Multi-subject/daily-life activity EMG-based control of mechanical hands

Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB,...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 6; no. 1; p. 41
Main Authors Castellini, Claudio, Fiorilla, Angelo Emanuele, Sandini, Giulio
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.11.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/1743-0003-6-41

Cover

Abstract Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. Results A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Conclusion Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
AbstractList Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. Results A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Conclusion Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. Results A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Conclusion Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
Abstract Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. Results A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Conclusion Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand.BACKGROUNDForearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand.A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state.RESULTSA standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state.Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.CONCLUSIONPerformance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent research shows that it can be used to control even a dexterous polyarticulate hand prosthesis such as Touch Bionics's i-LIMB, as well as a multifingered, multi-degree-of-freedom mechanical hand such as the DLR II. In this paper we extend previous work and investigate the robustness of such fine control possibilities, in two ways: firstly, we conduct an analysis on data obtained from 10 healthy subjects, trying to assess the general applicability of the technique; secondly, we compare the baseline controlled condition (arm relaxed and still on a table) with a "Daily-Life Activity" (DLA) condition in which subjects walk, raise their hands and arms, sit down and stand up, etc., as an experimental proxy of what a patient is supposed to do in real life. We also propose a cross-subject model analysis, i.e., training a model on a subject and testing it on another one. The use of pre-trained models could be useful in shortening the time required by the subject/patient to become proficient in using the hand. A standard machine learning technique was able to achieve a real-time grip posture classification rate of about 97% in the baseline condition and 95% in the DLA condition; and an average correlation to the target of about 0.93 (0.90) while reconstructing the required force. Cross-subject analysis is encouraging although not definitive in its present state. Performance figures obtained here are in the same order of magnitude of those obtained in previous work about healthy subjects in controlled conditions and/or amputees, which lets us claim that this technique can be used by reasonably any subject, and in DLA situations. Use of previously trained models is not fully assessed here, but more recent work indicates it is a promising way ahead.
ArticleNumber 41
Audience Academic
Author Castellini, Claudio
Sandini, Giulio
Fiorilla, Angelo Emanuele
AuthorAffiliation 2 Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
1 DIST, University of Genova, viale F Causa 13, 16145 Genova, Italy
AuthorAffiliation_xml – name: 1 DIST, University of Genova, viale F Causa 13, 16145 Genova, Italy
– name: 2 Italian Institute of Technology, via Morego 30, 16163 Genova, Italy
Author_xml – sequence: 1
  givenname: Claudio
  surname: Castellini
  fullname: Castellini, Claudio
  email: claudio.castellini@unige.it
  organization: DIST, University of Genova
– sequence: 2
  givenname: Angelo Emanuele
  surname: Fiorilla
  fullname: Fiorilla, Angelo Emanuele
  organization: DIST, University of Genova, Italian Institute of Technology
– sequence: 3
  givenname: Giulio
  surname: Sandini
  fullname: Sandini, Giulio
  organization: Italian Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19919710$$D View this record in MEDLINE/PubMed
BookMark eNqFkstr3DAQxk1JaR7ttcfiW0_O6mXZuhRCSDeBhF7asxiPpY0WWdpadsr-99V2l7wgFB0kRvP9NPNpToujEIMpis-UnFPaygVtBK8IIbySlaDvipPHwNGz83FxmtI6HwSpxYfimCpFVUPJSbG8m_3kqjR3a4PTogfnt5V31pSAk3tw07a8ultWHSTTlxjDNEZfRlsOBu8hOARf5r1PH4v3Fnwynw77WfHr-9XPy-vq9sfy5vLitkJJyFQ1nZAttFZJCZZj3fUNVx2ruURFDQogCAyUkUxZQE4N4y0qW3cEiCAd42fFzZ7bR1jrzegGGLc6gtP_AnFcaRgnh95oQIoWa8UaaUXDoO0MYX3GAScoFMmsxZ41hw1s_4D3j0BK9M5evXNQ7xzUUguaFd_2is3cDaZHk_0A_6KMlzfB3etVfNCsaYVodk9-PQDG-Hs2adKDS2i8h2DinHTDBa2VoCJnnu8zV5B7ccHGDMS8ejO4_BHGuhy_YJTldMplFnx5XttTK4e_fiLiGFMajf1_t-KVAN0Ek9tNQZ6Tt2UHW1Pmh5UZ9TrOY8hT8ZbiL7UK2Rw
CitedBy_id crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_1109_LSENS_2023_3326459
crossref_primary_10_1109_TMRB_2021_3122966
crossref_primary_10_1016_S1672_6529_11_60095_4
crossref_primary_10_3390_s21093035
crossref_primary_10_1109_TNSRE_2019_2896269
crossref_primary_10_1016_j_compbiomed_2023_107649
crossref_primary_10_1109_TRO_2017_2683522
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_1109_TBME_2023_3346192
crossref_primary_10_3390_s21227500
crossref_primary_10_1109_TNSRE_2017_2699598
crossref_primary_10_1109_TIM_2024_3497179
crossref_primary_10_1109_TNSRE_2014_2304470
crossref_primary_10_1007_s00779_018_1152_3
crossref_primary_10_1109_JBHI_2013_2259594
crossref_primary_10_1682_JRRD_2014_09_0218
crossref_primary_10_1007_s11760_013_0477_7
crossref_primary_10_1109_TNSRE_2014_2302212
crossref_primary_10_3390_s21217404
crossref_primary_10_1016_j_eswa_2024_125302
crossref_primary_10_1186_1743_0003_8_16
crossref_primary_10_1186_s12911_016_0308_1
crossref_primary_10_1016_j_bspc_2024_106261
crossref_primary_10_3389_fnbot_2016_00009
crossref_primary_10_1186_s12984_016_0183_0
crossref_primary_10_3390_s20030672
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1016_j_neulet_2021_136012
crossref_primary_10_1109_JIOT_2020_2979328
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_1007_s00521_021_06292_0
crossref_primary_10_3390_s22051694
crossref_primary_10_1109_TRO_2015_2395731
crossref_primary_10_1109_TNSRE_2012_2196711
crossref_primary_10_3389_fneur_2017_00007
crossref_primary_10_1109_TRO_2012_2226386
crossref_primary_10_1080_01691864_2014_996603
crossref_primary_10_1007_s00542_010_1180_z
crossref_primary_10_3389_fbioe_2020_00158
crossref_primary_10_1109_TNSRE_2022_3218430
crossref_primary_10_3389_fnsys_2015_00162
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_1109_TNSRE_2019_2946625
crossref_primary_10_1109_JSEN_2024_3475818
crossref_primary_10_1109_JSEN_2023_3264646
crossref_primary_10_1007_s00422_013_0548_4
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_3390_bioengineering11121283
crossref_primary_10_1109_LRA_2017_2737487
crossref_primary_10_1016_j_neucom_2021_01_102
crossref_primary_10_3390_app131911071
crossref_primary_10_3389_fnbot_2014_00022
crossref_primary_10_1016_j_bspc_2020_101981
crossref_primary_10_1016_j_bspc_2021_103036
crossref_primary_10_1109_TNSRE_2022_3173708
crossref_primary_10_1186_1743_0003_9_40
crossref_primary_10_1007_s00521_020_05128_7
crossref_primary_10_1038_sdata_2014_53
crossref_primary_10_4015_S1016237216500307
crossref_primary_10_1109_JSEN_2023_3327999
crossref_primary_10_1016_j_eswa_2023_121224
crossref_primary_10_1088_1741_2552_acb7a0
crossref_primary_10_1109_TNSRE_2014_2328495
crossref_primary_10_1186_s12984_018_0437_0
crossref_primary_10_1109_TNSRE_2020_2991643
crossref_primary_10_1371_journal_pone_0262810
Cites_doi 10.1007/s00422-006-0124-2
10.1007/s00422-008-0278-1
10.1016/j.jhsa.2005.01.002
10.1162/089976605774320557
10.1093/brain/awl180
10.1302/0301-620X.47B3.411
10.20965/jrm.2007.p0381
10.1615/CritRevBiomedEng.v30.i456.80
10.1023/B:STCO.0000035301.49549.88
10.1123/jab.13.2.135
10.1109/IROS.2006.281765
10.1016/j.jelekin.2004.09.001
10.1097/00002060-199102000-00005
10.1016/j.jphysparis.2009.08.008
10.1093/brain/awl154
10.1023/A:1009715923555
10.1109/TRO.2007.910708
10.1109/TBME.2008.2007967
10.1109/TBME.2004.836492
10.1109/TBME.2008.2005485
ContentType Journal Article
Copyright Castellini et al; licensee BioMed Central Ltd. 2009
COPYRIGHT 2009 BioMed Central Ltd.
Copyright ©2009 Castellini et al; licensee BioMed Central Ltd. 2009 Castellini et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Castellini et al; licensee BioMed Central Ltd. 2009
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright ©2009 Castellini et al; licensee BioMed Central Ltd. 2009 Castellini et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1743-0003-6-41
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 41
ExternalDocumentID oai_doaj_org_article_ac1cfc59276f472a8be02d8c9a30c490
10.1186/1743-0003-6-41
PMC2784470
A212941136
19919710
10_1186_1743_0003_6_41
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
0R~
29L
2QV
2VQ
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c600t-7b468a8f966af3c5bd739b2536c91ec4a0ca2a9e629fac31e238c9f5b0a040b23
IEDL.DBID C6C
ISSN 1743-0003
IngestDate Wed Aug 27 01:30:03 EDT 2025
Wed Aug 20 00:19:35 EDT 2025
Tue Sep 30 16:49:39 EDT 2025
Fri Sep 05 12:30:30 EDT 2025
Tue Jun 10 21:29:40 EDT 2025
Thu Jan 02 22:02:50 EST 2025
Wed Oct 01 03:01:27 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Sat Sep 06 07:18:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Support Vector Machine
Flexor Digitorum Superficialis
Hand Prosthesis
Grasp Type
Mechanical Hand
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-7b468a8f966af3c5bd739b2536c91ec4a0ca2a9e629fac31e238c9f5b0a040b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1186/1743-0003-6-41
PMID 19919710
PQID 734159414
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ac1cfc59276f472a8be02d8c9a30c490
unpaywall_primary_10_1186_1743_0003_6_41
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2784470
proquest_miscellaneous_734159414
gale_infotracacademiconefile_A212941136
pubmed_primary_19919710
crossref_primary_10_1186_1743_0003_6_41
crossref_citationtrail_10_1186_1743_0003_6_41
springer_journals_10_1186_1743_0003_6_41
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-17
PublicationDateYYYYMMDD 2009-11-17
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-17
  day: 17
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References C Castellini (201_CR15) 2008
C Castellini (201_CR33) 2009; 103
MJM Hoozemans (201_CR36) 2005; 15
A Chan (201_CR27) 2005; 52
HH Sears (201_CR5) 1991; 70
F Orabona (201_CR37) 2009
P Kampas (201_CR20) 2001; 121
S Vijayakumar (201_CR35) 2005; 17
AJ Smola (201_CR24) 2004; 14
S Ferguson (201_CR12) 2002
N Jiang (201_CR29) 2009; 56
C Mercier (201_CR30) 2006; 129
W Wolf (201_CR22) 1994
C Cipriani (201_CR11) 2008; 24
201_CR23
201_CR7
201_CR8
M Carrozza (201_CR10) 2006; 95
201_CR6
C Castellini (201_CR16) 2008; 100
201_CR21
DA Childress (201_CR4) 1969
CC Chang (201_CR26) 2001
M Tsukamoto (201_CR28) 2007; 19
H Huang (201_CR9) 2006
FP Kendall (201_CR19) 2005
AH Bottomley (201_CR3) 1965; B47
CJ De Luca (201_CR2) 2002
S Bitzer (201_CR14) 2006
M Zecca (201_CR13) 2002; 30
F Tenore (201_CR34) 2009; 56
FCP Sebelius (201_CR25) 2005; 30
201_CR17
FCP Sebelius (201_CR32) 2005; 30A
CJ De Luca (201_CR1) 1997; 13
201_CR18
KT Reilly (201_CR31) 2006; 129
16844715 - Brain. 2006 Aug;129(Pt 8):2202-10
17149592 - Biol Cybern. 2006 Dec;95(6):629-44
1994966 - Am J Phys Med Rehabil. 1991 Feb;70(1):20-8
12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85
19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
16212764 - Neural Comput. 2005 Dec;17(12):2602-34
16039372 - J Hand Surg Am. 2005 Jul;30(4):780-9
19665563 - J Physiol Paris. 2009 Sep-Dec;103(3-5):255-62
15811606 - J Electromyogr Kinesiol. 2005 Aug;15(4):358-66
15651571 - IEEE Trans Biomed Eng. 2005 Jan;52(1):121-4
14341052 - J Bone Joint Surg Br. 1965 Aug;47:411-5
19473933 - IEEE Trans Biomed Eng. 2009 May;56(5):1427-34
16799174 - Brain. 2006 Aug;129(Pt 8):2211-23
19015872 - Biol Cybern. 2009 Jan;100(1):35-47
References_xml – start-page: 2819
  volume-title: Proceedings of ICRA, International Conference on Robotics and Automation, Orlando, Florida, USA
  year: 2006
  ident: 201_CR14
– volume: 95
  start-page: 629
  issue: 6
  year: 2006
  ident: 201_CR10
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-006-0124-2
– volume: 100
  start-page: 35
  year: 2008
  ident: 201_CR16
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-008-0278-1
– volume: 30A
  start-page: 780
  issue: 4
  year: 2005
  ident: 201_CR32
  publication-title: Journal of Hand Surgery
  doi: 10.1016/j.jhsa.2005.01.002
– start-page: 725
  volume-title: Proceedings of ICRA-08 - International Conference on Robotics and Automation
  year: 2008
  ident: 201_CR15
– volume: 17
  start-page: 2602
  year: 2005
  ident: 201_CR35
  publication-title: Neural Computation
  doi: 10.1162/089976605774320557
– volume-title: Surface Electromyography: Detection and Recording
  year: 2002
  ident: 201_CR2
– volume: 129
  start-page: 2202
  year: 2006
  ident: 201_CR30
  publication-title: Brain
  doi: 10.1093/brain/awl180
– volume-title: Proceedings of the Australasian Conference on Robotics and Automation, Auckland, New Zealand
  year: 2002
  ident: 201_CR12
– volume: B47
  start-page: 411
  year: 1965
  ident: 201_CR3
  publication-title: J Bone Joint Surg
  doi: 10.1302/0301-620X.47B3.411
– ident: 201_CR7
– ident: 201_CR18
– volume: 19
  start-page: 381
  issue: 4
  year: 2007
  ident: 201_CR28
  publication-title: Journal of Robotics and Mechatronics
  doi: 10.20965/jrm.2007.p0381
– volume: 30
  start-page: 459
  issue: 4-6
  year: 2002
  ident: 201_CR13
  publication-title: Critical Reviews in Biomedical Engineering
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– ident: 201_CR21
– start-page: 2897
  volume-title: Proceedings of ICRA-09 - International Conference on Robotics and Automation
  year: 2009
  ident: 201_CR37
– start-page: 392
  volume-title: Proc. 16th Annual International Conference of the IEEE Engineering Advances: New Opportunities for Biomedical Engineers Engineering in Medicine and Biology Society
  year: 1994
  ident: 201_CR22
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 201_CR24
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 13
  start-page: 135
  issue: 2
  year: 1997
  ident: 201_CR1
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.13.2.135
– start-page: 3791
  volume-title: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
  year: 2006
  ident: 201_CR9
  doi: 10.1109/IROS.2006.281765
– volume-title: Muscles: Testing and Function, with Posture and Pain
  year: 2005
  ident: 201_CR19
– volume: 15
  start-page: 358
  issue: 4
  year: 2005
  ident: 201_CR36
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2004.09.001
– volume: 70
  start-page: 20
  year: 1991
  ident: 201_CR5
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/00002060-199102000-00005
– volume: 103
  start-page: 255
  issue: 3-5
  year: 2009
  ident: 201_CR33
  publication-title: Journal of Physiology (Paris)
  doi: 10.1016/j.jphysparis.2009.08.008
– volume-title: LIBSVM: a library for Support Vector Machines
  year: 2001
  ident: 201_CR26
– ident: 201_CR17
– start-page: 4
  volume-title: Proceedings 8th ICMBE, Chicago, IL
  year: 1969
  ident: 201_CR4
– volume: 129
  start-page: 2211
  year: 2006
  ident: 201_CR31
  publication-title: Brain
  doi: 10.1093/brain/awl154
– ident: 201_CR8
– volume: 121
  start-page: 21
  year: 2001
  ident: 201_CR20
  publication-title: Medizinisch-Orthopädische Technik
– ident: 201_CR6
– ident: 201_CR23
  doi: 10.1023/A:1009715923555
– volume: 24
  start-page: 170
  year: 2008
  ident: 201_CR11
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2007.910708
– volume: 56
  start-page: 1070
  issue: 4
  year: 2009
  ident: 201_CR29
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.2007967
– volume: 30
  start-page: 780
  issue: 4
  year: 2005
  ident: 201_CR25
  publication-title: J Hand Surg [Am]
  doi: 10.1016/j.jhsa.2005.01.002
– volume: 52
  start-page: 121
  year: 2005
  ident: 201_CR27
  publication-title: Biomedical Engineering, IEEE Transactions on
  doi: 10.1109/TBME.2004.836492
– volume: 56
  start-page: 1427
  issue: 5
  year: 2009
  ident: 201_CR34
  publication-title: IEEE transactions on bio-medical engineering
  doi: 10.1109/TBME.2008.2005485
– reference: 14341052 - J Bone Joint Surg Br. 1965 Aug;47:411-5
– reference: 19015872 - Biol Cybern. 2009 Jan;100(1):35-47
– reference: 16212764 - Neural Comput. 2005 Dec;17(12):2602-34
– reference: 15651571 - IEEE Trans Biomed Eng. 2005 Jan;52(1):121-4
– reference: 15811606 - J Electromyogr Kinesiol. 2005 Aug;15(4):358-66
– reference: 19665563 - J Physiol Paris. 2009 Sep-Dec;103(3-5):255-62
– reference: 12739757 - Crit Rev Biomed Eng. 2002;30(4-6):459-85
– reference: 16799174 - Brain. 2006 Aug;129(Pt 8):2211-23
– reference: 16039372 - J Hand Surg Am. 2005 Jul;30(4):780-9
– reference: 19473933 - IEEE Trans Biomed Eng. 2009 May;56(5):1427-34
– reference: 16844715 - Brain. 2006 Aug;129(Pt 8):2202-10
– reference: 17149592 - Biol Cybern. 2006 Dec;95(6):629-44
– reference: 1994966 - Am J Phys Med Rehabil. 1991 Feb;70(1):20-8
– reference: 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
SSID ssj0034054
Score 2.2786121
Snippet Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined...
Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined way. Recent...
Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more refined...
Abstract Background Forearm surface electromyography (EMG) has been in use since the Sixties to feed-forward control active hand prostheses in a more and more...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Adult
Amputation - rehabilitation
Analysis
Artificial Intelligence
Artificial Limbs
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Electrodes
Electromyography
Electromyography - instrumentation
Electromyography - methods
Female
Forearm
Hand
Hand Strength
Health aspects
Humans
Implants, Artificial
Male
Motor Skills
Muscle, Skeletal
Neurology
Neurosciences
Prosthesis
Prosthesis Design
Rehabilitation Medicine
Young Adult
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGHrb1sEf28l7QYY9ehNiWLFnHbugDAzIMQwv0JkiyhAbwnGJJMPTfj_Rr8Yail10dJpFEivpoih8JeRc5gIwA-9uXUjPBbcFsrgVzyrcsP-A3MVBcfJWn5-LLRXGx0-oL74R19MDdws2tz3z0hc6VjELltnQhzavSa8tTL3QbrcMxNgRTnQ_mAENEVwrJsW6a93SNWSnn4zMmmcgmx1HL2v-vb945nP6-ODlmT_fJvW1zZa9_2breOaCOH5EHPbKkh92MHpM7oZmR_R2-wRm5u-gz6TPyfpdemJ513AL0A_0-Ye6ekYffekUOMk_ISVu0y9Zbh-9w5pVd1tesXsZAsUgCe1HQo8UJw_Oxov1VeLqK9EfAKuP2t_B1_fopOT8-Ovt8yvp-DMwDLNow5YQsbRkhQrKR-8JVimuXF1x6nQUvbOptbnWQuY7W8ywAHPA6Fi614Cpczp-RvWbVhBeEOtCmTbVyKnLBnS5lpZRVlcqjz1TIE8IGtRjfTxl7ZtSmDVpKaVCNmDnnRhqRJeTjKH_V0XTcKPkJtTxKIb12-wCMzvRGZ24zOvg7tBGDTgCG5W1fywCTQzotcwiAQAtsl5MQOpiRgY2L2RjbhNV2bRTghwKEREKed1b1Z-QA2jVAv4Soib1NBj39pFlettzgmEcWCr55MFim6Z3S-sYFORgt95a1e_k_1u4Vud9m5PAqpXpN9jY_t-ENALuNe9vu4d8SFEV8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZQkYA-cCxHl0t-4OiL26zt2PEDQgX1ENIihLpS3yzbsWGlNFv2EOy_Zyab3e5SKnhNJomPGc_njOcbQl4lASAjgn2HQhkmhcuZ40Yyr0PD8gPrJm4U-5_VyUB-OsvPLs8_tQM4-evWDutJDcbV3q8f8_dg8O8agy_UPoJqzI4WTDHMYb8JXomjhvflKqIgAJjIlrTx6jMbTqnh7r-6Qq-5qD-PT65iqNvk9qy-cPOfrqrW3NTRfXK3xZf0YKEQD8iNWHfI9hrrYIfc6rfx9A55vU4yTE8XDAP0Df26wd_dIfe-tNO5lHlIjpvUXTaZefyTs1-6YTVn1TBFiqkSWJGCHvaPGXrJkrYH4uko0fOIucbNu_Cn_eQRGRwdnn48YW1VBhYAHE2Z9lIVrkiwT3JJhNyXWhjPc6GC6cUgXRYcdyYqbpILohcBFASTcp85WDA8F4_JVj2q4w6hXqvkMqO9TkIKbwpVau10qXkKPR15l7DltNjQdhkrZ1S22boUyuI0YvxcWGVlr0veruQvFmQd10p-wFleSSHJdnNhNP5mW5u1LvRCCrnh0EypuSt8zHgJnXEiC9Jk8DnUEYvKCc0Krs1ogM4hqZY9AFhgJBbN6RK6VCML5osxGVfH0WxiNaCIHIRklzxZaNVlywG6GwCAXaI39G2j0Zt36uH3hiEco8lSw5O7S820S8u6dkB2V5r7j7F7-v9vfUbuNNE3PDapn5Ot6XgWXwCIm_qXjXX-Bv-FP_Q
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQVwL2wEJ5lZd84LEXt2ns2PGxoH0IqasV2krLybIde7cQ0qoPoeXX40nc0u5qBQeuyTixnfF4JuPvG4TeehqcDBfWt825JIzqjOhUMmKErVl-gt2EQHF4wo9H7PN5dh7LAQEW5ltN4-iqEGxeatPdxKCXDcQBSii4WW9a-GbF57wHXjXAoynhBEDsOxyyTS20Mzo5HXxtIJGNQKRtvNloa1uq2ftv2uiNTer6Acp1FnUX3VtWU331U5flxkZ1uIfK1RCb8ynfu8uF6dpf19gf_9McPEQPokOLB40GPkJ3XNVGuxs0h210dxgT-G30bpPVGJ81lAb4Pf6yRRjeRnunUX9WMo_RUY0VJvOlgV9HvUKPyytSjr3DgM2AEhj4YHhEYFsucDyBjyce_3AAbq6fBVmC-RM0Ojw4-3RMYhkIYsNnXBBhGM917kNgpj21mSkElSbNKLey7yzTidWplo6n0mtL-y54IVb6zCQ6WCiT0qeoVU0q9xxhI7jXiRRGeMqokTkvhNCiEKm3feHSDiIrLVA2DhlKdZSqjpVyrmCaIWFPFVes30Ef1vLThh3kVsmPoFRrKWD1ri9MZhcqGgmlbd96m8k0dJOJVOfGJWkRBqNpYplMwutAJRXYntAtqyOEIgwOWLzUIPghkkGVng7CK61VwV5AEkhXbrKcKxHcliwIsQ561ijxn56HWEEGj7ODxJZ6b3V6-041vqwpySF9zURoub9aCCrawvmtE7K_Xih_mbsX_y76Et2v031wTlO8Qq3FbOleB69xYd5Ea_Ab5v5mQw
  priority: 102
  providerName: Unpaywall
Title Multi-subject/daily-life activity EMG-based control of mechanical hands
URI https://link.springer.com/article/10.1186/1743-0003-6-41
https://www.ncbi.nlm.nih.gov/pubmed/19919710
https://www.proquest.com/docview/734159414
https://pubmed.ncbi.nlm.nih.gov/PMC2784470
https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/1743-0003-6-41
https://doaj.org/article/ac1cfc59276f472a8be02d8c9a30c490
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RPM
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: AAJSJ
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: C6C
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9owELe2VtrWh32wbmMfKA_76IvVJHbs-JEioEICoa5I7MmyHVtDYqEaoKn__e5CYLCq2l4SKbkkdu58d_bd_UzIx8DAyfAwvl0uFOXMZNSkilMrXYXyA3oTJ4rDkbic8ME0m9YJslgLsx-_T3Jxjg4zVj4zKijWpx9noHQxda8jOluNy8Dp4DUg491nDgxOhct_V_vumZ-_UyN38dET8nhd3pjbX2Y-3zNBvefkae07Ru0Ns1-QB75skJM9RMEGeTSsY-UN8mkfQDi63qAHRJ-jqwNs7gZ5Nq5ZtaV5SfpVWS5dri2u0pwXZja_pfNZ8BGWQeBuE1F32KdoAYuoTnaPFiH64bGOuHoXLsgvT8mk173uXNJ6xwXqwPFZUWm5yE0eYA5kAnOZLSRTNs2YcCrxjpvYmdQoL1IVjGOJB4PvVMhsbEAZ2JS9IkflovRvSGSlCCZW0srAOLMqF4WURhYyDS6RPm0SumWLdnWXcVeMua6mJbnQyEaMjTMtNE-a5MuO_mYDxHEv5QVyeUeFANrVBZArXY9HbVzigstUCs3kMjW59XFaQGcMix1XMXwOZUTjMIdmOVNXK0DnEDBLt8HkK44b4jRJtBUjDUMT4y2m9Iv1UkvwEDIg4k3yeiNVf1oObrkC565J5IG8HTT68E45-16hf2OkmEt48mwrmbpWO8t7f8jZTnL_8e_e_v9b35EnVWQNUyLle3K0-rn2H8BBW9kWeSinEo55r98ix-324OsAzhfd0fiqVY3cVrX0Acchz-HOZDRuf_sNrow51Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6aOomxhwGFsXL1A5e9WEtjx44fC9pWyjoh6KS9WbZjQ6WSTmsrtH-P7TqlZZrgtTlJ7Zzb5xyfzwBvHPEgw3r_NiUTmBJVYJULijU3keXHx82wUByes_4FHVwWl1uQNb0wcbd7U5KMkTq6dcmOAnQOPdAEMxw61bfLomC0Bdu93uDboIm-xAMQmsgZb9-1kXwiR__tSLyWiv7eJrmqle7CzqK-Uje_1GSylo5OHsJewpGot1T8I9iydRt219gF23BvmOrmbXi7TiaMRksmAfQOfd3g6W7Dgy9JbY3MYziNLbp4ttDhi81RpcaTGzwZO4tCS0Q4eQIdD09xyIYVShvf0dShnzb0FMdnhY_zsydwcXI8-tjH6fQFbDwImmOuKStV6fx6SDliCl1xInReEGZE1xqqMqNyJSzLhVOGdK1P_ka4QmfKBwadk31o1dPaHgDSnDmVCa65I5RoUbKKc8UrnjvT5TbvAG7UIk2acjghYyLjEqVkMqgx1MmJZJJ2O_B-JX-1JOW4U_JD0PJKKpBpxx-m199l8k2pTNc4U4jcD5PyXJXaZnnlJ6NIZqjI_N8FG5HB5f2wjEqdC35ygTxL9nz6FzQcjtMB1JiR9G4aai-qttPFTHKPFgovRDvwdGlVf0buIbrwQK8DfMPeNga9eaUe_4hM4KFqTLm_87CxTJlC0OzOF3K4stx_vLtn___U17DTHw3P5Nmn88_P4X6suIWtkvwFtObXC_vSA7e5fpV89TekEjnE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLamTRrsgUthUK5-4LIXq2ns2LHES4F1o9Bpgk3am2U7NlQKabW2Qvv3-CROaZkmeE2OE1_OOf7s4_MZoVeeBpDhgn3bnEvCqM6ITiUjRtia5Sf4TVgojk_48TkbXWQXW-hdmwtTn3ZvQ5JNTgOwNFWL3qzwjYnnvAcwGvKhKeEEstZ38kzysPTaGQxG30atJ6YBjLBI1Hi91MZEVPP1X_fKa9PS30cmV3HTPXRrWc301S9dlmtT0_AeuhMxJR40SnAfbbmqg_bWmAY7aHccY-gd9HqdWBifNawC-A3-usHZ3UF3T-MQtjIP0FGdrkvmSwO7N71CT8orUk68w5AeAbdQ4MPxEYGZscDxEDyeevzTQX5x_S3YqJ8_ROfDw7MPxyTexEBsAEQLIgzjuc59WBtpT21mCkGlSTPKrew7y3Ridaql46n02tK-C0DASp-ZRAcnYVK6j7araeUeI2wE9zqRwghPGTUy54UQWhQi9bYvXNpFpB0WZWOT4baMUtXLlZwrGEaImVPFFet30duV_Kwh6LhR8j2M8koKiLXrB9PL7yraqdK2b73NZBqqyUSqc-OStAiN0TSxTCbhd6AjCsw_VMvqmMUQGgdEWmoQoIBkcFFOF-FWjVQwWYjD6MpNl3MlAnLIghDrokeNVv2peYDrMoC-LhIb-rZR6c031eRHzQoOEWQmQsmDVjNVdEfzGzvkYKW5_-i7J___1Zdo9_TjUH35dPL5KbpdB9_g1KR4hrYXl0v3PGC4hXkRTfU3Q7g-Dg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQVwL2wEJ5lZd84LEXt2ns2PGxoH0IqasV2krLybIde7cQ0qoPoeXX40nc0u5qBQeuyTixnfF4JuPvG4TeehqcDBfWt825JIzqjOhUMmKErVl-gt2EQHF4wo9H7PN5dh7LAQEW5ltN4-iqEGxeatPdxKCXDcQBSii4WW9a-GbF57wHXjXAoynhBEDsOxyyTS20Mzo5HXxtIJGNQKRtvNloa1uq2ftv2uiNTer6Acp1FnUX3VtWU331U5flxkZ1uIfK1RCb8ynfu8uF6dpf19gf_9McPEQPokOLB40GPkJ3XNVGuxs0h210dxgT-G30bpPVGJ81lAb4Pf6yRRjeRnunUX9WMo_RUY0VJvOlgV9HvUKPyytSjr3DgM2AEhj4YHhEYFsucDyBjyce_3AAbq6fBVmC-RM0Ojw4-3RMYhkIYsNnXBBhGM917kNgpj21mSkElSbNKLey7yzTidWplo6n0mtL-y54IVb6zCQ6WCiT0qeoVU0q9xxhI7jXiRRGeMqokTkvhNCiEKm3feHSDiIrLVA2DhlKdZSqjpVyrmCaIWFPFVes30Ef1vLThh3kVsmPoFRrKWD1ri9MZhcqGgmlbd96m8k0dJOJVOfGJWkRBqNpYplMwutAJRXYntAtqyOEIgwOWLzUIPghkkGVng7CK61VwV5AEkhXbrKcKxHcliwIsQ561ijxn56HWEEGj7ODxJZ6b3V6-041vqwpySF9zURoub9aCCrawvmtE7K_Xih_mbsX_y76Et2v031wTlO8Qq3FbOleB69xYd5Ea_Ab5v5mQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-subject%2Fdaily-life+activity+EMG-based+control+of+mechanical+hands&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Castellini%2C+Claudio&rft.au=Fiorilla%2C+Angelo+Emanuele&rft.au=Sandini%2C+Giulio&rft.date=2009-11-17&rft.pub=BioMed+Central&rft.eissn=1743-0003&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2F1743-0003-6-41&rft.externalDocID=10_1186_1743_0003_6_41
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon