一种结合次梯度的粒子群全局优化算法
为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。...
        Saved in:
      
    
          | Published in | 计算机应用研究 Vol. 32; no. 4; pp. 1007 - 1010 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005
    
        2015
     深圳市可视媒体处理与传输重点实验室,广东深圳518172  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1001-3695 | 
| DOI | 10.3969/j.issn.1001-3695.2015.04.011 | 
Cover
| Abstract | 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。 | 
    
|---|---|
| AbstractList | 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。 TP301.6; 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO).在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案.加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率.进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛.最后,针对标准库给出了SG-PSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好.  | 
    
| Author | 许志良 曾德炉 张运生 | 
    
| AuthorAffiliation | 深圳市可视媒体处理与传输重点实验室,广东深圳518172 深圳信息职业技术学院软件学院,广东深圳518172 厦门大学信息科学与技术学院,福建厦门361005 | 
    
| AuthorAffiliation_xml | – name: 深圳市可视媒体处理与传输重点实验室,广东深圳518172;深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005 | 
    
| Author_FL | ZENG De-lu XU Zhi-liang ZHANG Yun-sheng  | 
    
| Author_FL_xml | – sequence: 1 fullname: XU Zhi-liang – sequence: 2 fullname: ZENG De-lu – sequence: 3 fullname: ZHANG Yun-sheng  | 
    
| Author_xml | – sequence: 1 fullname: 许志良 曾德炉 张运生  | 
    
| BookMark | eNo9j7tKA0EYhaeIYBJ9CbGwyfr_M5NZppTgDQI26cM4uxuz6KzuIrJdCgULhRDxgp0iauEFtREVnyaTfQ1HIlaHc_g4h1MhJZOYkJBZBI9JIedjr5tlxkMArDEh6x4FrHvAPUAskfJ_PkkqWRYDcIoSyoQN33vF3XHxeWL7h6OHq9H1s_24LS73i9eBfewX3zf24N6-9IZfF_borHg6H72dTpGJSG1m4fSfVklrabHVWKk115ZXGwvNmhZuLNABBsB5pJVgcl0Hvlas7kvnREillkxwH1UkQwkMdQARZT4odCkFLTSrkrlx7Z4ykTKddpzspsYNtuMszvM8_n0I3P1z6MwY1RuJ6ex0HbyddrdUmreF4EgRKWU_sRFnpQ | 
    
| ClassificationCodes | TP301.6 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.3969/j.issn.1001-3695.2015.04.011 | 
    
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| DocumentTitleAlternate | Subgradient integrated into particle swarm optimizer for global optimization | 
    
| DocumentTitle_FL | Subgradient integrated into particle swarm optimizer for global optimization | 
    
| EndPage | 1010 | 
    
| ExternalDocumentID | jsjyyyj201504011 664121122  | 
    
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 广东省自然科学基金资助项目 funderid: (61103121); (S2012010008881,S2013010016601)  | 
    
| GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX  | 
    
| ID | FETCH-LOGICAL-c601-dcd1d044fca639bcd7ca3579a636e29c936471af9e9031cd0f2370a164720c6c3 | 
    
| ISSN | 1001-3695 | 
    
| IngestDate | Thu May 29 03:54:50 EDT 2025 Wed Feb 14 10:31:12 EST 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | 步长函数 全局优化 粒子群优化 particle swarm optimizer(PSO) 次梯度 subgradient step function global optimization  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c601-dcd1d044fca639bcd7ca3579a636e29c936471af9e9031cd0f2370a164720c6c3 | 
    
| Notes | 51-1196/TP This paper proposed an approach of subgradient integrated into particle swarm optimizer( SGPSO) for globally optimizing continuous objective function. In minimization,it proposed a revision for the manner of velocity update with the direction of subgradient to search for the local minima of a given non-differentiable and non-convex objective function. Thus,it combined with communications among particles,this revision would offer more chances to obtain the global minima. Furthermore,in the part of subgradient iteration,it suggested that the step function should be a lower order infinitesimal with respect to subgradient magnitude as well as be a decreasing function with respect to iteration time. In the end,experiments and comparisons of the proposed SGPSO on benchmark problems validate its performance with better effectiveness and efficiency. XU Zhi-liang, ZENG De-lu, ZHANG Yun-sheng ( 1. Shenzhen Key Laboratory of Visual Media Processing & Transmission, Shenzhen Guangdong 518172, China ; 2. School of  | 
    
| PageCount | 4 | 
    
| ParticipantIDs | wanfang_journals_jsjyyyj201504011 chongqing_primary_664121122  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015 | 
    
| PublicationDateYYYYMMDD | 2015-01-01 | 
    
| PublicationDate_xml | – year: 2015 text: 2015  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 计算机应用研究 | 
    
| PublicationTitleAlternate | Application Research of Computers | 
    
| PublicationTitle_FL | Application Research of Computers | 
    
| PublicationYear | 2015 | 
    
| Publisher | 深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005 深圳市可视媒体处理与传输重点实验室,广东深圳518172  | 
    
| Publisher_xml | – name: 深圳信息职业技术学院软件学院,广东深圳518172%厦门大学信息科学与技术学院,福建厦门,361005 – name: 深圳市可视媒体处理与传输重点实验室,广东深圳518172  | 
    
| SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191  | 
    
| Score | 2.003936 | 
    
| Snippet | 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒... TP301.6; 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO).在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案....  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 1007 | 
    
| SubjectTerms | 全局优化 次梯度 步长函数 粒子群优化  | 
    
| Title | 一种结合次梯度的粒子群全局优化算法 | 
    
| URI | http://lib.cqvip.com/qk/93231X/201504/664121122.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201504011  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1001-3695 databaseCode: ABDBF dateStart: 20130901 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssib025702191 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdChbEC9-i7UqFTon2ZpMJvNxnGSzFEFPFXpbstlNSw_bareH9tSDggeFoviBN0XUgx-oF1Hx13S7f8P3JtNN-oFUL2Ey8-Z9Dnlvhsx7hEwzKTHK9-t5oNt13hUefAezTh3D8zRPVc5TPIe8eUvM3uY35sP5sdq1yl9La_32TLZx6L2S_7Eq9IFd8ZbsP1h2hBQ6oA32hSdYGJ5HsjFNOI0U_qyQSGokVQ1sRBHVAU1Cqj2qFE0ENTE1vm0wapo4FBlqBAJrQxW3sxjVDIdMAydiT0INxx4FncrO8i0tIBpTbXsUNCwek1AtkUQU0KKe5W7ISxOFo8hABUzHyEPBibYMwBOpAIzneoym0ejg0KGJCkaaFg2IrkGgEgTwRsg3ggCsRCyKUaVLkBCZBxIwGbF4jrRuVs8_irufdq1amSSKjhqNUT5UQNNpVPlWowoboIzCIKBUHDJWW1bWQuugWtS6plqjKZCFhh3iaLRIHALDYsuyRooOeXyQpRAiKAnAobVJsotBOruBGWF1lMgP8m-Xj_b3wihEdRRBkEmJPapYXJGz7T5OWBxAGO2FFUeIv9oFwi0Y5ynLk-jyGGilqFxclC52IRR85r3D3HOghbbuGUnMjEjgD5ahTTjs_O7eBOhLq0vr6-tLCAQeB-_xjzM8fKuRcRM1omYZ_UOwXM0GyTDRUrnbxlIJouLesH4j-OuRewv9QIa2GEQRyHEYLJKZOD6PkWknxPW_iYBZWhaXewt3IPa0VwF7edpbqEStc6fICbfdnDLFt-M0GdtYPENO7pZymXKe_SwJtr9vDt89Gv58Mth6sPPh1c7rz4Mfb4cv7w2_Ph583Br-fjO4_37wZXP714vBw2fDT893vj09R-aayVw8W3f1VOqZAD47WcfveJznWQrbknbWkVkahFLDm-gynWksJeGnue5q8PRZx8tZIL0UEw4yLxNZcJ7Uesu97gUy5bEUM2_6oKCAQ4zfZjxl3VDBtFDngk-QyZEKWitF2pyWEBzzSTI2Qa46pbTcx3S1td_IF48AM0mOY7s4EL1Eav27a93LsEXot6-4pfEH9C7B3A | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E7%BB%93%E5%90%88%E6%AC%A1%E6%A2%AF%E5%BA%A6%E7%9A%84%E7%B2%92%E5%AD%90%E7%BE%A4%E5%85%A8%E5%B1%80%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%AE%B8%E5%BF%97%E8%89%AF&rft.au=%E6%9B%BE%E5%BE%B7%E7%82%89&rft.au=%E5%BC%A0%E8%BF%90%E7%94%9F&rft.date=2015&rft.pub=%E6%B7%B1%E5%9C%B3%E4%BF%A1%E6%81%AF%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%E6%B7%B1%E5%9C%B3518172%25%E5%8E%A6%E9%97%A8%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E7%A6%8F%E5%BB%BA%E5%8E%A6%E9%97%A8%2C361005&rft.issn=1001-3695&rft.volume=32&rft.issue=4&rft.spage=1007&rft.epage=1010&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.04.011&rft.externalDocID=jsjyyyj201504011 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg  |