基于最长公共子序列的非同步相似轨迹判断

针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法。首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列算法,计算两轨迹的最长公共子轨迹长度;最后,根据相似度门限,判断轨迹是否相似。数值实例验证了所提算法能够提高非同步轨迹的相似度。...

Full description

Saved in:
Bibliographic Details
Published in电讯技术 Vol. 57; no. 10; pp. 1165 - 1170
Main Author 刘宇 王前东
Format Journal Article
LanguageChinese
Published 中国西南电子技术研究所,成都,610036 2017
Subjects
Online AccessGet full text
ISSN1001-893X
DOI10.3969/j.issn.1001-893x.2017.10.011

Cover

Abstract 针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法。首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列算法,计算两轨迹的最长公共子轨迹长度;最后,根据相似度门限,判断轨迹是否相似。数值实例验证了所提算法能够提高非同步轨迹的相似度。
AbstractList TN957.52; 针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法.首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列算法,计算两轨迹的最长公共子轨迹长度;最后,根据相似度门限,判断轨迹是否相似.数值实例验证了所提算法能够提高非同步轨迹的相似度.
针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法。首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列算法,计算两轨迹的最长公共子轨迹长度;最后,根据相似度门限,判断轨迹是否相似。数值实例验证了所提算法能够提高非同步轨迹的相似度。
Abstract_FL For the problem of judging the asynchronous similar trajectory,a new algorithm for computing the similar trajectories is proposed based on the Longest Common Subsequence ( LCS) method. Firstly,the line segment distances,which are between line segments of the query trajectory and the line segments of the candidate trajectory,are computed by the line segment distance. Secondly,the length of the longest com-mon sub-trajectory,which is between the query trajectory and the candidate trajectory,is computed by the LCS method. Finally,the similarity measure between two trajectories is computed and the similar trajectory is got. Simulation shows the new method can improve the similarity measure between two asynchronous trajectories.
Author 刘宇 王前东
AuthorAffiliation 中国西南电子技术研究所,成都610036
AuthorAffiliation_xml – name: 中国西南电子技术研究所,成都,610036
Author_FL LIU Yu
WANG Qiandong
Author_FL_xml – sequence: 1
  fullname: LIU Yu
– sequence: 2
  fullname: WANG Qiandong
Author_xml – sequence: 1
  fullname: 刘宇 王前东
BookMark eNo1j7tKA0EYhaeIYIx5CbGwyTr_zuxk_1KCNwjYpLALs5vZuEEnmkWMnYWBFEHTqOC1UbBwCzsNkbxMJpe3cEO0OpzDxzmcJZLSda0IWQVqMRS4XrPCKNIWUAo5F1nTsinkE2tRgBRJ_-f7iyQbRaFHbSa44C6kCZqX3rB3NXq8mN4MTOvDtD5N3DW9a9O-G99fTp-eTbczit_GD1_Dfn_y8z4ZfJv26-g2XiYLgTyMVPZPM6S0tVkq7OSKe9u7hY1izhfJKseAgXQ96jvC5yhspDaIwEGOnCrwgFWEwx0fUQFFKm3KPFQVhcoWPjqMZcjavPZM6kDqarlWP23oZLBcCaVu1qLZ1dlBSNCVOeof1HX1JEzg40Z4JBvnZZFnXAB1HfYLD9psWQ
ClassificationCodes TN957.52
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-893x.2017.10.011
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Computing Similar Measure between Two Asynchronous Trajectories Based on Longest Common Subsequence Method
DocumentTitle_FL Computing Similar Measure between Two Asynchronous Trajectories Based on Longest Common Subsequence Method
EndPage 1170
ExternalDocumentID dianxjs201710011
673461085
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c601-49f31a8b0c56c496290216f594940e1b13d6545c99e1090a203b9ede9e26c9533
ISSN 1001-893X
IngestDate Thu May 29 03:55:22 EDT 2025
Wed Feb 14 09:56:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 非同步相似轨迹
侦察监视
longest common subsequence
最长公共子序列
asynchronous similar trajecto-ry
longest common sub-trajectory
最长公共子轨迹
reconnaissance and surveillance
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-49f31a8b0c56c496290216f594940e1b13d6545c99e1090a203b9ede9e26c9533
Notes LIU Yu,WANG Qiandong(Southwest China Institute of Electronic Technology,Chengdu 610036, China)
For the problem of judging the asynchronous similar trajectory,a new algorithm for computing the similar trajectories is proposed based on the Longest Common Subsequence( LCS) method. Firstly,the line segment distances,which are between line segments of the query trajectory and the line segments of the candidate trajectory,are computed by the line segment distance. Secondly,the length of the longest common sub-trajectory,which is between the query trajectory and the candidate trajectory,is computed by the LCS method. Finally,the similarity measure between two trajectories is computed and the similar trajectory is got. Simulation shows the new method can improve the similarity measure between two asynchronous trajectories.
51-1267/TN
reconnaissance and surveillance; longest common subsequence; asynchronous similar trajectory;longest common sub-trajectory
PageCount 6
ParticipantIDs wanfang_journals_dianxjs201710011
chongqing_primary_673461085
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 电讯技术
PublicationTitleAlternate Telecommunication Engineering
PublicationTitle_FL Telecommunication Engineering
PublicationYear 2017
Publisher 中国西南电子技术研究所,成都,610036
Publisher_xml – name: 中国西南电子技术研究所,成都,610036
SSID ssib023646481
ssib001102885
ssib036437028
ssib051374628
ssib000459929
ssib009282364
ssib006568479
ssib018830122
Score 2.085944
Snippet 针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法。首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列算法,计算...
TN957.52; 针对非同步相似轨迹判断问题,提出了一种基于最长公共子序列理论的相似轨迹判断新算法.首先,求出查询轨迹线段与候选轨迹线段之间的距离;其次,利用最长公共子序列...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1165
SubjectTerms 侦察监视
最长公共子序列
最长公共子轨迹
非同步相似轨迹
Title 基于最长公共子序列的非同步相似轨迹判断
URI http://lib.cqvip.com/qk/91166X/201710/673461085.html
https://d.wanfangdata.com.cn/periodical/dianxjs201710011
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-893X
  databaseCode: ADMLS
  dateStart: 20140501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib000459929
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGJyEuCASIMUBDmo8t-bBdv2OSppoQcKFIvVVNmm7i0A3WSdNOHJi0A4JdAInPC0gc6IEbVEP7Z5Zu-y94z0m7ME1oIFXWa_yz_ewX28_O8zNj8-2OjLSCbtlKQJeFLZwyVKVdjp2OE2F3ikVirHzvq4WH4k5TNqfO8ILV0lo_qsQbJ54r-R-p4jOUK52S_QfJTjLFB0ijfDFECWN4KhnzUHKoc9_joaBQhzxUHAIyXwiBg-R-nTBaci_ICd8mwqtxsIigVBlGc6jysMoBnwiTHDGhKcLiOqCcMZUnDcbnvjaFBvQLNfcxShsC-YE8Q08YfihhUQk2OWBaSXgv5F6dYNozbBv-vYm98Zg1bbgO-dG8SblghbVvIMB1zTCE2KC4lZGd2TSvXR6PtaBK-cQzMTBppdq4BTLeJq10nDfCeBbBiADuK4MBwjimoYhjIwLtUilOgOqjlblgyWcAsjFDJa5ZnCIyH9rjrmAVBnzyXlRQHugen5MmJhcUmImJyqiMy1gn08JqhawL8xnnT9ffNEKsP1olECXBRf60Q9tOJTbt1e7dfVDUy6Go59qkNhacEqHSjlrIUTw4dM_9ZCC2tXbpE-v4P8WpwgFtl77uWkfrVGm7VTrTbCwJ8uY6y-bzet7-Wy3JhcnScm_xMSpm5pxcr9vuLRZUusYFdj5fi815Wce6yKY2li4xSD8N94YvRu-fHr7aTTe_pZvf08F2OnyZbr3Zf_vs8MPHdPv5aPBl_92PvZ2dg19fD3Z_plufR68Hl1mjHjaChXJ-v0g5VsiagK5rt3VkxVLFApQDqO-qrgQBwkrsyHY7CtcXMUBC1sttx3IjSDoJJI6KySr7Civ1lnvJVTanosjCjHQ1weVFR8s2iG7XFu2I3NsJK55hs5Nat1YyNzJkUUmXHWg5w27l7dDKB5fV1nHRXzsFZpadIzrbILzOSv0na8kNVJn70c38hfkNSmGSeQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%80%E9%95%BF%E5%85%AC%E5%85%B1%E5%AD%90%E5%BA%8F%E5%88%97%E7%9A%84%E9%9D%9E%E5%90%8C%E6%AD%A5%E7%9B%B8%E4%BC%BC%E8%BD%A8%E8%BF%B9%E5%88%A4%E6%96%AD&rft.jtitle=%E7%94%B5%E8%AE%AF%E6%8A%80%E6%9C%AF&rft.au=%E5%88%98%E5%AE%87&rft.au=%E7%8E%8B%E5%89%8D%E4%B8%9C&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E8%A5%BF%E5%8D%97%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%88%90%E9%83%BD%2C610036&rft.issn=1001-893X&rft.volume=57&rft.issue=10&rft.spage=1165&rft.epage=1170&rft_id=info:doi/10.3969%2Fj.issn.1001-893x.2017.10.011&rft.externalDocID=dianxjs201710011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F91166X%2F91166X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdianxjs%2Fdianxjs.jpg