基于光谱空间结合的非负稀疏保持嵌入的谱聚类

为了解决高光谱遥感影像的特征融合问题,针对高光谱数据的维数高、信息量繁杂冗余、非线性而且数据量庞大特点,利用图谱理论非负稀疏保持嵌入的降维方法,提出基于光谱空间结合的非负稀疏保持嵌入的谱聚类进行样本的标记算法,有效地利用空间信息和原有光谱信息,提高分类的精度。该算法在引入非负稀疏表示的同时,利用样本的光谱与空间相关信息构建Laplacian图,嵌入投影到低维的子空间,然后再用经典的K均值聚类算法进行分类。算法能够有效保持样本的几何稀疏结构,而且光谱空间信息的结合使得图像的边界像素点得到了更好的分类。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 6; pp. 1917 - 1920
Main Author 黄小燕 付克昌 文展 周光霞
Format Journal Article
LanguageChinese
Published 成都信息工程学院控制工程学院,成都,610225%成都信息工程学院通信工程学院,成都,610225%山西省工业安装有限公司,太原,030000 2015
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.06.072

Cover

Abstract 为了解决高光谱遥感影像的特征融合问题,针对高光谱数据的维数高、信息量繁杂冗余、非线性而且数据量庞大特点,利用图谱理论非负稀疏保持嵌入的降维方法,提出基于光谱空间结合的非负稀疏保持嵌入的谱聚类进行样本的标记算法,有效地利用空间信息和原有光谱信息,提高分类的精度。该算法在引入非负稀疏表示的同时,利用样本的光谱与空间相关信息构建Laplacian图,嵌入投影到低维的子空间,然后再用经典的K均值聚类算法进行分类。算法能够有效保持样本的几何稀疏结构,而且光谱空间信息的结合使得图像的边界像素点得到了更好的分类。
AbstractList 为了解决高光谱遥感影像的特征融合问题,针对高光谱数据的维数高、信息量繁杂冗余、非线性而且数据量庞大特点,利用图谱理论非负稀疏保持嵌入的降维方法,提出基于光谱空间结合的非负稀疏保持嵌入的谱聚类进行样本的标记算法,有效地利用空间信息和原有光谱信息,提高分类的精度。该算法在引入非负稀疏表示的同时,利用样本的光谱与空间相关信息构建Laplacian图,嵌入投影到低维的子空间,然后再用经典的K均值聚类算法进行分类。算法能够有效保持样本的几何稀疏结构,而且光谱空间信息的结合使得图像的边界像素点得到了更好的分类。
TP18%TP391.41; 为了解决高光谱遥感影像的特征融合问题,针对高光谱数据的维数高、信息量繁杂冗余、非线性而且数据量庞大特点,利用图谱理论非负稀疏保持嵌入的降维方法,提出基于光谱空间结合的非负稀疏保持嵌入的谱聚类进行样本的标记算法,有效地利用空间信息和原有光谱信息,提高分类的精度.该算法在引入非负稀疏表示的同时,利用样本的光谱与空间相关信息构建Laplacian图,嵌入投影到低维的子空间,然后再用经典的K均值聚类算法进行分类.算法能够有效保持样本的几何稀疏结构,而且光谱空间信息的结合使得图像的边界像素点得到了更好的分类.
Author 黄小燕 付克昌 文展 周光霞
AuthorAffiliation 成都信息工程学院控制工程学院,成都610225 成都信息工程学院通信工程学院,成都610225 山西省工业安装有限公司,太原030000
AuthorAffiliation_xml – name: 成都信息工程学院控制工程学院,成都,610225%成都信息工程学院通信工程学院,成都,610225%山西省工业安装有限公司,太原,030000
Author_FL Fu Kechang
Zhou Guangxia
Wen Zhan
Huang Xiaoyan
Author_FL_xml – sequence: 1
  fullname: Huang Xiaoyan
– sequence: 2
  fullname: Fu Kechang
– sequence: 3
  fullname: Wen Zhan
– sequence: 4
  fullname: Zhou Guangxia
Author_xml – sequence: 1
  fullname: 黄小燕 付克昌 文展 周光霞
BookMark eNo9jz1Lw0AYx2-oYFv9EuLgkvjcXXLJTSLFNyi4dC_pXVIb9KIJItksWFAoKggKhdpJ0M1CXdrBL9OY9FuYUHF64P_8-L9UUEkFykVoE4NOOePbvt6JIqVjAKxRxk2dADZ1YDpYpITK__oqqkSRD2AQzKGMdpLRdD69T3p32ec4_ZguXibp7Cl5vE0HN4vhazYZpe_X6fPD_Hv40-8mX_2k95a_cjjrDtLxbA2teM5p5K7_3Spq7O81aoda_fjgqLZb1wQDogliSMfOe4JFJVgmwdIEjlvSli3BuJCYeNxgWEoqhISWaxea61HmWZwRQqtoa2l75SjPUe2mH1yGKg9s-pEfx7FfrIXcvkA3lqg4CVT7opPD52HnzAnjJmMGsyzDtOkvalZwiw
ClassificationCodes TP18%TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.06.072
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Spectral clustering algorithm based on hybrid of spectral and spatial information and non-negative sparse preserving embedding
DocumentTitle_FL Spectral clustering algorithm based on hybrid of spectral and spatial information and non-negative sparse preserving embedding
EndPage 1920
ExternalDocumentID jsjyyyj201506072
664677458
GrantInformation_xml – fundername: 航空科学基金资助项目
  funderid: (201210P8003)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c602-c24da8396073d07521d5091bd8dbc69cd12f9461dd3ccd0be89cd1ef36f796223
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:30:37 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords hyperspectral remote sensing image
高光谱图像
dimensionality reduction
降维
谱聚类
non-negative sparse
spectral clustering
Laplacian
非负稀疏
拉普拉斯
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c602-c24da8396073d07521d5091bd8dbc69cd12f9461dd3ccd0be89cd1ef36f796223
Notes 51-1196/TP
To solve the characteristic fusion of hyperspectral remote sensing images, i. e. , using the .dimensional reduction method of non-negative sparse preserving embedding, this paper proposed spectral clustering algorithm based on the hybrid of spectral and spatial information and non-negative sparse preserving embedding for efficiently improve the classification accuracy with the spatial information and the original spectral information. This algorithm embedded the projection into low-dimensional subspace. After that it classified with the K-means clustering algorithm. The proposed algorithm can effectively maintain the geometry sparse structure of samples and make the boundary pixels of the image have excellent classification using the hybrid of the spectral and spatial information.
non-negative sparse; dimensionality reduction; spectral clustering; hyperspectral remote sensing image; Laplacian
Huang Xiaoyan, Fu Kechang, Wen Zhan, Zhou Guangxia ( 1. a. School of Control Engineering, b. School of Communi
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201506072
chongqing_primary_664677458
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 成都信息工程学院控制工程学院,成都,610225%成都信息工程学院通信工程学院,成都,610225%山西省工业安装有限公司,太原,030000
Publisher_xml – name: 成都信息工程学院控制工程学院,成都,610225%成都信息工程学院通信工程学院,成都,610225%山西省工业安装有限公司,太原,030000
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0069413
Snippet ...
TP18%TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1917
SubjectTerms 拉普拉斯
谱聚类
降维
非负稀疏
高光谱图像
Title 基于光谱空间结合的非负稀疏保持嵌入的谱聚类
URI http://lib.cqvip.com/qk/93231X/201506/664677458.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201506072
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFB7WLYgXf4u1Kis4p5KaTDKTmZMk2yxF0NMKvS2bZNOyh22128P2ZMGCQlFBUCjUngS9WaiX9uA_0zXbo_-B702y2SClqLAM2Zc3877M2533ZZh5Q8h9TELm8jYzhJnYhgMU2WjbUhjMCmWUJGbHjHGD8-MnYuGp82iRL1Yqv0qrltb74Vy0ceq-kv_xKsjAr7hL9h88WzQKArgG_0IJHobyr3xMA05Vg_oeDRwsZYASCR9FA0l9k_oWDVzqKa2jqHKp76DE96mydXWTSokSBdUdrTNPVaCrO9g4Vpe4HgJ1BJUNbauBagF8rQMVxXZ8jteZdY-XGixgSNQEIVq3AECZFuNdL6BehjZAnNC4qmvYHEulYUPpabSemUvw0YrJRYQPT4ZmOZqVGr6EenxWw4anluMu8rUJQFWf1VcCFbGelalD31jaWtGjChGpoDxRkm0SzUd1XDdmi-w0z_GwP5lW_WMMxzfYEh8ACmyeFmtsJZSONWhirjCBqwV5lhKWTWJssfJRCIhMrsPlOTLFXCFYlUx5_rzfmHBYoHzlnIYM0wVN3hkx4b8oDdJ4CiFEnWKQ5pbtcn2kQUZHHLiZpeTIAZ7HP6hG_-As7JhrZHmlt_QMGJTe0NZL2r2lEvdqXiYX85emmpf9A66QysbyVXJpfCBJLY9P18jD4d7h8eGb4dbr0bf99OvhyceD9Oj98N2rdOflye6n0cFe-uVF-uHt8Y_dn9ubw-_bw63PcAuUR5s76f7RddJsBM36gpGfEGJEAiJ5xJy4DQxfQJyKgfsyK0b-G8YyDiOhothiiXKEFcd2FMVm2JEo6yS2SFwlgBjfINXeSq9zk9S47SaKSTeCrsdDF6RiScygkTaPwU_mNJkpuqO1miWCaRXOnCb38g5q5cPDWqu71h0MBl2W5fB02a0zW5ghF1Azm9y7Tar95-udO0B3--Hd_AfyG_Ukgxo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%89%E8%B0%B1%E7%A9%BA%E9%97%B4%E7%BB%93%E5%90%88%E7%9A%84%E9%9D%9E%E8%B4%9F%E7%A8%80%E7%96%8F%E4%BF%9D%E6%8C%81%E5%B5%8C%E5%85%A5%E7%9A%84%E8%B0%B1%E8%81%9A%E7%B1%BB&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E9%BB%84%E5%B0%8F%E7%87%95+%E4%BB%98%E5%85%8B%E6%98%8C+%E6%96%87%E5%B1%95+%E5%91%A8%E5%85%89%E9%9C%9E&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=6&rft.spage=1917&rft.epage=1920&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.06.072&rft.externalDocID=664677458
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg