Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees
Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees...
Saved in:
| Published in | BMC bioinformatics Vol. 14; no. 1; p. 100 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
19.03.2013
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-14-100 |
Cover
| Abstract | Background
Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney
U
test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.
Results
The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence…
Conclusions
The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. |
|---|---|
| AbstractList | Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Keywords: Breast cancer, Microarray, Artificial neural network, Logistic regression, Decision tree Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.BACKGROUNDMicroarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence.RESULTSThe DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence.The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.CONCLUSIONSThe 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence… Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence. The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. Doc number: 100 Abstract Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence... Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. |
| ArticleNumber | 100 |
| Audience | Academic |
| Author | Su, Sui-Lun Wahlqvist, Mark L Hu, Kuang-Yu Chang, Yu-Tien Lee, Chia-Yi Chang, Chi-Wen Chu, Chi-Ming Lu, Yu-Fen Chou, Hsiu-Ling Wetter, Thomas Shih, Yun-Wen Yao, Chung-Tay Terng, Harn-Jing |
| AuthorAffiliation | 6 School of Nursing, College of Medicine, Chang-Gung University, Taoyuan, Taiwan 2 Department of Surgery, Cathay General Hospital, Taipei, Taiwan 5 Advpharma, Inc., Taipei, Taiwan 3 Section of Biomedical informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan 4 Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan 7 National Health Research Institute, Chunan, Taiwan 1 Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology, New Taipei, Taiwan 8 Department of Medical Informatics, University of Heidelberg, Heidelberg, Germany |
| AuthorAffiliation_xml | – name: 3 Section of Biomedical informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan – name: 4 Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan – name: 1 Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology, New Taipei, Taiwan – name: 6 School of Nursing, College of Medicine, Chang-Gung University, Taoyuan, Taiwan – name: 5 Advpharma, Inc., Taipei, Taiwan – name: 7 National Health Research Institute, Chunan, Taiwan – name: 8 Department of Medical Informatics, University of Heidelberg, Heidelberg, Germany – name: 2 Department of Surgery, Cathay General Hospital, Taipei, Taiwan |
| Author_xml | – sequence: 1 givenname: Hsiu-Ling surname: Chou fullname: Chou, Hsiu-Ling organization: Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology – sequence: 2 givenname: Chung-Tay surname: Yao fullname: Yao, Chung-Tay organization: Department of Surgery, Cathay General Hospital – sequence: 3 givenname: Sui-Lun surname: Su fullname: Su, Sui-Lun organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center – sequence: 4 givenname: Chia-Yi surname: Lee fullname: Lee, Chia-Yi organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center – sequence: 5 givenname: Kuang-Yu surname: Hu fullname: Hu, Kuang-Yu organization: Department of Bioinformatics, Chung Hua University – sequence: 6 givenname: Harn-Jing surname: Terng fullname: Terng, Harn-Jing organization: Advpharma, Inc – sequence: 7 givenname: Yun-Wen surname: Shih fullname: Shih, Yun-Wen organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center – sequence: 8 givenname: Yu-Tien surname: Chang fullname: Chang, Yu-Tien organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center – sequence: 9 givenname: Yu-Fen surname: Lu fullname: Lu, Yu-Fen organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center – sequence: 10 givenname: Chi-Wen surname: Chang fullname: Chang, Chi-Wen organization: School of Nursing, College of Medicine, Chang-Gung University – sequence: 11 givenname: Mark L surname: Wahlqvist fullname: Wahlqvist, Mark L organization: National Health Research Institute – sequence: 12 givenname: Thomas surname: Wetter fullname: Wetter, Thomas organization: Department of Medical Informatics, University of Heidelberg – sequence: 13 givenname: Chi-Ming surname: Chu fullname: Chu, Chi-Ming email: chuchiming@web.de organization: Section of Biomedical informatics, School of Public Health, National Defense Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23506640$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB-wZ4UssQGJFDtxPJkN0qhAqVSBxGNt3Tg3wSVjp7Yzbf4PPxSnMwydipeysGV_5_rm3HOY7BlrMEkeM3rMWCleMj5jacZokTKeMkrvJQfbo71b-_3k0PsLStmspMWDZD_LCyoEpwfJ91M0SPC6d-i9tob0zja606YltiGVQ_CBKDAKHfGDW-kVVPE6jKQaSW9thzVRr98vyFIrZ8E5GAkY6EavPRn8VKezrfZBK-Kw3bzygoALutFKQ0cMDu5mCVfWffNRXpMalb5pJzhE_zC530Dn8dFmPUq-vH3z-eRdev7h9OxkcZ4qQWlI500GXAEtZpTzohI5RWCACipgVTkreVOLXDRzPqMw55iLumJzpAxLChkrIT9K2LruYHoYr6DrZO_0EtwoGZWT43KyVE6Wxl08pFHzaq3ph2qJtUIT4t9sdRa03L0x-qts7UrmgvGiyGOBZ5sCzl4O6INcaq-w68CgHbxkRcEEyzIh_o3mvOSl4HkZ0ad30As7uDiYicqyfMaKfP6LaqFDqU1jY4tqKioXRc6LmJdsoo5_Q8Wvxjj1mMgYGNwVPN8RRCbgdWhh8F6effq4yz657d_WuJ8RjYBYAzFf3jtspNIBQgxH7EJ3f5sMvSP8j2FuAuAjalp0t1z7k-YHilIZDA |
| CitedBy_id | crossref_primary_10_3389_fgene_2019_00662 crossref_primary_10_3390_ijerph18063099 crossref_primary_10_1016_j_ijbiomac_2022_09_119 crossref_primary_10_1007_s11033_021_06144_z crossref_primary_10_1016_j_neo_2018_01_001 crossref_primary_10_1016_j_bbrc_2016_06_159 crossref_primary_10_1371_journal_pone_0097818 crossref_primary_10_1186_s12859_016_1038_1 crossref_primary_10_1038_s41598_019_40826_w crossref_primary_10_3390_cancers12071890 crossref_primary_10_7717_peerj_3003 crossref_primary_10_1038_s41598_023_41090_9 crossref_primary_10_3389_fgene_2022_914219 crossref_primary_10_1038_s41598_021_84995_z crossref_primary_10_3233_IDA_160845 crossref_primary_10_3390_ijms23031858 crossref_primary_10_1007_s12032_014_0454_1 crossref_primary_10_3389_fonc_2021_615427 crossref_primary_10_1186_s12920_020_00736_7 crossref_primary_10_3892_ol_2018_9477 crossref_primary_10_1186_s12920_020_0676_3 crossref_primary_10_1186_s40709_020_00118_1 crossref_primary_10_1371_journal_pone_0124780 crossref_primary_10_18632_oncotarget_3525 crossref_primary_10_1016_j_heliyon_2023_e18789 crossref_primary_10_1007_s11814_015_0255_z crossref_primary_10_3390_jpm12091496 |
| Cites_doi | 10.1002/1097-0142(20010415)91:8+<1673::AID-CNCR1182>3.0.CO;2-T 10.1186/bcr1325 10.1016/j.copbio.2007.11.003 10.1186/1756-0500-4-397 10.1016/S0140-6736(05)70933-8 10.1002/sim.2929 10.1158/1078-0432.CCR-06-2765 10.1093/jnci/83.3.154 10.1016/j.artmed.2004.07.002 10.4103/0975-7406.92726 10.1002/sim.4085 10.1093/bioinformatics/btl400 10.1039/b418765b 10.1186/1471-2105-9-125 10.1158/0008-5472.CAN-05-4414 10.1093/clinchem/48.11.2051 10.1007/s00109-008-0419-y 10.1016/j.ygeno.2003.08.008 10.1073/pnas.0506580102 10.1021/jf048368t 10.1093/jnci/93.13.979 10.1371/journal.pone.0029860 10.1002/sim.4348 10.1016/S1672-0229(03)01003-9 10.1093/jnci/djj052 |
| ContentType | Journal Article |
| Copyright | Chou et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2013 BioMed Central Ltd. 2013 Chou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Chou et al.; licensee BioMed Central Ltd. 2013 Chou et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Chou et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Chou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Chou et al.; licensee BioMed Central Ltd. 2013 Chou et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7TM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-14-100 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 100 |
| ExternalDocumentID | 10.1186/1471-2105-14-100 PMC3614553 2933206391 A534517829 23506640 10_1186_1471_2105_14_100 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7TM 7X8 5PM 123 2VQ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c600t-9f2a4ca0570445b630ea1aecaba1b8784fd636f9470a94e36db19e01e80a218a3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Sun Oct 26 03:49:42 EDT 2025 Tue Sep 30 16:57:15 EDT 2025 Thu Oct 02 08:48:31 EDT 2025 Tue Oct 07 11:14:00 EDT 2025 Mon Oct 06 18:31:51 EDT 2025 Mon Oct 20 22:50:29 EDT 2025 Mon Oct 20 16:58:02 EDT 2025 Thu Oct 16 16:17:26 EDT 2025 Thu Apr 03 07:00:57 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Oct 01 04:15:22 EDT 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Logistic regression Breast cancer Artificial neural network Microarray Decision tree |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c600t-9f2a4ca0570445b630ea1aecaba1b8784fd636f9470a94e36db19e01e80a218a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-100 |
| PMID | 23506640 |
| PQID | 1322371539 |
| PQPubID | 44065 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_14_100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614553 proquest_miscellaneous_1551612266 proquest_miscellaneous_1348486438 proquest_journals_1322371539 gale_infotracmisc_A534517829 gale_infotracacademiconefile_A534517829 gale_incontextgauss_ISR_A534517829 pubmed_primary_23506640 crossref_citationtrail_10_1186_1471_2105_14_100 crossref_primary_10_1186_1471_2105_14_100 springer_journals_10_1186_1471_2105_14_100 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-19 |
| PublicationDateYYYYMMDD | 2013-03-19 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2013 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | MJ Pencina (5760_CR19) 2008; 27 R Kumar (5760_CR24) 2012; 4 A Subramanian (5760_CR17) 2005; 102 X Xu (5760_CR11) 2005; 53 S Lassmann (5760_CR7) 2009; 87 YH Hsu (5760_CR26) 2007 PB Snow (5760_CR25) 2001; 91 L Xu (5760_CR27) 2008; 9 SJ Beyer (5760_CR22) 2011; 4 Y Wang (5760_CR15) 2005; 365 A Padoan (5760_CR18) 2010 C Sotiriou (5760_CR14) 2006; 98 MJ Pencina (5760_CR20) 2012; 31 Y Wang (5760_CR16) 2012; 7 D Delen (5760_CR23) 2005; 34 L Shi (5760_CR8) 2008; 19 CA Davis (5760_CR4) 2006; 22 AV Ivshina (5760_CR13) 2006; 66 F Gemignani (5760_CR5) 2002; 48 Y Pawitan (5760_CR28) 2005; 7 O Gutmann (5760_CR6) 2005; 5 DL Stirewalt (5760_CR9) 2004; 83 PJ van der Spek (5760_CR10) 2003; 1 5760_CR1 P Eifel (5760_CR2) 2001; 93 MJ Pencina (5760_CR21) 2011; 30 C Desmedt (5760_CR12) 2007; 13 WL McGuire (5760_CR3) 1991; 83 21989294 - BMC Res Notes. 2011 Oct 11;4:397 18304324 - BMC Bioinformatics. 2008;9:125 17545524 - Clin Cancer Res. 2007 Jun 1;13(11):3207-14 15884798 - J Agric Food Chem. 2005 May 18;53(10):3789-94 16882647 - Bioinformatics. 2006 Oct 1;22(19):2356-63 16280042 - Breast Cancer Res. 2005;7(6):R953-64 11309767 - Cancer. 2001 Apr 15;91(8 Suppl):1673-8 12406995 - Clin Chem. 2002 Nov;48(11):2051-4 15915261 - Lab Chip. 2005 Jun;5(6):675-81 22368395 - J Pharm Bioallied Sci. 2012 Jan;4(1):21-6 19066834 - J Mol Med (Berl). 2009 Feb;87(2):211-24 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9 17079448 - Cancer Res. 2006 Nov 1;66(21):10292-301 11438563 - J Natl Cancer Inst. 2001 Jul 4;93(13):979-89 1988696 - J Natl Cancer Inst. 1991 Feb 6;83(3):154-5 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 18155896 - Curr Opin Biotechnol. 2008 Feb;19(1):10-8 15894176 - Artif Intell Med. 2005 Jun;34(2):113-27 16478745 - J Natl Cancer Inst. 2006 Feb 15;98(4):262-72 22276133 - PLoS One. 2012;7(1):e29860 14706461 - Genomics. 2004 Feb;83(2):321-31 21204120 - Stat Med. 2011 Jan 15;30(1):11-21 22147389 - Stat Med. 2012 Jan 30;31(2):101-13 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 15626329 - Genomics Proteomics Bioinformatics. 2003 Feb;1(1):9-14 |
| References_xml | – volume: 91 start-page: 1673 year: 2001 ident: 5760_CR25 publication-title: Cancer doi: 10.1002/1097-0142(20010415)91:8+<1673::AID-CNCR1182>3.0.CO;2-T – volume: 7 start-page: R953 year: 2005 ident: 5760_CR28 publication-title: Breast Cancer Res doi: 10.1186/bcr1325 – volume: 19 start-page: 10 year: 2008 ident: 5760_CR8 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2007.11.003 – volume: 4 start-page: 397 year: 2011 ident: 5760_CR22 publication-title: BMC Res Notes doi: 10.1186/1756-0500-4-397 – volume: 365 start-page: 671 year: 2005 ident: 5760_CR15 publication-title: Lancet doi: 10.1016/S0140-6736(05)70933-8 – volume: 27 start-page: 157 year: 2008 ident: 5760_CR19 publication-title: Stat Med doi: 10.1002/sim.2929 – volume: 13 start-page: 3207 year: 2007 ident: 5760_CR12 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-2765 – volume: 83 start-page: 154 year: 1991 ident: 5760_CR3 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/83.3.154 – volume: 34 start-page: 113 year: 2005 ident: 5760_CR23 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2004.07.002 – volume: 4 start-page: 21 year: 2012 ident: 5760_CR24 publication-title: J Pharm Bioallied Sci doi: 10.4103/0975-7406.92726 – volume: 30 start-page: 11 year: 2011 ident: 5760_CR21 publication-title: Stat Med doi: 10.1002/sim.4085 – volume: 22 start-page: 2356 year: 2006 ident: 5760_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl400 – volume: 5 start-page: 675 year: 2005 ident: 5760_CR6 publication-title: Lab Chip doi: 10.1039/b418765b – volume: 9 start-page: 125 year: 2008 ident: 5760_CR27 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-125 – volume: 66 start-page: 10292 year: 2006 ident: 5760_CR13 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4414 – volume: 48 start-page: 2051 year: 2002 ident: 5760_CR5 publication-title: Clin Chem doi: 10.1093/clinchem/48.11.2051 – volume: 87 start-page: 211 year: 2009 ident: 5760_CR7 publication-title: J Mol Med doi: 10.1007/s00109-008-0419-y – volume: 83 start-page: 321 year: 2004 ident: 5760_CR9 publication-title: Genomics doi: 10.1016/j.ygeno.2003.08.008 – volume: 102 start-page: 15545 year: 2005 ident: 5760_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume-title: Investigating the Models of Logistic Regression, Decision Tree, Artificial Neural Network and Hybrid Analysis for Predicting Coronary Artery Disease year: 2007 ident: 5760_CR26 – volume: 53 start-page: 3789 year: 2005 ident: 5760_CR11 publication-title: J Agric Food Chem doi: 10.1021/jf048368t – volume: 93 start-page: 979 year: 2001 ident: 5760_CR2 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/93.13.979 – volume: 7 start-page: e29860 year: 2012 ident: 5760_CR16 publication-title: PLoS One doi: 10.1371/journal.pone.0029860 – volume: 31 start-page: 101 year: 2012 ident: 5760_CR20 publication-title: Stat Med doi: 10.1002/sim.4348 – volume: 1 start-page: 9 year: 2003 ident: 5760_CR10 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/S1672-0229(03)01003-9 – volume: 98 start-page: 262 year: 2006 ident: 5760_CR14 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djj052 – ident: 5760_CR1 – volume-title: Net Reclassification Improvement (NRI) has been proposed as an alternative to the area under the curve of the the ROC year: 2010 ident: 5760_CR18 – reference: 16882647 - Bioinformatics. 2006 Oct 1;22(19):2356-63 – reference: 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9 – reference: 21204120 - Stat Med. 2011 Jan 15;30(1):11-21 – reference: 11438563 - J Natl Cancer Inst. 2001 Jul 4;93(13):979-89 – reference: 22368395 - J Pharm Bioallied Sci. 2012 Jan;4(1):21-6 – reference: 15915261 - Lab Chip. 2005 Jun;5(6):675-81 – reference: 21989294 - BMC Res Notes. 2011 Oct 11;4:397 – reference: 18155896 - Curr Opin Biotechnol. 2008 Feb;19(1):10-8 – reference: 17079448 - Cancer Res. 2006 Nov 1;66(21):10292-301 – reference: 16478745 - J Natl Cancer Inst. 2006 Feb 15;98(4):262-72 – reference: 22276133 - PLoS One. 2012;7(1):e29860 – reference: 11309767 - Cancer. 2001 Apr 15;91(8 Suppl):1673-8 – reference: 19066834 - J Mol Med (Berl). 2009 Feb;87(2):211-24 – reference: 17545524 - Clin Cancer Res. 2007 Jun 1;13(11):3207-14 – reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 – reference: 15626329 - Genomics Proteomics Bioinformatics. 2003 Feb;1(1):9-14 – reference: 15894176 - Artif Intell Med. 2005 Jun;34(2):113-27 – reference: 18304324 - BMC Bioinformatics. 2008;9:125 – reference: 12406995 - Clin Chem. 2002 Nov;48(11):2051-4 – reference: 15884798 - J Agric Food Chem. 2005 May 18;53(10):3789-94 – reference: 16280042 - Breast Cancer Res. 2005;7(6):R953-64 – reference: 22147389 - Stat Med. 2012 Jan 30;31(2):101-13 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 14706461 - Genomics. 2004 Feb;83(2):321-31 – reference: 1988696 - J Natl Cancer Inst. 1991 Feb 6;83(3):154-5 |
| SSID | ssj0017805 |
| Score | 2.254151 |
| Snippet | Background
Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to... Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict... Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to... Doc number: 100 Abstract Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer... Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 100 |
| SubjectTerms | Algorithms Analysis Anopheles Bioinformatics Biomedical and Life Sciences Breast cancer Breast Neoplasms - genetics Cancer Cancer therapies Comparative analysis Comparative genomics Computational Biology/Bioinformatics Computer Appl. in Life Sciences Conversion Data mining Databases, Genetic Decision Trees DNA damage DNA microarrays DNA, Complementary - genetics Female Gene expression Gene Expression Profiling Genes Genetic aspects Hospitals Humans Life Sciences Logistic Models Logistics Medical research Microarrays Neural networks Neural Networks (Computer) Oligonucleotide Array Sequence Analysis Physiological aspects Prognosis Recurrence Research Article Sample Size Standard deviation Statistical methods Studies Survival Analysis Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8IH4TGMggJMSE1SR2EucBoQKbBhIVGkzaW2Q7TjepS0vTAv1_-EO5S5zQTKI8pZLPSZw7nz_3zt8R8iJShbRGpUwD2mAiLyTTUaqYsWEqRIEcT3ga-fM4PjoRn06j0x0ybs_CYFpl6xNrR53PDP5HPsRdE09gfqZv598ZVo3C6GpbQkO50gr5m5pi7ArZDZEZa0B23x2Mvxx3cQVk8G-DlTIeBuCaGchFLBDgkPze4nTZRW-sUZfzJ7sg6g1ybVXO1fqnmk431qnDW-SmA5h01FjEbbJjyzvkalNycn2X_EaeaWp_ufzXkjZFu-G2dFZQjSnqS2rQFBa0WoEf-dEQea-pXlOsx2Vzaj6MR_QCM_nUYqHWVDliE4pJ9BPaHCo6N3RhJ-4prylaaENWQZFCs77UCegVdM9p7kr9UAySV_fIyeHBt_dHzFVqYAYA05KlRaiEUYD9fCEiHXPfqkCBDWgVaJlIUeQxj4tUJL5KheVxroPU-oGVvgKMofh9MihnpX1IKBe20KHUiUpgM2WFBoCmhPYjP4-N9kOPDFsVZcbRmGM1jWlWb2dknKFSM1Qq_EJKZo-86nrMGwqPLbLPUesZMmOUmHozUauqyj5-Pc5GERcRGFCYeuSlEypm8Gij3EkGGACSafUk93qSMHVNv7k1rsy5jir7a-geedY1Y09MhyvtbIUyQgoJYFJukcEQaADoOvbIg8Zeu-GHPAKoKWC4Sc-SOwEkHe-3lOdnNfk4j5Hanntkv7X5jVf_51fd72bFf1XwaPtHeUyuh3VFEs6CdI8MlouVfQK4cKmfusn-B-mxYgk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yIuqD-O3qKVEE8bBc26Rp-ricHqfgPagH91YmaboerN2j3ar9f_xDnWmzZXvoiU8tZNI2O5P52Jn8hrGXCZTaWcgCg95GIItSBybJILAuzqQsCeOJTiN_PFZHJ_LDaXLq_--gszDb-ftIq_0IlWeAYUkSRBJVBgbnV9FEqT4tqw7GfAEh82-SkH-YNTE6F1Xvlu25WBc5JkdvsuttdQ7dD1gut-zP4W12yzuOfD5w-g674qq77NrQSrK7x34RfjR3P31da8WHZtz4WL4quaHS8zW3xOKaNy3qh-8DQHfHTcepz5YruH17POffqEIP6ho6Dh6whFNx_IIPh4XOLK_dwr_lDSfJG0AoOEFj9pe-sLzB6QUvfAsfTsnv5j47OXz35eAo8B0YAouO0DrIyhikBfTpQikTo0ToIALkrYHI6FTLslBClZlMQ8ikE6owUebCyOkQ0HcA8YDtVKvKPWJcSFeaWJsUUgySnDToeIE0YRIWypownrH9DYty6-HJqUvGMu_DFK1yYmpOTMU7glqesdfjjPMBmuMS2hfE9ZwQLyoqqVlA2zT5-8-f8nkiZIICFGcz9soTlSt8tQV_QgEXQCBZE8rdCSVuSTsd3ghX7lVCk1PYL1I0MDj8fBymmVTmVrlVSzRSS41Oor6EhlKbEXrNasYeDvI6Lj8WCbqQEpebTiR5JCAw8elIdfa1BxUXiiDrxYztbWR-69P_-qvujbvinyx4_D9PfsJuxH3fERFE2S7bWdete4re39o86zf-bxerUvc priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ti9NAEF6OHqJ-8P2lesoqgniYNi-bTfKxqMcpWA61cH4Ku5tNLfaSmjRq_T3-UGeSTWiKngh-amFnSWc7M_tsduYZQp74Ig21EpElAW1YLElDS_qRsJR2I8ZS5HjCauS3U348Y29O_dM9ctLWwsgzJRe5IQ1FouLRdhn6sqlywC4KuhivkrRx-pCPHQiyFhxffMthEFrgEL_PfUDnA7I_m55MPtZFRkakva38zbTe7rQbo7c2qd0Eyu4W9TK5WGUrsfkmlsutjeroKvnSqtjkp3weVWs5Uj922B__5xpcI1cMqqWTxgyvkz2d3SAXmj6Xm5vkJ5JbU_3dJN1mtOkUDqrQPKUS8-LXVKH9FbSsIHh9bdjDN1RuKDYB0wlVL6cTeobpg6IoxIYKw6ZCMXN_TptKpoWihZ6bpzyn6BYNQwZF3s76o856L2F6QhPTX4jizXx5i8yOXn14cWyZ9hCWApS2tqLUFUwJAJw2Y77knq2FI8DwpHBkGIQsTbjH04gFtoiY9nginUjbjg5tAcBGeLfJIMszfZdQj-lUuqEMRAAnOM0koELBpO3bCVfSdodk3JpFrAx3OrbwWMb1GSrkMa59jGsP35AHekiedTNWDW_IObKP0dJipOPIMN9nLqqyjF-_fxdPfI_5DqC4aEieGqE0h0crYconQAFk8OpJHvQkIV6o_nBr0LGJV2WM7yS8AHY_GH7UDeNMzMHLdF6hDAtZCAg2PEcG710dgPR8SO40PtKp73o-4FsG6gY97-kEkOm8P5ItPtWM5x5HPn1vSA5bP9v66X9c1cPOE__6F9z7F-H75JJbN0XxLCc6IIN1UekHAE3X8qGJNr8Ae-eKvA priority: 102 providerName: Unpaywall |
| Title | Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees |
| URI | https://link.springer.com/article/10.1186/1471-2105-14-100 https://www.ncbi.nlm.nih.gov/pubmed/23506640 https://www.proquest.com/docview/1322371539 https://www.proquest.com/docview/1348486438 https://www.proquest.com/docview/1551612266 https://pubmed.ncbi.nlm.nih.gov/PMC3614553 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-100 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEwIeEN8URmUQEmJaWD6cxHlAKJSVUWnVtFGpPEW245RJJR1JC8v_wx_KXb7WTGPwkkT1Oalz57tzfPc7Ql65IuFaicCQ4G0YLE64Id1AGErbAWMJYjxhNvLB2NufsNHUnZ6nR9cvML90aYf1pCbZ_O3Zj-I9TPh35YTn3q4FCtaApYtrWAzUCizgN8FOBVjI4YCd7ykgen-Za1RTN5uWl9yhY6Ququo1W3UxjrLdTL1Nbq7SU1H8EvP5mr0a3iV3akeThpVk3CPXdHqf3KhKTxYPyG_Em6b6rI6DTWlVvBtuSxcJlRiqvqQKRSKj-Qr0yc8K0LugsqBYl0vHVH0ch_Q7RvSJLBMFFTXACcVg-hmtkotOFM30rH7KDkVJrUArKEJplqcyED2H7jGN65I_FDfL84dkMtz7Mtg36ooNhgLHaWkEiS2YEuADmoy50nNMLSwBsiCFJbnPWRJ7jpcEzDdFwLTjxdIKtGlpbgrwNYTziGyki1Q_IdRhOpE2l77wYVGlmQRHTTBpumbsKWnaPbLbsChSNZw5VtWYR-WyhnsRMjVCpsIVQjP3yJu2x2kF5XEF7UvkeoQIGSmG4MzEKs-jz8dHUeg6zAVhsoMeeV0TJQt4tBJ1RgMMAEG1OpRbHUqYwqrb3AhX1MyACD8TOD4YJGh-0TZjTwyLS_VihTSMMw5OJb-CBrdCLfCyvR55XMlrO3zbccHlZDBcvyPJLQGCj3db0pNvJQi54yHEvdMj243Mr_31v77V7XZW_JMFT_-HBc_ILbusT-IYVrBFNpbZSj8HL3Ep--S6P_XhyIef-mQzDEfHIzh_2BsfHsGvA2_QL7-_9EslAS2T8WH49Q8P0mpT |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YCiwIhFqxiu1dvw4IRZSqoW0O0Eq5md31OlQKTogTiv8PZ34jM34RVyKcekqknbW9ntl5eGa_IeSlJ9PQaBkxBd4GE0kaMuVFkmnjRkKkiPGEp5GPh_7Bqfg48kYb5HdzFgbLKhudWCrqZKrxG3kPoyYewP6M3s2-M-wahdnVpoVGJRaHpjiHkC1_O9gD_r5y3f0PJ-8PWN1VgGkw7gsWpa4UWoKfYgvhKZ_bRjoSnldJR4VBKNLE534aicCWkTDcT5QTGdsxoS3BHkoO171CrgpYBnZMCEZtgOdgf4AmFRr6PQcUP4OQymOOAHVnd0zfRQOwYgEvVme2KdobZGuZzWRxLieTFSu4f4vcrN1X2q_k7TbZMNkdcq1qaFncJb8QxZqan3V1bUarluBwWTpNqcIC-AXVKGhzmi9BS_2oYMILqgqK3b5MQvXesE-_YZ2gnM9lQWUNm0KxRH9MqyNLZ5rOzbi-yxuK8l9BYVAE6Cx_yvL2HKYnNKkbCVFMwef3yOmlcOw-2cymmXlIKBcmVW6oAhlAqGaEAvdPCmV7duJrZbsW6TUsinUNko69OiZxGSyFfoxMjZGp8A8Bny2y086YVQAha2hfINdjxN3IsLBnLJd5Hg8-f4r7HhceCJAbWeR1TZRO4dZa1uckYAEI1dWh3O5QgmLQ3eFGuOJaMeXx321kkeftMM7EYrvMTJdII0IRgqsarqHBBKsDvrtvkQeVvLbLd7kHjqyA5QYdSW4JENK8O5KdfS2hzbmPwPncIruNzK88-j_f6m67K_7LgkfrX8ozsnVwcnwUHw2Gh4_JdbfsfcKZE22TzcV8aZ6AB7pQT8ttT8mXy9YzfwAiy5hG |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwELbQEG8fEO8LDDAICTEtahI7jvOx6qg2XioETNq3yHacMqlLq6YF-n_4odwlTtRMMMSnRPI5qXvn8-Pc-TlCXsWqkNao1NeANnyeF9LXcap8Y6OU8wI5nvA08seJODrh707jU_fBrWqz3duQZHOmAVmaytVgkRfNFJdiEIJL9WGzEvshB0cCW_arHNY2rGAwEqMuioB8_W1o8g-9ekvRRYe8tSJdzJbsQqa3yI11uVCbH2o221qVxnfIbQcn6bDR_11yxZb3yLWmwOTmPvmFrNLU_nTZriVtSnTDY-m8oBoT0lfUoOKXtFqD1_je0HZvqN5QrL5lc2oOJ0N6jnl7arlUG6ocjQnFlPkpbY4QnRm6tFP3lgOK9thQU1AkzKwvdbp5Bd1zmrvCPhRD4tUDcjJ--3V05Lu6DL4BeLTy0yJS3ChAegHnsRYssCpUoHGtQi0TyYtcMFGkPAlUyi0TuQ5TG4RWBgoQhWIPyU45L-0uoYzbQkdSJyqBrZPlGuCY4jqIg1wYHUQeGbQqyowjLcfaGbOs3rxIkaFSM1Qq3CEBs0fedD0WDWHHJbIvUesZ8mCUmGgzVeuqyo6_fM6GMeMxGFCUeuS1Eyrm8Gqj3LkFGABSZ_Uk93qSMFFNv7k1rsw5iirDjwEsgWUHml90zdgTk99KO1-jDJdcAnSUl8hgwDMELC088qix1274EYsBWHIYbtKz5E4AKcb7LeXZt5pqnAkksmce2W9tfuun__Vf3e9mxT9V8Ph_nvycXP90OM4-HE_ePyE3o7owCfPDdI_srJZr-xTg4Uo_q33Ab9boXi0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ti9NAEF6OHqJ-8P2lesoqgniYNi-bTfKxqMcpWA61cH4Ku5tNLfaSmjRq_T3-UGeSTWiKngh-amFnSWc7M_tsduYZQp74Ig21EpElAW1YLElDS_qRsJR2I8ZS5HjCauS3U348Y29O_dM9ctLWwsgzJRe5IQ1FouLRdhn6sqlywC4KuhivkrRx-pCPHQiyFhxffMthEFrgEL_PfUDnA7I_m55MPtZFRkakva38zbTe7rQbo7c2qd0Eyu4W9TK5WGUrsfkmlsutjeroKvnSqtjkp3weVWs5Uj922B__5xpcI1cMqqWTxgyvkz2d3SAXmj6Xm5vkJ5JbU_3dJN1mtOkUDqrQPKUS8-LXVKH9FbSsIHh9bdjDN1RuKDYB0wlVL6cTeobpg6IoxIYKw6ZCMXN_TptKpoWihZ6bpzyn6BYNQwZF3s76o856L2F6QhPTX4jizXx5i8yOXn14cWyZ9hCWApS2tqLUFUwJAJw2Y77knq2FI8DwpHBkGIQsTbjH04gFtoiY9nginUjbjg5tAcBGeLfJIMszfZdQj-lUuqEMRAAnOM0koELBpO3bCVfSdodk3JpFrAx3OrbwWMb1GSrkMa59jGsP35AHekiedTNWDW_IObKP0dJipOPIMN9nLqqyjF-_fxdPfI_5DqC4aEieGqE0h0crYconQAFk8OpJHvQkIV6o_nBr0LGJV2WM7yS8AHY_GH7UDeNMzMHLdF6hDAtZCAg2PEcG710dgPR8SO40PtKp73o-4FsG6gY97-kEkOm8P5ItPtWM5x5HPn1vSA5bP9v66X9c1cPOE__6F9z7F-H75JJbN0XxLCc6IIN1UekHAE3X8qGJNr8Ae-eKvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+profiling+of+breast+cancer+survivability+by+pooled+cDNA+microarray+analysis+using+logistic+regression%2C+artificial+neural+networks+and+decision+trees&rft.jtitle=BMC+bioinformatics&rft.au=Chou%2C+Hsiu-Ling&rft.au=Yao%2C+Chung-Tay&rft.au=Su%2C+Sui-Lun&rft.au=Lee%2C+Chia-Yi&rft.date=2013-03-19&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-100&rft.externalDBID=ISR&rft.externalDocID=A534517829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |