FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium

Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessa...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 66
Main Authors Liu, Guimei, Wang, Yue, Wong, Limsoon
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.01.2010
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-66

Cover

Abstract Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r 2 LD statistic have gained popularity because r 2 is directly related to statistical power to detect disease associations. Most of existing r 2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r 2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
AbstractList Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r 2 LD statistic have gained popularity because r 2 is directly related to statistical power to detect disease associations. Most of existing r 2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r 2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r.sup.2 .sup.LD statistic have gained popularity because r.sup.2 .sup.is directly related to statistical power to detect disease associations. Most of existing r.sup.2 .sup.based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r.sup.2 .sup.[greater than or equal to] 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r.sup.2 .sup.LD statistic have gained popularity because r.sup.2 .sup.is directly related to statistical power to detect disease associations. Most of existing r.sup.2 .sup.based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.BACKGROUNDHuman genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9.RESULTSWe propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9.Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.CONCLUSIONSGenerating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9. Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
Abstract Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.
ArticleNumber 66
Audience Academic
Author Liu, Guimei
Wang, Yue
Wong, Limsoon
AuthorAffiliation 1 Department of Computer Science, National University of Singapore, Singapore
2 NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore
AuthorAffiliation_xml – name: 1 Department of Computer Science, National University of Singapore, Singapore
– name: 2 NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore
Author_xml – sequence: 1
  givenname: Guimei
  surname: Liu
  fullname: Liu, Guimei
  email: liugm@comp.nus.edu.sg
  organization: Department of Computer Science, National University of Singapore
– sequence: 2
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: NUS Graduate School for Integrative Science and Engineering, National University of Singapore
– sequence: 3
  givenname: Limsoon
  surname: Wong
  fullname: Wong, Limsoon
  organization: Department of Computer Science, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20113476$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxiNURB9w5oYscUAc0tp5OAkHpKqisFIFiJazNXHGqbeOvbUTSv97HHZZdREP5ZB48vs-zXyew2TPOotJ8pzRY8ZqfsKKiqUZo2XKWMr5o-RgW9l78L2fHIawpJRVNS2fJPsZZSwvKn6Q2HMI4xX0Pfo3BCxBpbTUaEcCpndej9cDUc6THq0bML3THZIRenL58TMJaFCO2lkyBW17Mkxm1OkA_gY9MdreQI-k0wFvJ2106_U0PE0eKzABn23eR8nX83dXZx_Si0_vF2enF6nklI4pQ4UNdNg1tSo4kxU0VYmYSagxq_NCFjnroMp4m4MseAsoVUarpmmVqssW86NksfbtHCzFyuvY1b1woMXPgvO9AD9qaVBgrqhsK8mkLItG5tCxjtG8bGUrecby6EXXXpNdwf0dGLM1ZFTM1yDmoMUcdDwKzqPk7VqymtoBOxnz9GB2-tj9Y_W16N03kdOmZrSJBq82Bt7dThhGMegg0Riw6KYgqjxndcnZTL5ckz3EYbRVLhrKmRanWUY5rcqSRur4D1R8Ohy0jDuldKzvCF7vCCIz4vexhykEsbj8ssu-eDjtdsxfWxaBcg1I70LwqITUI8ybE7vQ5h8xnvym-3_wm7sKkbRxqcXSTd7GVfur5AfaEwOS
CitedBy_id crossref_primary_10_1159_000366211
crossref_primary_10_1007_s11590_011_0419_7
crossref_primary_10_1016_j_ijom_2018_12_008
crossref_primary_10_1016_j_humimm_2024_110790
crossref_primary_10_1371_journal_pone_0013997
crossref_primary_10_1016_j_jbi_2012_12_002
crossref_primary_10_1016_j_ajodo_2018_05_016
crossref_primary_10_1093_bib_bbac252
crossref_primary_10_1111_cid_12284
crossref_primary_10_1016_j_archoralbio_2016_10_027
crossref_primary_10_1093_hr_uhac072
crossref_primary_10_1007_s12539_012_0060_x
crossref_primary_10_1371_journal_pone_0203242
crossref_primary_10_1186_1471_2164_16_S12_S1
crossref_primary_10_1186_s12864_017_3943_8
crossref_primary_10_1109_TCBB_2014_2351797
crossref_primary_10_1093_bib_bbt074
crossref_primary_10_1111_cid_12677
crossref_primary_10_1142_S0219720017500019
crossref_primary_10_1186_s12863_016_0331_3
crossref_primary_10_1186_s12864_018_4938_9
crossref_primary_10_1371_journal_pone_0167994
crossref_primary_10_1371_journal_pmed_1002475
Cites_doi 10.1038/ng1001-233
10.1101/gr.1837404
10.1093/bioinformatics/btm496
10.1086/381000
10.1073/pnas.1633613100
10.1159/000073732
10.1142/9781860948732_0011
10.1086/319501
10.1126/science.1065573
full_text
10.1093/bioinformatics/bti762
10.1038/ng1669
10.1038/hdy.1974.89
10.1093/bioinformatics/bti1021
10.1101/gr.2570004
10.1093/bioinformatics/btl574
10.1038/ng1816
10.1007/s00439-006-0182-5
10.1016/j.jbi.2008.04.003
10.1007/s10115-007-0111-5
10.1086/321275
10.1126/science.1069424
ContentType Journal Article
Copyright Liu et al; licensee BioMed Central Ltd. 2010
COPYRIGHT 2010 BioMed Central Ltd.
Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Liu et al; licensee BioMed Central Ltd. 2010
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-11-66
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 66
ExternalDocumentID oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213
10.1186/1471-2105-11-66
PMC3098109
A220607550
20113476
10_1186_1471_2105_11_66
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c600t-1efe9aded98f461c7a975ee2ca8e2834c431da726b3ac46baecf20799bff85be3
IEDL.DBID DOA
ISSN 1471-2105
IngestDate Fri Oct 03 12:51:02 EDT 2025
Tue Aug 26 13:37:55 EDT 2025
Tue Sep 30 16:59:02 EDT 2025
Fri Sep 05 14:22:42 EDT 2025
Mon Oct 20 22:53:00 EDT 2025
Mon Oct 20 16:59:43 EDT 2025
Thu Oct 16 16:01:46 EDT 2025
Mon Jul 21 05:39:30 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Oct 01 04:15:16 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phase Haplotype Data
Memory Consumption
Lagrangian Relaxation Algorithm
Redundant Rule
Pairwise Linkage Disequilibrium
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-1efe9aded98f461c7a975ee2ca8e2834c431da726b3ac46baecf20799bff85be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/e3f0cb7c1cc549c3ad1d1035bcbc6213
PMID 20113476
PQID 733185619
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213
unpaywall_primary_10_1186_1471_2105_11_66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098109
proquest_miscellaneous_733185619
gale_infotracmisc_A220607550
gale_infotracacademiconefile_A220607550
gale_incontextgauss_ISR_A220607550
pubmed_primary_20113476
crossref_citationtrail_10_1186_1471_2105_11_66
crossref_primary_10_1186_1471_2105_11_66
springer_journals_10_1186_1471_2105_11_66
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-29
PublicationDateYYYYMMDD 2010-01-29
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References E Halperin (3523_CR10) 2005; 21
C Carlson (3523_CR9) 2004; 74
Z Qin (3523_CR12) 2006; 22
SB Gabriel (3523_CR3) 2002; 296
HI Avi-Itzhak (3523_CR4) 2003
L Liu (3523_CR13) 2007
I Pe'er (3523_CR17) 2006; 38
WB Wang (3523_CR21) 2008
JK Pritchard (3523_CR14) 2001; 69
W Hill (3523_CR24) 1975; 31
K Hao (3523_CR19) 2007; 23
K Zhang (3523_CR7) 2004; 14
K Hao (3523_CR20) 2007; 23
G Liu (3523_CR25) 2008; 17
N Patil (3523_CR2) 2001; 294
D Thompson (3523_CR6) 2003; 56
G Johnson (3523_CR1) 2001; 29
B Halldorsson (3523_CR8) 2004; 14
B Howie (3523_CR15) 2006; 120
PD Bakker (3523_CR16) 2005; 37
M Stephens (3523_CR22) 2001; 68
YT Huang (3523_CR18) 2008; 41
R Magi (3523_CR11) 2006; 11
P Sebastiani (3523_CR5) 2003; 100
W Hill (3523_CR23) 1974; 33
17148510 - Bioinformatics. 2007 Jan 15;23(2):252-4
11721056 - Science. 2001 Nov 23;294(5547):1719-23
11586306 - Nat Genet. 2001 Oct;29(2):233-7
12603050 - Pac Symp Biocomput. 2003;:466-77
15961458 - Bioinformatics. 2005 Jun;21 Suppl 1:i195-203
1203429 - Biometrics. 1975 Dec;31(4):881-8
16715096 - Nat Genet. 2006 Jun;38(6):663-7
11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89
19425145 - Genome Inform. 2008;21:27-41
12900503 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9900-5
12029063 - Science. 2002 Jun 21;296(5576):2225-9
14681826 - Am J Hum Genet. 2004 Jan;74(1):106-20
16269414 - Bioinformatics. 2006 Jan 15;22(2):220-5
14614238 - Hum Hered. 2003;56(1-3):48-55
15289481 - Genome Res. 2004 Aug;14(8):1633-40
16680432 - Hum Genet. 2006 Aug;120(1):58-68
18490200 - J Biomed Inform. 2008 Dec;41(6):953-61
15078859 - Genome Res. 2004 May;14(5):908-16
18006555 - Bioinformatics. 2007 Dec 1;23(23):3178-84
16244653 - Nat Genet. 2005 Nov;37(11):1217-23
17094267 - Pac Symp Biocomput. 2006;:535-43
4531429 - Heredity (Edinb). 1974 Oct;33(2):229-39
11410837 - Am J Hum Genet. 2001 Jul;69(1):1-14
References_xml – volume: 29
  start-page: 233
  year: 2001
  ident: 3523_CR1
  publication-title: Nature Genetics
  doi: 10.1038/ng1001-233
– volume: 14
  start-page: 908
  year: 2004
  ident: 3523_CR7
  publication-title: Genome Research
  doi: 10.1101/gr.1837404
– volume: 23
  start-page: 3178
  issue: 23
  year: 2007
  ident: 3523_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm496
– volume: 74
  start-page: 106
  year: 2004
  ident: 3523_CR9
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/381000
– volume: 100
  start-page: 9900
  year: 2003
  ident: 3523_CR5
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1633613100
– volume: 56
  start-page: 48
  year: 2003
  ident: 3523_CR6
  publication-title: Human Heredity
  doi: 10.1159/000073732
– start-page: 67
  volume-title: Proc. of 6th Annual International Conference on Computational Systems Bioinformatics
  year: 2007
  ident: 3523_CR13
  doi: 10.1142/9781860948732_0011
– volume: 68
  start-page: 978
  year: 2001
  ident: 3523_CR22
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/319501
– volume: 294
  start-page: 1719
  issue: 5547
  year: 2001
  ident: 3523_CR2
  publication-title: Science
  doi: 10.1126/science.1065573
– volume: 11
  start-page: 535
  year: 2006
  ident: 3523_CR11
  publication-title: Pacific Symposium on Biocomputing
  doi: full_text
– volume: 22
  start-page: 220
  issue: 2
  year: 2006
  ident: 3523_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti762
– volume: 37
  start-page: 1217
  year: 2005
  ident: 3523_CR16
  publication-title: Nature Genetics
  doi: 10.1038/ng1669
– volume: 33
  start-page: 229
  issue: 2
  year: 1974
  ident: 3523_CR23
  publication-title: Heredity
  doi: 10.1038/hdy.1974.89
– volume: 21
  start-page: 195
  year: 2005
  ident: 3523_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1021
– volume: 14
  start-page: 1633
  year: 2004
  ident: 3523_CR8
  publication-title: Genome Research
  doi: 10.1101/gr.2570004
– volume: 23
  start-page: 252
  issue: 2
  year: 2007
  ident: 3523_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl574
– volume: 38
  start-page: 663
  year: 2006
  ident: 3523_CR17
  publication-title: Nature Genetics
  doi: 10.1038/ng1816
– volume: 120
  start-page: 58
  year: 2006
  ident: 3523_CR15
  publication-title: Human Genetics
  doi: 10.1007/s00439-006-0182-5
– volume: 41
  start-page: 953
  issue: 6
  year: 2008
  ident: 3523_CR18
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2008.04.003
– start-page: 466
  volume-title: Pacific Symposium on Biocomputing
  year: 2003
  ident: 3523_CR4
– volume: 17
  start-page: 35
  year: 2008
  ident: 3523_CR25
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0111-5
– volume: 69
  start-page: 1
  year: 2001
  ident: 3523_CR14
  publication-title: Am J Hum Genet
  doi: 10.1086/321275
– volume: 31
  start-page: 881
  issue: 4
  year: 1975
  ident: 3523_CR24
  publication-title: Bioinformatics
– volume: 296
  start-page: 2225
  issue: 5576
  year: 2002
  ident: 3523_CR3
  publication-title: Science
  doi: 10.1126/science.1069424
– volume-title: Proc. of the International Conference on Genome Informatics
  year: 2008
  ident: 3523_CR21
– reference: 4531429 - Heredity (Edinb). 1974 Oct;33(2):229-39
– reference: 19425145 - Genome Inform. 2008;21:27-41
– reference: 15078859 - Genome Res. 2004 May;14(5):908-16
– reference: 12029063 - Science. 2002 Jun 21;296(5576):2225-9
– reference: 17094267 - Pac Symp Biocomput. 2006;:535-43
– reference: 12900503 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9900-5
– reference: 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89
– reference: 16244653 - Nat Genet. 2005 Nov;37(11):1217-23
– reference: 11721056 - Science. 2001 Nov 23;294(5547):1719-23
– reference: 18490200 - J Biomed Inform. 2008 Dec;41(6):953-61
– reference: 12603050 - Pac Symp Biocomput. 2003;:466-77
– reference: 16715096 - Nat Genet. 2006 Jun;38(6):663-7
– reference: 18006555 - Bioinformatics. 2007 Dec 1;23(23):3178-84
– reference: 15961458 - Bioinformatics. 2005 Jun;21 Suppl 1:i195-203
– reference: 1203429 - Biometrics. 1975 Dec;31(4):881-8
– reference: 16269414 - Bioinformatics. 2006 Jan 15;22(2):220-5
– reference: 16680432 - Hum Genet. 2006 Aug;120(1):58-68
– reference: 11586306 - Nat Genet. 2001 Oct;29(2):233-7
– reference: 11410837 - Am J Hum Genet. 2001 Jul;69(1):1-14
– reference: 14681826 - Am J Hum Genet. 2004 Jan;74(1):106-20
– reference: 15289481 - Genome Res. 2004 Aug;14(8):1633-40
– reference: 14614238 - Hum Hered. 2003;56(1-3):48-55
– reference: 17148510 - Bioinformatics. 2007 Jan 15;23(2):252-4
SSID ssj0017805
Score 2.1877272
Snippet Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the...
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between...
Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the...
Abstract Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Chromosome abnormalities
Chromosome Mapping - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
DNA Mutational Analysis - methods
Genetic algorithms
Genetic Markers - genetics
Life Sciences
Linkage Disequilibrium - genetics
Microarrays
Polymorphism, Single Nucleotide - genetics
Research Article
Single nucleotide polymorphisms
Software
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8KA1kICfaQLZ-OjYTQQFQDaRNiq7Q3y3bsrFKbbk2i0f-eOzftFtjEC4-pr07su_Pd6c6_I-QtZ6GLXFEEWscuSE2cBMJpE1ilXIGAX5nFjO7-Adsbpd-Ps-OLdkDdBtZXhnbYT2o0n2z_Olt8AoX_6BWes50IDtgAQpcM74gxdpPcAjMlsI_DfnqRUkDwfn_VqCPucH6umKBnojyS_9_n9SWD9Wcx5Tqjeo_caatTtThXk8klozV8QO533ibdXYrHQ3LDVo_I7WX_ycVjUg1V3RypEmb5QFVFrceTgDdQNSln83FzMqXg1FIEcp3a4HxcWNqokh4e_KC1b6ADXKVYOl9SX5kYTLHaZ04xLQwHFcX0z1k79vcK2ukTMhp-PfqyF3QNGAIDflATRNZZoQpbCO5SFplciTyzNjaKW3BLUgPeR6HymOlEmZRpZY2Lw1wI7RzPtE2eko1qVtnnhDrNlWA604LHKYxyi_lOCE81WGmdqwHZXu25NB06OTbJmEgfpXAmkUkSmQSPkrEBeb_-w-kSmON60s_IxDUZImr7H2bzUnYKKm3iQqNzExkDIbNJVBEVUZjA92nD4igZkDcoAhIxMyosyilVW9fy2-FPuRvHIQPXKwsH5F1H5Gbw9UZ1dxxgDxBmq0e52aMEpTa9YbqSNIlDWAlX2VlbS-yxycHpFQPybCl463WhL5ekOaw374lkb-H9kWp84iHFk1DwKIQ5t1bCK1eqeP2ubq2l-18cePE_OPCS3F2WboCuik2y0cxb-wo8wka_9pr-G5HMXDg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPiO8FBrIQEuwhI86HY_M2JqqBxITYJu3Nsh27q9SmW5No2n_PXZJGDTAhHhtf3Nh39v2sO_-OkHeCR575ogiNiX2Y2jgJpTc2dFr7Agm_MocR3e9H_PA0_XaWnfUkSXgXZjN-zwT_yGDzDOFYkuH9L85vkzvgoXgbleUHQ7gAifl73p6_vDRyOS0z_5_774YD-j05coiQPiD3mvJCX1_p-XzDCU0ekYc9eqT7nbofk1uufELudvUkr5-ScqKr-kRPoZdPVJfUtfwQ8A9Uz6fL1aw-X1AAqRSJWRcuvJoVjtZ6So-PftCqLYgDWqKYCj-lbaZhuMDsnRXFMC9sPBTDOZfNrL0n0CyekdPJl5ODw7AvqBBawDV1yJx3UheukMKnnNlcyzxzLrZaOIAZqQU0Ueg85ibRNuVGO-vjKJfSeC8y45LnZKtclm6bUG-EltxkRoo4hVbhMH4Jx00DXtfkOiB76zlXtmcbx6IXc9WeOgRXqCSFSoKfivOAfBheuOiINm4W_YxKHMSQIbt9AIaj-gWnXOIja3LLrIUjsE10wQoWJfB9xvKYJQF5iyagkAOjxCSbqW6qSn09_qn24zjiAKWyKCDveyG_hK-3ur-zAHOAtFkjyZ2RJCxSO2qma0tT2ISZbaVbNpXCmpkCQKwMyIvO8IZxITZL0hzGm49McjTwcUs5O28pwpNIChZBn7tr41X93lTdPKu7g3X_SwMv_6PfV-R-l3EBS1LukK161bjXAORq86ZdxL8AcEFBtA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P1RGMhCSLCHdPl0Et4KohpIlImt0niybMfOItqkNImm8ddzl6RVM5gQEo-tL619OZ9_1t39jpBXEbONY5LEktI1lq9cz4qNVJYWwiRI-BVojOh-nrLDmf_pNDjdIV_WtTByoWRWdKShSFQ82i5Dn7dVDthFQa8OlolpN33EDhxwshZcXwKsE2PsGtllAYDzAdmdTY_G35oao06iI_j5w1O9s6mh8P_dUW-dVJezKDeh1FvkRp0vxcW5mM-3TqvJHbJcr7NNUvk-qis5Uj8vUUD-R0XcJbc7ZEvHrSneIzs6v0-ut70uLx6QfCLK6kSkMPG3VORUN9wV8DdUzNNilVVnCwqzoEgau9DWeZZoWomUHk-PaNk06wELopimn9ImC9JaYGbRimIIGpwixVDTjzprahjqxUMym3w4eX9odc0eLAWYq7IcbXQsEp3EkfGZo0IRh4HWrhKRBgjkK0A6iQhdJj2hfCaFVsa1wziWxkSB1N4jMsiLXD8h1MhIxEwGMo5cH0YjjbFVuApLQAQyFEMyWr9mrjomdGzIMefNjShiHJXIUYnwkTM2JG82DyxbEpCrRd-h3WzEkL27-aJYpbxzBlx7xlYyVI5ScD1XnkicxLE9mJ9UzHW8IXmJVseRnyPHBKBU1GXJPx5_5WPXtRnAvMAektedkClg9kp09RSgA6T06knu9STBgajeMF0bN8chzLrLdVGXHPt5RgCw4yF53Nr6Zl2IGz0_hPWGvV3QW3h_JM_OGvpyz44jx4bf3F_vF975zfJqre5vNtTf3sDTf5B9Rm622SCwZeI9MqhWtX4OILOSLzrH8QuPsnlQ
  priority: 102
  providerName: Unpaywall
Title FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium
URI https://link.springer.com/article/10.1186/1471-2105-11-66
https://www.ncbi.nlm.nih.gov/pubmed/20113476
https://www.proquest.com/docview/733185619
https://pubmed.ncbi.nlm.nih.gov/PMC3098109
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-66
https://doaj.org/article/e3f0cb7c1cc549c3ad1d1035bcbc6213
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8Ko7IQEuwhLJ-OzVtXrYxKq6p1lcaTZTt2V6lNR5to2n_P2UlDA5r2wkui-C4f9l3sO935dwh9osQ3gckyT8rQeLEKI48ZqTwthMks4FeibUT3dEROpvHwIrnYKfVlc8IqeOBq4A51ZHwlUxUoBa6MikQWZIEfJVJJRUJXrzb0Kds6U3X8wCL1u31FaeCBU5PUoD4BJYdNm91R5sAR_6xHDrb_38l5Z3X6O3OyCZ8-QY_K_ErcXIvFYmeFGjxDT2vTEveqLj1H93T-Aj2sik3evET5QGyKczGDp3zDIsfagUfAG7BYzFbreXG5xGDBYovautTe9TzTuBAzPBmN8cZVywERYpsnP8MuDdFb2tSeNbYxYJiVsI31_CrnbhNBuXyFpoPj8_6JV1db8BQYPYUXaKOZyHTGqIlJoFLB0kTrUAmqwQaJFZgamUhDIiOhYiKFVib0U8akMTSROnqN9vJVrt8ibCQVjMhEMhrGQKXaBjfBF5WwJMtUdNDX7ZhzVUOR24oYC-5cEkq4FRK3QoJLTkgHfWluuKpQOG5nPbJCbNgsfLZrAKXitVLxu5Sqgz5aFeAWICO3GTgzUW42_MfkjPfC0CdgZyV-B32umcwKvl6JekMDjIHF1Gpx7rc44Q9WLTLeahq3JJv2lutVueG2oCYFC5d10JtK8Zp-WcMtilPob9pSyVbH25R8funwwyOf0cCHZx5slZfXE9fm9lE9aLT7Lgm8-x8SeI8eV3ka8K-yfbRXrEv9Acy_QnbR_fQihSMdfO-iB73ecDKE89HxaHwGrX3S77q5AI6nMQXKdDTu_fwNIR5eTA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJjR4QHxTGGAhJNhDIJ9OwltBVF3ZKkQ7aW-W7dhZpTYZTaJp_z13bhotwIR4THxxbN-Hz7rz7wh5mzDXeCbLHCl944TKD5zUSOVoIUyGgF-RxojuyZSNT8PJWXS2Q7ztXRib7b4NSVpLbdU6YR89MKMOHFAivAnG2C2yhxlWoIt7w-FkNulCBwjS32L4_OWz3vZjUfr_tMXXNqPfEyW7aOldst8UF-LqUiyX1zak0X1yr_Uk6XDD-gdkRxcPye1NbcmrR6QYiaqeixx6-URFQbXFioA_ULHMy_WiPl9RcFgpgrSutHO5yDStRU5n0--0ssVxgGMU0-JzarMOnRVm8qwprh0YIYqhnZ_Nwt4ZaFaPyeno6_zL2GmLKzgKfJza8bTRqch0liYmZJ6KRRpHWvtKJBpcjlCBZ5GJ2GcyECpkUmhlfDdOU2lMEkkdPCG7RVnoZ4QamYiUyUimiR9Ca6IxlglHTwk7sIzFgHzYrjlXLfI4FsBYcnsCSRhHJnFkEjxyxgbkfffBxQZ042bSz8jEjgzRsu2Lcp3zVvm4DoyrZKw8peA4rAKReZnnBjA-qZjvBQPyBkWAIx5GgQk3uWiqih_NfvCh77sM3KrIHZB3LZEpYfRKtPcXYA0QQqtHedCjBIVVvWa6lTSOTZjlVuiyqTjWz0zAoU0H5OlG8Lp5oZ8WhDHMN-6JZG_i_ZZicW7hwgM3TTwX-jzcCi9v7VR186oedtL9Lw48_49-X5P98fzkmB8fTb-9IHc2mRignukB2a3XjX4JDl4tX7Uq_QsKCkoN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SiwUMBCSNBDaJ6Oza0srFoeVUVbqTfLdux0pd3ssklU9d8zk2SjBqgQx8QTx_bMeMaa8TeEvOHMd4HLMk_r0HmxCSNPOG08q5TLEPArsRjR_X7A9k7iL6fJaZebU66z3dchyfZOA6I0FdXOMnOtinO2E8CW6sFhJcFbYYxdJzdiMG1YwGDMxn0QAeH6OzSfv3w0MEQNXv-fu_Ils_R7ymQfN71LbtfFUl2cq9nskmma3Cf3Op-S7rZC8IBcs8VDcrOtMnnxiBQTVVbHKodePlBVUNugRsAfqJrli9W0OptTcF0pwrXOrXc-zSytVE6PDg5p2ZTJAd5RTJDPaZN_6M0xp2dFcRVhO6IY5PlZT5vbA_V8k5xMPh-P97yuzIJnwNupvMA6K1RmM8FdzAKTKpEm1oZGcQvOR2zAx8hUGjIdKRMzraxxoZ8KoZ3jibbRY7JRLAr7lFCnuRJMJ1rwMIZWbjGqCYdQDbZYp2pE3q_XXJoOgxxLYcxkcxbhTCKTJDIJHiVjI_Ku_2DZwm9cTfoRmdiTIW5282KxymWnhtJGzjc6NYExcDA2kcqCLPAjGJ82LAyiEXmNIiARGaPA1Jtc1WUp949-yN0w9Bk4WIk_Im87IreA0RvV3WSANUAwrQHl1oASVNcMmula0iQ2Yb5bYRd1KbGSJgfXVozIk1bw-nmhxxbFKcw3HYjkYOLDlmJ61gCHR77ggQ99bq-FV3Y7Vnn1qm730v0vDjz7j35fkVuHnyby2_7B1-fkTpuSAdoptshGtartC_D0Kv2y0edfs4NM6g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P1RGMhCSLCHdPl0Et4KohpIlImt0niybMfOItqkNImm8ddzl6RVM5gQEo-tL619OZ9_1t39jpBXEbONY5LEktI1lq9cz4qNVJYWwiRI-BVojOh-nrLDmf_pNDjdIV_WtTByoWRWdKShSFQ82i5Dn7dVDthFQa8OlolpN33EDhxwshZcXwKsE2PsGtllAYDzAdmdTY_G35oao06iI_j5w1O9s6mh8P_dUW-dVJezKDeh1FvkRp0vxcW5mM-3TqvJHbJcr7NNUvk-qis5Uj8vUUD-R0XcJbc7ZEvHrSneIzs6v0-ut70uLx6QfCLK6kSkMPG3VORUN9wV8DdUzNNilVVnCwqzoEgau9DWeZZoWomUHk-PaNk06wELopimn9ImC9JaYGbRimIIGpwixVDTjzprahjqxUMym3w4eX9odc0eLAWYq7IcbXQsEp3EkfGZo0IRh4HWrhKRBgjkK0A6iQhdJj2hfCaFVsa1wziWxkSB1N4jMsiLXD8h1MhIxEwGMo5cH0YjjbFVuApLQAQyFEMyWr9mrjomdGzIMefNjShiHJXIUYnwkTM2JG82DyxbEpCrRd-h3WzEkL27-aJYpbxzBlx7xlYyVI5ScD1XnkicxLE9mJ9UzHW8IXmJVseRnyPHBKBU1GXJPx5_5WPXtRnAvMAektedkClg9kp09RSgA6T06knu9STBgajeMF0bN8chzLrLdVGXHPt5RgCw4yF53Nr6Zl2IGz0_hPWGvV3QW3h_JM_OGvpyz44jx4bf3F_vF975zfJqre5vNtTf3sDTf5B9Rm622SCwZeI9MqhWtX4OILOSLzrH8QuPsnlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastTagger%3A+an+efficient+algorithm+for+genome-wide+tag+SNP+selection+using+multi-marker+linkage+disequilibrium&rft.jtitle=BMC+bioinformatics&rft.au=Wang+Yue&rft.au=Liu+Guimei&rft.au=Wong+Limsoon&rft.date=2010-01-29&rft.pub=BMC&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1186%2F1471-2105-11-66&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon