Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees

Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 14; no. 1; p. 100
Main Authors Chou, Hsiu-Ling, Yao, Chung-Tay, Su, Sui-Lun, Lee, Chia-Yi, Hu, Kuang-Yu, Terng, Harn-Jing, Shih, Yun-Wen, Chang, Yu-Tien, Lu, Yu-Fen, Chang, Chi-Wen, Wahlqvist, Mark L, Wetter, Thomas, Chu, Chi-Ming
Format Journal Article
LanguageEnglish
Published London BioMed Central 19.03.2013
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-14-100

Cover

Abstract Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence… Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
AbstractList Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Keywords: Breast cancer, Microarray, Artificial neural network, Logistic regression, Decision tree
Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.BACKGROUNDMicroarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence.RESULTSThe DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence.The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.CONCLUSIONSThe 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence… Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence. The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
Doc number: 100 Abstract Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
ArticleNumber 100
Audience Academic
Author Su, Sui-Lun
Wahlqvist, Mark L
Hu, Kuang-Yu
Chang, Yu-Tien
Lee, Chia-Yi
Chang, Chi-Wen
Chu, Chi-Ming
Lu, Yu-Fen
Chou, Hsiu-Ling
Wetter, Thomas
Shih, Yun-Wen
Yao, Chung-Tay
Terng, Harn-Jing
AuthorAffiliation 6 School of Nursing, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
2 Department of Surgery, Cathay General Hospital, Taipei, Taiwan
5 Advpharma, Inc., Taipei, Taiwan
3 Section of Biomedical informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan
4 Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
7 National Health Research Institute, Chunan, Taiwan
1 Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology, New Taipei, Taiwan
8 Department of Medical Informatics, University of Heidelberg, Heidelberg, Germany
AuthorAffiliation_xml – name: 3 Section of Biomedical informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan
– name: 4 Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
– name: 1 Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology, New Taipei, Taiwan
– name: 6 School of Nursing, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
– name: 5 Advpharma, Inc., Taipei, Taiwan
– name: 7 National Health Research Institute, Chunan, Taiwan
– name: 8 Department of Medical Informatics, University of Heidelberg, Heidelberg, Germany
– name: 2 Department of Surgery, Cathay General Hospital, Taipei, Taiwan
Author_xml – sequence: 1
  givenname: Hsiu-Ling
  surname: Chou
  fullname: Chou, Hsiu-Ling
  organization: Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology
– sequence: 2
  givenname: Chung-Tay
  surname: Yao
  fullname: Yao, Chung-Tay
  organization: Department of Surgery, Cathay General Hospital
– sequence: 3
  givenname: Sui-Lun
  surname: Su
  fullname: Su, Sui-Lun
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
– sequence: 4
  givenname: Chia-Yi
  surname: Lee
  fullname: Lee, Chia-Yi
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
– sequence: 5
  givenname: Kuang-Yu
  surname: Hu
  fullname: Hu, Kuang-Yu
  organization: Department of Bioinformatics, Chung Hua University
– sequence: 6
  givenname: Harn-Jing
  surname: Terng
  fullname: Terng, Harn-Jing
  organization: Advpharma, Inc
– sequence: 7
  givenname: Yun-Wen
  surname: Shih
  fullname: Shih, Yun-Wen
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
– sequence: 8
  givenname: Yu-Tien
  surname: Chang
  fullname: Chang, Yu-Tien
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
– sequence: 9
  givenname: Yu-Fen
  surname: Lu
  fullname: Lu, Yu-Fen
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
– sequence: 10
  givenname: Chi-Wen
  surname: Chang
  fullname: Chang, Chi-Wen
  organization: School of Nursing, College of Medicine, Chang-Gung University
– sequence: 11
  givenname: Mark L
  surname: Wahlqvist
  fullname: Wahlqvist, Mark L
  organization: National Health Research Institute
– sequence: 12
  givenname: Thomas
  surname: Wetter
  fullname: Wetter, Thomas
  organization: Department of Medical Informatics, University of Heidelberg
– sequence: 13
  givenname: Chi-Ming
  surname: Chu
  fullname: Chu, Chi-Ming
  email: chuchiming@web.de
  organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23506640$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZ4UssQGJFDtxPJkN0qhAqVSBxGNt3Tg3wSVjp7Yzbf4PPxSnMwydipeysGV_5_rm3HOY7BlrMEkeM3rMWCleMj5jacZokTKeMkrvJQfbo71b-_3k0PsLStmspMWDZD_LCyoEpwfJ91M0SPC6d-i9tob0zja606YltiGVQ_CBKDAKHfGDW-kVVPE6jKQaSW9thzVRr98vyFIrZ8E5GAkY6EavPRn8VKezrfZBK-Kw3bzygoALutFKQ0cMDu5mCVfWffNRXpMalb5pJzhE_zC530Dn8dFmPUq-vH3z-eRdev7h9OxkcZ4qQWlI500GXAEtZpTzohI5RWCACipgVTkreVOLXDRzPqMw55iLumJzpAxLChkrIT9K2LruYHoYr6DrZO_0EtwoGZWT43KyVE6Wxl08pFHzaq3ph2qJtUIT4t9sdRa03L0x-qts7UrmgvGiyGOBZ5sCzl4O6INcaq-w68CgHbxkRcEEyzIh_o3mvOSl4HkZ0ad30As7uDiYicqyfMaKfP6LaqFDqU1jY4tqKioXRc6LmJdsoo5_Q8Wvxjj1mMgYGNwVPN8RRCbgdWhh8F6effq4yz657d_WuJ8RjYBYAzFf3jtspNIBQgxH7EJ3f5sMvSP8j2FuAuAjalp0t1z7k-YHilIZDA
CitedBy_id crossref_primary_10_3389_fgene_2019_00662
crossref_primary_10_3390_ijerph18063099
crossref_primary_10_1016_j_ijbiomac_2022_09_119
crossref_primary_10_1007_s11033_021_06144_z
crossref_primary_10_1016_j_neo_2018_01_001
crossref_primary_10_1016_j_bbrc_2016_06_159
crossref_primary_10_1371_journal_pone_0097818
crossref_primary_10_1186_s12859_016_1038_1
crossref_primary_10_1038_s41598_019_40826_w
crossref_primary_10_3390_cancers12071890
crossref_primary_10_7717_peerj_3003
crossref_primary_10_1038_s41598_023_41090_9
crossref_primary_10_3389_fgene_2022_914219
crossref_primary_10_1038_s41598_021_84995_z
crossref_primary_10_3233_IDA_160845
crossref_primary_10_3390_ijms23031858
crossref_primary_10_1007_s12032_014_0454_1
crossref_primary_10_3389_fonc_2021_615427
crossref_primary_10_1186_s12920_020_00736_7
crossref_primary_10_3892_ol_2018_9477
crossref_primary_10_1186_s12920_020_0676_3
crossref_primary_10_1186_s40709_020_00118_1
crossref_primary_10_1371_journal_pone_0124780
crossref_primary_10_18632_oncotarget_3525
crossref_primary_10_1016_j_heliyon_2023_e18789
crossref_primary_10_1007_s11814_015_0255_z
crossref_primary_10_3390_jpm12091496
Cites_doi 10.1002/1097-0142(20010415)91:8+<1673::AID-CNCR1182>3.0.CO;2-T
10.1186/bcr1325
10.1016/j.copbio.2007.11.003
10.1186/1756-0500-4-397
10.1016/S0140-6736(05)70933-8
10.1002/sim.2929
10.1158/1078-0432.CCR-06-2765
10.1093/jnci/83.3.154
10.1016/j.artmed.2004.07.002
10.4103/0975-7406.92726
10.1002/sim.4085
10.1093/bioinformatics/btl400
10.1039/b418765b
10.1186/1471-2105-9-125
10.1158/0008-5472.CAN-05-4414
10.1093/clinchem/48.11.2051
10.1007/s00109-008-0419-y
10.1016/j.ygeno.2003.08.008
10.1073/pnas.0506580102
10.1021/jf048368t
10.1093/jnci/93.13.979
10.1371/journal.pone.0029860
10.1002/sim.4348
10.1016/S1672-0229(03)01003-9
10.1093/jnci/djj052
ContentType Journal Article
Copyright Chou et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2013 BioMed Central Ltd.
2013 Chou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Chou et al.; licensee BioMed Central Ltd. 2013 Chou et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Chou et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Chou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Chou et al.; licensee BioMed Central Ltd. 2013 Chou et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7TM
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-14-100
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database
MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 100
ExternalDocumentID 10.1186/1471-2105-14-100
PMC3614553
2933206391
A534517829
23506640
10_1186_1471_2105_14_100
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7TM
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c600t-9f2a4ca0570445b630ea1aecaba1b8784fd636f9470a94e36db19e01e80a218a3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 03:49:42 EDT 2025
Tue Sep 30 16:57:15 EDT 2025
Thu Oct 02 08:48:31 EDT 2025
Tue Oct 07 11:14:00 EDT 2025
Mon Oct 06 18:31:51 EDT 2025
Mon Oct 20 22:50:29 EDT 2025
Mon Oct 20 16:58:02 EDT 2025
Thu Oct 16 16:17:26 EDT 2025
Thu Apr 03 07:00:57 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Oct 01 04:15:22 EDT 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Logistic regression
Breast cancer
Artificial neural network
Microarray
Decision tree
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-9f2a4ca0570445b630ea1aecaba1b8784fd636f9470a94e36db19e01e80a218a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-100
PMID 23506640
PQID 1322371539
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2105_14_100
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614553
proquest_miscellaneous_1551612266
proquest_miscellaneous_1348486438
proquest_journals_1322371539
gale_infotracmisc_A534517829
gale_infotracacademiconefile_A534517829
gale_incontextgauss_ISR_A534517829
pubmed_primary_23506640
crossref_citationtrail_10_1186_1471_2105_14_100
crossref_primary_10_1186_1471_2105_14_100
springer_journals_10_1186_1471_2105_14_100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-19
PublicationDateYYYYMMDD 2013-03-19
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References MJ Pencina (5760_CR19) 2008; 27
R Kumar (5760_CR24) 2012; 4
A Subramanian (5760_CR17) 2005; 102
X Xu (5760_CR11) 2005; 53
S Lassmann (5760_CR7) 2009; 87
YH Hsu (5760_CR26) 2007
PB Snow (5760_CR25) 2001; 91
L Xu (5760_CR27) 2008; 9
SJ Beyer (5760_CR22) 2011; 4
Y Wang (5760_CR15) 2005; 365
A Padoan (5760_CR18) 2010
C Sotiriou (5760_CR14) 2006; 98
MJ Pencina (5760_CR20) 2012; 31
Y Wang (5760_CR16) 2012; 7
D Delen (5760_CR23) 2005; 34
L Shi (5760_CR8) 2008; 19
CA Davis (5760_CR4) 2006; 22
AV Ivshina (5760_CR13) 2006; 66
F Gemignani (5760_CR5) 2002; 48
Y Pawitan (5760_CR28) 2005; 7
O Gutmann (5760_CR6) 2005; 5
DL Stirewalt (5760_CR9) 2004; 83
PJ van der Spek (5760_CR10) 2003; 1
5760_CR1
P Eifel (5760_CR2) 2001; 93
MJ Pencina (5760_CR21) 2011; 30
C Desmedt (5760_CR12) 2007; 13
WL McGuire (5760_CR3) 1991; 83
21989294 - BMC Res Notes. 2011 Oct 11;4:397
18304324 - BMC Bioinformatics. 2008;9:125
17545524 - Clin Cancer Res. 2007 Jun 1;13(11):3207-14
15884798 - J Agric Food Chem. 2005 May 18;53(10):3789-94
16882647 - Bioinformatics. 2006 Oct 1;22(19):2356-63
16280042 - Breast Cancer Res. 2005;7(6):R953-64
11309767 - Cancer. 2001 Apr 15;91(8 Suppl):1673-8
12406995 - Clin Chem. 2002 Nov;48(11):2051-4
15915261 - Lab Chip. 2005 Jun;5(6):675-81
22368395 - J Pharm Bioallied Sci. 2012 Jan;4(1):21-6
19066834 - J Mol Med (Berl). 2009 Feb;87(2):211-24
15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9
17079448 - Cancer Res. 2006 Nov 1;66(21):10292-301
11438563 - J Natl Cancer Inst. 2001 Jul 4;93(13):979-89
1988696 - J Natl Cancer Inst. 1991 Feb 6;83(3):154-5
17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
18155896 - Curr Opin Biotechnol. 2008 Feb;19(1):10-8
15894176 - Artif Intell Med. 2005 Jun;34(2):113-27
16478745 - J Natl Cancer Inst. 2006 Feb 15;98(4):262-72
22276133 - PLoS One. 2012;7(1):e29860
14706461 - Genomics. 2004 Feb;83(2):321-31
21204120 - Stat Med. 2011 Jan 15;30(1):11-21
22147389 - Stat Med. 2012 Jan 30;31(2):101-13
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
15626329 - Genomics Proteomics Bioinformatics. 2003 Feb;1(1):9-14
References_xml – volume: 91
  start-page: 1673
  year: 2001
  ident: 5760_CR25
  publication-title: Cancer
  doi: 10.1002/1097-0142(20010415)91:8+<1673::AID-CNCR1182>3.0.CO;2-T
– volume: 7
  start-page: R953
  year: 2005
  ident: 5760_CR28
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr1325
– volume: 19
  start-page: 10
  year: 2008
  ident: 5760_CR8
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2007.11.003
– volume: 4
  start-page: 397
  year: 2011
  ident: 5760_CR22
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-4-397
– volume: 365
  start-page: 671
  year: 2005
  ident: 5760_CR15
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)70933-8
– volume: 27
  start-page: 157
  year: 2008
  ident: 5760_CR19
  publication-title: Stat Med
  doi: 10.1002/sim.2929
– volume: 13
  start-page: 3207
  year: 2007
  ident: 5760_CR12
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-2765
– volume: 83
  start-page: 154
  year: 1991
  ident: 5760_CR3
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/83.3.154
– volume: 34
  start-page: 113
  year: 2005
  ident: 5760_CR23
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.07.002
– volume: 4
  start-page: 21
  year: 2012
  ident: 5760_CR24
  publication-title: J Pharm Bioallied Sci
  doi: 10.4103/0975-7406.92726
– volume: 30
  start-page: 11
  year: 2011
  ident: 5760_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.4085
– volume: 22
  start-page: 2356
  year: 2006
  ident: 5760_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl400
– volume: 5
  start-page: 675
  year: 2005
  ident: 5760_CR6
  publication-title: Lab Chip
  doi: 10.1039/b418765b
– volume: 9
  start-page: 125
  year: 2008
  ident: 5760_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-125
– volume: 66
  start-page: 10292
  year: 2006
  ident: 5760_CR13
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4414
– volume: 48
  start-page: 2051
  year: 2002
  ident: 5760_CR5
  publication-title: Clin Chem
  doi: 10.1093/clinchem/48.11.2051
– volume: 87
  start-page: 211
  year: 2009
  ident: 5760_CR7
  publication-title: J Mol Med
  doi: 10.1007/s00109-008-0419-y
– volume: 83
  start-page: 321
  year: 2004
  ident: 5760_CR9
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2003.08.008
– volume: 102
  start-page: 15545
  year: 2005
  ident: 5760_CR17
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume-title: Investigating the Models of Logistic Regression, Decision Tree, Artificial Neural Network and Hybrid Analysis for Predicting Coronary Artery Disease
  year: 2007
  ident: 5760_CR26
– volume: 53
  start-page: 3789
  year: 2005
  ident: 5760_CR11
  publication-title: J Agric Food Chem
  doi: 10.1021/jf048368t
– volume: 93
  start-page: 979
  year: 2001
  ident: 5760_CR2
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/93.13.979
– volume: 7
  start-page: e29860
  year: 2012
  ident: 5760_CR16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029860
– volume: 31
  start-page: 101
  year: 2012
  ident: 5760_CR20
  publication-title: Stat Med
  doi: 10.1002/sim.4348
– volume: 1
  start-page: 9
  year: 2003
  ident: 5760_CR10
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/S1672-0229(03)01003-9
– volume: 98
  start-page: 262
  year: 2006
  ident: 5760_CR14
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djj052
– ident: 5760_CR1
– volume-title: Net Reclassification Improvement (NRI) has been proposed as an alternative to the area under the curve of the the ROC
  year: 2010
  ident: 5760_CR18
– reference: 16882647 - Bioinformatics. 2006 Oct 1;22(19):2356-63
– reference: 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9
– reference: 21204120 - Stat Med. 2011 Jan 15;30(1):11-21
– reference: 11438563 - J Natl Cancer Inst. 2001 Jul 4;93(13):979-89
– reference: 22368395 - J Pharm Bioallied Sci. 2012 Jan;4(1):21-6
– reference: 15915261 - Lab Chip. 2005 Jun;5(6):675-81
– reference: 21989294 - BMC Res Notes. 2011 Oct 11;4:397
– reference: 18155896 - Curr Opin Biotechnol. 2008 Feb;19(1):10-8
– reference: 17079448 - Cancer Res. 2006 Nov 1;66(21):10292-301
– reference: 16478745 - J Natl Cancer Inst. 2006 Feb 15;98(4):262-72
– reference: 22276133 - PLoS One. 2012;7(1):e29860
– reference: 11309767 - Cancer. 2001 Apr 15;91(8 Suppl):1673-8
– reference: 19066834 - J Mol Med (Berl). 2009 Feb;87(2):211-24
– reference: 17545524 - Clin Cancer Res. 2007 Jun 1;13(11):3207-14
– reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
– reference: 15626329 - Genomics Proteomics Bioinformatics. 2003 Feb;1(1):9-14
– reference: 15894176 - Artif Intell Med. 2005 Jun;34(2):113-27
– reference: 18304324 - BMC Bioinformatics. 2008;9:125
– reference: 12406995 - Clin Chem. 2002 Nov;48(11):2051-4
– reference: 15884798 - J Agric Food Chem. 2005 May 18;53(10):3789-94
– reference: 16280042 - Breast Cancer Res. 2005;7(6):R953-64
– reference: 22147389 - Stat Med. 2012 Jan 30;31(2):101-13
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 14706461 - Genomics. 2004 Feb;83(2):321-31
– reference: 1988696 - J Natl Cancer Inst. 1991 Feb 6;83(3):154-5
SSID ssj0017805
Score 2.254151
Snippet Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to...
Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict...
Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to...
Doc number: 100 Abstract Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer...
Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Algorithms
Analysis
Anopheles
Bioinformatics
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Cancer
Cancer therapies
Comparative analysis
Comparative genomics
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Conversion
Data mining
Databases, Genetic
Decision Trees
DNA damage
DNA microarrays
DNA, Complementary - genetics
Female
Gene expression
Gene Expression Profiling
Genes
Genetic aspects
Hospitals
Humans
Life Sciences
Logistic Models
Logistics
Medical research
Microarrays
Neural networks
Neural Networks (Computer)
Oligonucleotide Array Sequence Analysis
Physiological aspects
Prognosis
Recurrence
Research Article
Sample Size
Standard deviation
Statistical methods
Studies
Survival Analysis
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8IH4TGMggJMSE1SR2EucBoQKbBhIVGkzaW2Q7TjepS0vTAv1_-EO5S5zQTKI8pZLPSZw7nz_3zt8R8iJShbRGpUwD2mAiLyTTUaqYsWEqRIEcT3ga-fM4PjoRn06j0x0ybs_CYFpl6xNrR53PDP5HPsRdE09gfqZv598ZVo3C6GpbQkO50gr5m5pi7ArZDZEZa0B23x2Mvxx3cQVk8G-DlTIeBuCaGchFLBDgkPze4nTZRW-sUZfzJ7sg6g1ybVXO1fqnmk431qnDW-SmA5h01FjEbbJjyzvkalNycn2X_EaeaWp_ufzXkjZFu-G2dFZQjSnqS2rQFBa0WoEf-dEQea-pXlOsx2Vzaj6MR_QCM_nUYqHWVDliE4pJ9BPaHCo6N3RhJ-4prylaaENWQZFCs77UCegVdM9p7kr9UAySV_fIyeHBt_dHzFVqYAYA05KlRaiEUYD9fCEiHXPfqkCBDWgVaJlIUeQxj4tUJL5KheVxroPU-oGVvgKMofh9MihnpX1IKBe20KHUiUpgM2WFBoCmhPYjP4-N9kOPDFsVZcbRmGM1jWlWb2dknKFSM1Qq_EJKZo-86nrMGwqPLbLPUesZMmOUmHozUauqyj5-Pc5GERcRGFCYeuSlEypm8Gij3EkGGACSafUk93qSMHVNv7k1rsy5jir7a-geedY1Y09MhyvtbIUyQgoJYFJukcEQaADoOvbIg8Zeu-GHPAKoKWC4Sc-SOwEkHe-3lOdnNfk4j5Hanntkv7X5jVf_51fd72bFf1XwaPtHeUyuh3VFEs6CdI8MlouVfQK4cKmfusn-B-mxYgk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yIuqD-O3qKVEE8bBc26Rp-ricHqfgPagH91YmaboerN2j3ar9f_xDnWmzZXvoiU8tZNI2O5P52Jn8hrGXCZTaWcgCg95GIItSBybJILAuzqQsCeOJTiN_PFZHJ_LDaXLq_--gszDb-ftIq_0IlWeAYUkSRBJVBgbnV9FEqT4tqw7GfAEh82-SkH-YNTE6F1Xvlu25WBc5JkdvsuttdQ7dD1gut-zP4W12yzuOfD5w-g674qq77NrQSrK7x34RfjR3P31da8WHZtz4WL4quaHS8zW3xOKaNy3qh-8DQHfHTcepz5YruH17POffqEIP6ho6Dh6whFNx_IIPh4XOLK_dwr_lDSfJG0AoOEFj9pe-sLzB6QUvfAsfTsnv5j47OXz35eAo8B0YAouO0DrIyhikBfTpQikTo0ToIALkrYHI6FTLslBClZlMQ8ikE6owUebCyOkQ0HcA8YDtVKvKPWJcSFeaWJsUUgySnDToeIE0YRIWypownrH9DYty6-HJqUvGMu_DFK1yYmpOTMU7glqesdfjjPMBmuMS2hfE9ZwQLyoqqVlA2zT5-8-f8nkiZIICFGcz9soTlSt8tQV_QgEXQCBZE8rdCSVuSTsd3ghX7lVCk1PYL1I0MDj8fBymmVTmVrlVSzRSS41Oor6EhlKbEXrNasYeDvI6Lj8WCbqQEpebTiR5JCAw8elIdfa1BxUXiiDrxYztbWR-69P_-qvujbvinyx4_D9PfsJuxH3fERFE2S7bWdete4re39o86zf-bxerUvc
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ti9NAEF6OHqJ-8P2lesoqgniYNi-bTfKxqMcpWA61cH4Ku5tNLfaSmjRq_T3-UGeSTWiKngh-amFnSWc7M_tsduYZQp74Ig21EpElAW1YLElDS_qRsJR2I8ZS5HjCauS3U348Y29O_dM9ctLWwsgzJRe5IQ1FouLRdhn6sqlywC4KuhivkrRx-pCPHQiyFhxffMthEFrgEL_PfUDnA7I_m55MPtZFRkakva38zbTe7rQbo7c2qd0Eyu4W9TK5WGUrsfkmlsutjeroKvnSqtjkp3weVWs5Uj922B__5xpcI1cMqqWTxgyvkz2d3SAXmj6Xm5vkJ5JbU_3dJN1mtOkUDqrQPKUS8-LXVKH9FbSsIHh9bdjDN1RuKDYB0wlVL6cTeobpg6IoxIYKw6ZCMXN_TptKpoWihZ6bpzyn6BYNQwZF3s76o856L2F6QhPTX4jizXx5i8yOXn14cWyZ9hCWApS2tqLUFUwJAJw2Y77knq2FI8DwpHBkGIQsTbjH04gFtoiY9nginUjbjg5tAcBGeLfJIMszfZdQj-lUuqEMRAAnOM0koELBpO3bCVfSdodk3JpFrAx3OrbwWMb1GSrkMa59jGsP35AHekiedTNWDW_IObKP0dJipOPIMN9nLqqyjF-_fxdPfI_5DqC4aEieGqE0h0crYconQAFk8OpJHvQkIV6o_nBr0LGJV2WM7yS8AHY_GH7UDeNMzMHLdF6hDAtZCAg2PEcG710dgPR8SO40PtKp73o-4FsG6gY97-kEkOm8P5ItPtWM5x5HPn1vSA5bP9v66X9c1cPOE__6F9z7F-H75JJbN0XxLCc6IIN1UekHAE3X8qGJNr8Ae-eKvA
  priority: 102
  providerName: Unpaywall
Title Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees
URI https://link.springer.com/article/10.1186/1471-2105-14-100
https://www.ncbi.nlm.nih.gov/pubmed/23506640
https://www.proquest.com/docview/1322371539
https://www.proquest.com/docview/1348486438
https://www.proquest.com/docview/1551612266
https://pubmed.ncbi.nlm.nih.gov/PMC3614553
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-100
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEwIeEN8URmUQEmJaWD6cxHlAKJSVUWnVtFGpPEW245RJJR1JC8v_wx_KXb7WTGPwkkT1Oalz57tzfPc7Ql65IuFaicCQ4G0YLE64Id1AGErbAWMJYjxhNvLB2NufsNHUnZ6nR9cvML90aYf1pCbZ_O3Zj-I9TPh35YTn3q4FCtaApYtrWAzUCizgN8FOBVjI4YCd7ykgen-Za1RTN5uWl9yhY6Ququo1W3UxjrLdTL1Nbq7SU1H8EvP5mr0a3iV3akeThpVk3CPXdHqf3KhKTxYPyG_Em6b6rI6DTWlVvBtuSxcJlRiqvqQKRSKj-Qr0yc8K0LugsqBYl0vHVH0ch_Q7RvSJLBMFFTXACcVg-hmtkotOFM30rH7KDkVJrUArKEJplqcyED2H7jGN65I_FDfL84dkMtz7Mtg36ooNhgLHaWkEiS2YEuADmoy50nNMLSwBsiCFJbnPWRJ7jpcEzDdFwLTjxdIKtGlpbgrwNYTziGyki1Q_IdRhOpE2l77wYVGlmQRHTTBpumbsKWnaPbLbsChSNZw5VtWYR-WyhnsRMjVCpsIVQjP3yJu2x2kF5XEF7UvkeoQIGSmG4MzEKs-jz8dHUeg6zAVhsoMeeV0TJQt4tBJ1RgMMAEG1OpRbHUqYwqrb3AhX1MyACD8TOD4YJGh-0TZjTwyLS_VihTSMMw5OJb-CBrdCLfCyvR55XMlrO3zbccHlZDBcvyPJLQGCj3db0pNvJQi54yHEvdMj243Mr_31v77V7XZW_JMFT_-HBc_ILbusT-IYVrBFNpbZSj8HL3Ep--S6P_XhyIef-mQzDEfHIzh_2BsfHsGvA2_QL7-_9EslAS2T8WH49Q8P0mpT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YCiwIhFqxiu1dvw4IRZSqoW0O0Eq5md31OlQKTogTiv8PZ34jM34RVyKcekqknbW9ntl5eGa_IeSlJ9PQaBkxBd4GE0kaMuVFkmnjRkKkiPGEp5GPh_7Bqfg48kYb5HdzFgbLKhudWCrqZKrxG3kPoyYewP6M3s2-M-wahdnVpoVGJRaHpjiHkC1_O9gD_r5y3f0PJ-8PWN1VgGkw7gsWpa4UWoKfYgvhKZ_bRjoSnldJR4VBKNLE534aicCWkTDcT5QTGdsxoS3BHkoO171CrgpYBnZMCEZtgOdgf4AmFRr6PQcUP4OQymOOAHVnd0zfRQOwYgEvVme2KdobZGuZzWRxLieTFSu4f4vcrN1X2q_k7TbZMNkdcq1qaFncJb8QxZqan3V1bUarluBwWTpNqcIC-AXVKGhzmi9BS_2oYMILqgqK3b5MQvXesE-_YZ2gnM9lQWUNm0KxRH9MqyNLZ5rOzbi-yxuK8l9BYVAE6Cx_yvL2HKYnNKkbCVFMwef3yOmlcOw-2cymmXlIKBcmVW6oAhlAqGaEAvdPCmV7duJrZbsW6TUsinUNko69OiZxGSyFfoxMjZGp8A8Bny2y086YVQAha2hfINdjxN3IsLBnLJd5Hg8-f4r7HhceCJAbWeR1TZRO4dZa1uckYAEI1dWh3O5QgmLQ3eFGuOJaMeXx321kkeftMM7EYrvMTJdII0IRgqsarqHBBKsDvrtvkQeVvLbLd7kHjqyA5QYdSW4JENK8O5KdfS2hzbmPwPncIruNzK88-j_f6m67K_7LgkfrX8ozsnVwcnwUHw2Gh4_JdbfsfcKZE22TzcV8aZ6AB7pQT8ttT8mXy9YzfwAiy5hG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwELbQEG8fEO8LDDAICTEtahI7jvOx6qg2XioETNq3yHacMqlLq6YF-n_4odwlTtRMMMSnRPI5qXvn8-Pc-TlCXsWqkNao1NeANnyeF9LXcap8Y6OU8wI5nvA08seJODrh707jU_fBrWqz3duQZHOmAVmaytVgkRfNFJdiEIJL9WGzEvshB0cCW_arHNY2rGAwEqMuioB8_W1o8g-9ekvRRYe8tSJdzJbsQqa3yI11uVCbH2o221qVxnfIbQcn6bDR_11yxZb3yLWmwOTmPvmFrNLU_nTZriVtSnTDY-m8oBoT0lfUoOKXtFqD1_je0HZvqN5QrL5lc2oOJ0N6jnl7arlUG6ocjQnFlPkpbY4QnRm6tFP3lgOK9thQU1AkzKwvdbp5Bd1zmrvCPhRD4tUDcjJ--3V05Lu6DL4BeLTy0yJS3ChAegHnsRYssCpUoHGtQi0TyYtcMFGkPAlUyi0TuQ5TG4RWBgoQhWIPyU45L-0uoYzbQkdSJyqBrZPlGuCY4jqIg1wYHUQeGbQqyowjLcfaGbOs3rxIkaFSM1Qq3CEBs0fedD0WDWHHJbIvUesZ8mCUmGgzVeuqyo6_fM6GMeMxGFCUeuS1Eyrm8Gqj3LkFGABSZ_Uk93qSMFFNv7k1rsw5iirDjwEsgWUHml90zdgTk99KO1-jDJdcAnSUl8hgwDMELC088qix1274EYsBWHIYbtKz5E4AKcb7LeXZt5pqnAkksmce2W9tfuun__Vf3e9mxT9V8Ph_nvycXP90OM4-HE_ePyE3o7owCfPDdI_srJZr-xTg4Uo_q33Ab9boXi0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ti9NAEF6OHqJ-8P2lesoqgniYNi-bTfKxqMcpWA61cH4Ku5tNLfaSmjRq_T3-UGeSTWiKngh-amFnSWc7M_tsduYZQp74Ig21EpElAW1YLElDS_qRsJR2I8ZS5HjCauS3U348Y29O_dM9ctLWwsgzJRe5IQ1FouLRdhn6sqlywC4KuhivkrRx-pCPHQiyFhxffMthEFrgEL_PfUDnA7I_m55MPtZFRkakva38zbTe7rQbo7c2qd0Eyu4W9TK5WGUrsfkmlsutjeroKvnSqtjkp3weVWs5Uj922B__5xpcI1cMqqWTxgyvkz2d3SAXmj6Xm5vkJ5JbU_3dJN1mtOkUDqrQPKUS8-LXVKH9FbSsIHh9bdjDN1RuKDYB0wlVL6cTeobpg6IoxIYKw6ZCMXN_TptKpoWihZ6bpzyn6BYNQwZF3s76o856L2F6QhPTX4jizXx5i8yOXn14cWyZ9hCWApS2tqLUFUwJAJw2Y77knq2FI8DwpHBkGIQsTbjH04gFtoiY9nginUjbjg5tAcBGeLfJIMszfZdQj-lUuqEMRAAnOM0koELBpO3bCVfSdodk3JpFrAx3OrbwWMb1GSrkMa59jGsP35AHekiedTNWDW_IObKP0dJipOPIMN9nLqqyjF-_fxdPfI_5DqC4aEieGqE0h0crYconQAFk8OpJHvQkIV6o_nBr0LGJV2WM7yS8AHY_GH7UDeNMzMHLdF6hDAtZCAg2PEcG710dgPR8SO40PtKp73o-4FsG6gY97-kEkOm8P5ItPtWM5x5HPn1vSA5bP9v66X9c1cPOE__6F9z7F-H75JJbN0XxLCc6IIN1UekHAE3X8qGJNr8Ae-eKvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+profiling+of+breast+cancer+survivability+by+pooled+cDNA+microarray+analysis+using+logistic+regression%2C+artificial+neural+networks+and+decision+trees&rft.jtitle=BMC+bioinformatics&rft.au=Chou%2C+Hsiu-Ling&rft.au=Yao%2C+Chung-Tay&rft.au=Su%2C+Sui-Lun&rft.au=Lee%2C+Chia-Yi&rft.date=2013-03-19&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-100&rft.externalDBID=ISR&rft.externalDocID=A534517829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon