rft.issn=0160-4120&rft.volume=175&rft.spage=107937&rft_id=info:doi/10.1016%2Fj.envint.2023.107937&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2beefbc5e29a4d648240a313f0fcf67d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |