一种结合次梯度的粒子群全局优化算法

为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 4; pp. 1007 - 1010
Main Author 许志良 曾德炉 张运生
Format Journal Article
LanguageChinese
Published 深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005 2015
深圳市可视媒体处理与传输重点实验室,广东深圳518172
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.04.011

Cover

Abstract 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。
AbstractList 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。
TP301.6; 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO).在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案.加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率.进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛.最后,针对标准库给出了SG-PSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好.
Author 许志良 曾德炉 张运生
AuthorAffiliation 深圳市可视媒体处理与传输重点实验室,广东深圳518172 深圳信息职业技术学院软件学院,广东深圳518172 厦门大学信息科学与技术学院,福建厦门361005
AuthorAffiliation_xml – name: 深圳市可视媒体处理与传输重点实验室,广东深圳518172;深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005
Author_FL ZENG De-lu
XU Zhi-liang
ZHANG Yun-sheng
Author_FL_xml – sequence: 1
  fullname: XU Zhi-liang
– sequence: 2
  fullname: ZENG De-lu
– sequence: 3
  fullname: ZHANG Yun-sheng
Author_xml – sequence: 1
  fullname: 许志良 曾德炉 张运生
BookMark eNo9j7tKA0EYhaeIYBJ9CbGwyfr_M5NZppTgDQI26cM4uxuz6KzuIrJdCgULhRDxgp0iauEFtREVnyaTfQ1HIlaHc_g4h1MhJZOYkJBZBI9JIedjr5tlxkMArDEh6x4FrHvAPUAskfJ_PkkqWRYDcIoSyoQN33vF3XHxeWL7h6OHq9H1s_24LS73i9eBfewX3zf24N6-9IZfF_borHg6H72dTpGJSG1m4fSfVklrabHVWKk115ZXGwvNmhZuLNABBsB5pJVgcl0Hvlas7kvnREillkxwH1UkQwkMdQARZT4odCkFLTSrkrlx7Z4ykTKddpzspsYNtuMszvM8_n0I3P1z6MwY1RuJ6ex0HbyddrdUmreF4EgRKWU_sRFnpQ
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.04.011
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Subgradient integrated into particle swarm optimizer for global optimization
DocumentTitle_FL Subgradient integrated into particle swarm optimizer for global optimization
EndPage 1010
ExternalDocumentID jsjyyyj201504011
664121122
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 广东省自然科学基金资助项目
  funderid: (61103121); (S2012010008881,S2013010016601)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c601-dcd1d044fca639bcd7ca3579a636e29c936471af9e9031cd0f2370a164720c6c3
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:31:12 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 步长函数
全局优化
粒子群优化
particle swarm optimizer(PSO)
次梯度
subgradient
step function
global optimization
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-dcd1d044fca639bcd7ca3579a636e29c936471af9e9031cd0f2370a164720c6c3
Notes 51-1196/TP
This paper proposed an approach of subgradient integrated into particle swarm optimizer( SGPSO) for globally optimizing continuous objective function. In minimization,it proposed a revision for the manner of velocity update with the direction of subgradient to search for the local minima of a given non-differentiable and non-convex objective function. Thus,it combined with communications among particles,this revision would offer more chances to obtain the global minima. Furthermore,in the part of subgradient iteration,it suggested that the step function should be a lower order infinitesimal with respect to subgradient magnitude as well as be a decreasing function with respect to iteration time. In the end,experiments and comparisons of the proposed SGPSO on benchmark problems validate its performance with better effectiveness and efficiency.
XU Zhi-liang, ZENG De-lu, ZHANG Yun-sheng ( 1. Shenzhen Key Laboratory of Visual Media Processing & Transmission, Shenzhen Guangdong 518172, China ; 2. School of
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201504011
chongqing_primary_664121122
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005
深圳市可视媒体处理与传输重点实验室,广东深圳518172
Publisher_xml – name: 深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005
– name: 深圳市可视媒体处理与传输重点实验室,广东深圳518172
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.003936
Snippet 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒...
TP301.6; 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO).在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案....
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1007
SubjectTerms 全局优化
次梯度
步长函数
粒子群优化
Title 一种结合次梯度的粒子群全局优化算法
URI http://lib.cqvip.com/qk/93231X/201504/664121122.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201504011
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdChbEC9-i7UqFTon2ZpMJvNxnGSzFEFPFXpbstlNSw_bareH9tSDggeFoviBN0XUgx-oF1Hx13S7f8P3JtNN-oFUL2Ey8-Z9Dnlvhsx7hEwzKTHK9-t5oNt13hUefAezTh3D8zRPVc5TPIe8eUvM3uY35sP5sdq1yl9La_32TLZx6L2S_7Eq9IFd8ZbsP1h2hBQ6oA32hSdYGJ5HsjFNOI0U_qyQSGokVQ1sRBHVAU1Cqj2qFE0ENTE1vm0wapo4FBlqBAJrQxW3sxjVDIdMAydiT0INxx4FncrO8i0tIBpTbXsUNCwek1AtkUQU0KKe5W7ISxOFo8hABUzHyEPBibYMwBOpAIzneoym0ejg0KGJCkaaFg2IrkGgEgTwRsg3ggCsRCyKUaVLkBCZBxIwGbF4jrRuVs8_irufdq1amSSKjhqNUT5UQNNpVPlWowoboIzCIKBUHDJWW1bWQuugWtS6plqjKZCFhh3iaLRIHALDYsuyRooOeXyQpRAiKAnAobVJsotBOruBGWF1lMgP8m-Xj_b3wihEdRRBkEmJPapYXJGz7T5OWBxAGO2FFUeIv9oFwi0Y5ynLk-jyGGilqFxclC52IRR85r3D3HOghbbuGUnMjEjgD5ahTTjs_O7eBOhLq0vr6-tLCAQeB-_xjzM8fKuRcRM1omYZ_UOwXM0GyTDRUrnbxlIJouLesH4j-OuRewv9QIa2GEQRyHEYLJKZOD6PkWknxPW_iYBZWhaXewt3IPa0VwF7edpbqEStc6fICbfdnDLFt-M0GdtYPENO7pZymXKe_SwJtr9vDt89Gv58Mth6sPPh1c7rz4Mfb4cv7w2_Ph583Br-fjO4_37wZXP714vBw2fDT893vj09R-aayVw8W3f1VOqZAD47WcfveJznWQrbknbWkVkahFLDm-gynWksJeGnue5q8PRZx8tZIL0UEw4yLxNZcJ7Uesu97gUy5bEUM2_6oKCAQ4zfZjxl3VDBtFDngk-QyZEKWitF2pyWEBzzSTI2Qa46pbTcx3S1td_IF48AM0mOY7s4EL1Eav27a93LsEXot6-4pfEH9C7B3A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E7%BB%93%E5%90%88%E6%AC%A1%E6%A2%AF%E5%BA%A6%E7%9A%84%E7%B2%92%E5%AD%90%E7%BE%A4%E5%85%A8%E5%B1%80%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%AE%B8%E5%BF%97%E8%89%AF&rft.au=%E6%9B%BE%E5%BE%B7%E7%82%89&rft.au=%E5%BC%A0%E8%BF%90%E7%94%9F&rft.date=2015&rft.pub=%E6%B7%B1%E5%9C%B3%E4%BF%A1%E6%81%AF%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%E6%B7%B1%E5%9C%B3518172%25%E5%8E%A6%E9%97%A8%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E7%A6%8F%E5%BB%BA%E5%8E%A6%E9%97%A8%2C361005&rft.issn=1001-3695&rft.volume=32&rft.issue=4&rft.spage=1007&rft.epage=1010&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.04.011&rft.externalDocID=jsjyyyj201504011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg