FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium
Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessa...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 11; no. 1; p. 66 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        29.01.2010
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-11-66 | 
Cover
| Abstract | Background
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the
r
2
LD statistic have gained popularity because
r
2
is directly related to statistical power to detect disease associations. Most of existing
r
2
based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.
Results
We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.
FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when
r
2
≥ 0.9.
Conclusions
Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. | 
    
|---|---|
| AbstractList | Background
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the
r
2
LD statistic have gained popularity because
r
2
is directly related to statistical power to detect disease associations. Most of existing
r
2
based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.
Results
We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.
FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when
r
2
≥ 0.9.
Conclusions
Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r.sup.2 .sup.LD statistic have gained popularity because r.sup.2 .sup.is directly related to statistical power to detect disease associations. Most of existing r.sup.2 .sup.based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r.sup.2 .sup.[greater than or equal to] 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r.sup.2 .sup.LD statistic have gained popularity because r.sup.2 .sup.is directly related to statistical power to detect disease associations. Most of existing r.sup.2 .sup.based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.BACKGROUNDHuman genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9.RESULTSWe propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9.Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.CONCLUSIONSGenerating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 >/= 0.9. Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem. Abstract Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2 is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. Results We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can work on chromosomes containing more than 100 k SNPs using length-3 tagging rules. FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above 96% when r2 ≥ 0.9. Conclusions Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve this problem.  | 
    
| ArticleNumber | 66 | 
    
| Audience | Academic | 
    
| Author | Liu, Guimei Wang, Yue Wong, Limsoon  | 
    
| AuthorAffiliation | 1 Department of Computer Science, National University of Singapore, Singapore 2 NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, National University of Singapore, Singapore – name: 2 NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore  | 
    
| Author_xml | – sequence: 1 givenname: Guimei surname: Liu fullname: Liu, Guimei email: liugm@comp.nus.edu.sg organization: Department of Computer Science, National University of Singapore – sequence: 2 givenname: Yue surname: Wang fullname: Wang, Yue organization: NUS Graduate School for Integrative Science and Engineering, National University of Singapore – sequence: 3 givenname: Limsoon surname: Wong fullname: Wong, Limsoon organization: Department of Computer Science, National University of Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20113476$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkstv1DAQxiNURB9w5oYscUAc0tp5OAkHpKqisFIFiJazNXHGqbeOvbUTSv97HHZZdREP5ZB48vs-zXyew2TPOotJ8pzRY8ZqfsKKiqUZo2XKWMr5o-RgW9l78L2fHIawpJRVNS2fJPsZZSwvKn6Q2HMI4xX0Pfo3BCxBpbTUaEcCpndej9cDUc6THq0bML3THZIRenL58TMJaFCO2lkyBW17Mkxm1OkA_gY9MdreQI-k0wFvJ2106_U0PE0eKzABn23eR8nX83dXZx_Si0_vF2enF6nklI4pQ4UNdNg1tSo4kxU0VYmYSagxq_NCFjnroMp4m4MseAsoVUarpmmVqssW86NksfbtHCzFyuvY1b1woMXPgvO9AD9qaVBgrqhsK8mkLItG5tCxjtG8bGUrecby6EXXXpNdwf0dGLM1ZFTM1yDmoMUcdDwKzqPk7VqymtoBOxnz9GB2-tj9Y_W16N03kdOmZrSJBq82Bt7dThhGMegg0Riw6KYgqjxndcnZTL5ckz3EYbRVLhrKmRanWUY5rcqSRur4D1R8Ohy0jDuldKzvCF7vCCIz4vexhykEsbj8ssu-eDjtdsxfWxaBcg1I70LwqITUI8ybE7vQ5h8xnvym-3_wm7sKkbRxqcXSTd7GVfur5AfaEwOS | 
    
| CitedBy_id | crossref_primary_10_1159_000366211 crossref_primary_10_1007_s11590_011_0419_7 crossref_primary_10_1016_j_ijom_2018_12_008 crossref_primary_10_1016_j_humimm_2024_110790 crossref_primary_10_1371_journal_pone_0013997 crossref_primary_10_1016_j_jbi_2012_12_002 crossref_primary_10_1016_j_ajodo_2018_05_016 crossref_primary_10_1093_bib_bbac252 crossref_primary_10_1111_cid_12284 crossref_primary_10_1016_j_archoralbio_2016_10_027 crossref_primary_10_1093_hr_uhac072 crossref_primary_10_1007_s12539_012_0060_x crossref_primary_10_1371_journal_pone_0203242 crossref_primary_10_1186_1471_2164_16_S12_S1 crossref_primary_10_1186_s12864_017_3943_8 crossref_primary_10_1109_TCBB_2014_2351797 crossref_primary_10_1093_bib_bbt074 crossref_primary_10_1111_cid_12677 crossref_primary_10_1142_S0219720017500019 crossref_primary_10_1186_s12863_016_0331_3 crossref_primary_10_1186_s12864_018_4938_9 crossref_primary_10_1371_journal_pone_0167994 crossref_primary_10_1371_journal_pmed_1002475  | 
    
| Cites_doi | 10.1038/ng1001-233 10.1101/gr.1837404 10.1093/bioinformatics/btm496 10.1086/381000 10.1073/pnas.1633613100 10.1159/000073732 10.1142/9781860948732_0011 10.1086/319501 10.1126/science.1065573 full_text 10.1093/bioinformatics/bti762 10.1038/ng1669 10.1038/hdy.1974.89 10.1093/bioinformatics/bti1021 10.1101/gr.2570004 10.1093/bioinformatics/btl574 10.1038/ng1816 10.1007/s00439-006-0182-5 10.1016/j.jbi.2008.04.003 10.1007/s10115-007-0111-5 10.1086/321275 10.1126/science.1069424  | 
    
| ContentType | Journal Article | 
    
| Copyright | Liu et al; licensee BioMed Central Ltd. 2010 COPYRIGHT 2010 BioMed Central Ltd. Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Liu et al; licensee BioMed Central Ltd. 2010 – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-11-66 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 66 | 
    
| ExternalDocumentID | oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213 10.1186/1471-2105-11-66 PMC3098109 A220607550 20113476 10_1186_1471_2105_11_66  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Singapore | 
    
| GeographicLocations_xml | – name: Singapore | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 123 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c600t-1efe9aded98f461c7a975ee2ca8e2834c431da726b3ac46baecf20799bff85be3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Tue Aug 26 13:37:55 EDT 2025 Tue Sep 30 16:59:02 EDT 2025 Fri Sep 05 14:22:42 EDT 2025 Mon Oct 20 22:53:00 EDT 2025 Mon Oct 20 16:59:43 EDT 2025 Thu Oct 16 16:01:46 EDT 2025 Mon Jul 21 05:39:30 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Oct 01 04:15:16 EDT 2025 Sat Sep 06 07:27:15 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Phase Haplotype Data Memory Consumption Lagrangian Relaxation Algorithm Redundant Rule Pairwise Linkage Disequilibrium  | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c600t-1efe9aded98f461c7a975ee2ca8e2834c431da726b3ac46baecf20799bff85be3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/e3f0cb7c1cc549c3ad1d1035bcbc6213 | 
    
| PMID | 20113476 | 
    
| PQID | 733185619 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213 unpaywall_primary_10_1186_1471_2105_11_66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3098109 proquest_miscellaneous_733185619 gale_infotracmisc_A220607550 gale_infotracacademiconefile_A220607550 gale_incontextgauss_ISR_A220607550 pubmed_primary_20113476 crossref_citationtrail_10_1186_1471_2105_11_66 crossref_primary_10_1186_1471_2105_11_66 springer_journals_10_1186_1471_2105_11_66  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-01-29 | 
    
| PublicationDateYYYYMMDD | 2010-01-29 | 
    
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-29 day: 29  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2010 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | E Halperin (3523_CR10) 2005; 21 C Carlson (3523_CR9) 2004; 74 Z Qin (3523_CR12) 2006; 22 SB Gabriel (3523_CR3) 2002; 296 HI Avi-Itzhak (3523_CR4) 2003 L Liu (3523_CR13) 2007 I Pe'er (3523_CR17) 2006; 38 WB Wang (3523_CR21) 2008 JK Pritchard (3523_CR14) 2001; 69 W Hill (3523_CR24) 1975; 31 K Hao (3523_CR19) 2007; 23 K Zhang (3523_CR7) 2004; 14 K Hao (3523_CR20) 2007; 23 G Liu (3523_CR25) 2008; 17 N Patil (3523_CR2) 2001; 294 D Thompson (3523_CR6) 2003; 56 G Johnson (3523_CR1) 2001; 29 B Halldorsson (3523_CR8) 2004; 14 B Howie (3523_CR15) 2006; 120 PD Bakker (3523_CR16) 2005; 37 M Stephens (3523_CR22) 2001; 68 YT Huang (3523_CR18) 2008; 41 R Magi (3523_CR11) 2006; 11 P Sebastiani (3523_CR5) 2003; 100 W Hill (3523_CR23) 1974; 33 17148510 - Bioinformatics. 2007 Jan 15;23(2):252-4 11721056 - Science. 2001 Nov 23;294(5547):1719-23 11586306 - Nat Genet. 2001 Oct;29(2):233-7 12603050 - Pac Symp Biocomput. 2003;:466-77 15961458 - Bioinformatics. 2005 Jun;21 Suppl 1:i195-203 1203429 - Biometrics. 1975 Dec;31(4):881-8 16715096 - Nat Genet. 2006 Jun;38(6):663-7 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 19425145 - Genome Inform. 2008;21:27-41 12900503 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9900-5 12029063 - Science. 2002 Jun 21;296(5576):2225-9 14681826 - Am J Hum Genet. 2004 Jan;74(1):106-20 16269414 - Bioinformatics. 2006 Jan 15;22(2):220-5 14614238 - Hum Hered. 2003;56(1-3):48-55 15289481 - Genome Res. 2004 Aug;14(8):1633-40 16680432 - Hum Genet. 2006 Aug;120(1):58-68 18490200 - J Biomed Inform. 2008 Dec;41(6):953-61 15078859 - Genome Res. 2004 May;14(5):908-16 18006555 - Bioinformatics. 2007 Dec 1;23(23):3178-84 16244653 - Nat Genet. 2005 Nov;37(11):1217-23 17094267 - Pac Symp Biocomput. 2006;:535-43 4531429 - Heredity (Edinb). 1974 Oct;33(2):229-39 11410837 - Am J Hum Genet. 2001 Jul;69(1):1-14  | 
    
| References_xml | – volume: 29 start-page: 233 year: 2001 ident: 3523_CR1 publication-title: Nature Genetics doi: 10.1038/ng1001-233 – volume: 14 start-page: 908 year: 2004 ident: 3523_CR7 publication-title: Genome Research doi: 10.1101/gr.1837404 – volume: 23 start-page: 3178 issue: 23 year: 2007 ident: 3523_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm496 – volume: 74 start-page: 106 year: 2004 ident: 3523_CR9 publication-title: The American Journal of Human Genetics doi: 10.1086/381000 – volume: 100 start-page: 9900 year: 2003 ident: 3523_CR5 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1633613100 – volume: 56 start-page: 48 year: 2003 ident: 3523_CR6 publication-title: Human Heredity doi: 10.1159/000073732 – start-page: 67 volume-title: Proc. of 6th Annual International Conference on Computational Systems Bioinformatics year: 2007 ident: 3523_CR13 doi: 10.1142/9781860948732_0011 – volume: 68 start-page: 978 year: 2001 ident: 3523_CR22 publication-title: The American Journal of Human Genetics doi: 10.1086/319501 – volume: 294 start-page: 1719 issue: 5547 year: 2001 ident: 3523_CR2 publication-title: Science doi: 10.1126/science.1065573 – volume: 11 start-page: 535 year: 2006 ident: 3523_CR11 publication-title: Pacific Symposium on Biocomputing doi: full_text – volume: 22 start-page: 220 issue: 2 year: 2006 ident: 3523_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti762 – volume: 37 start-page: 1217 year: 2005 ident: 3523_CR16 publication-title: Nature Genetics doi: 10.1038/ng1669 – volume: 33 start-page: 229 issue: 2 year: 1974 ident: 3523_CR23 publication-title: Heredity doi: 10.1038/hdy.1974.89 – volume: 21 start-page: 195 year: 2005 ident: 3523_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1021 – volume: 14 start-page: 1633 year: 2004 ident: 3523_CR8 publication-title: Genome Research doi: 10.1101/gr.2570004 – volume: 23 start-page: 252 issue: 2 year: 2007 ident: 3523_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl574 – volume: 38 start-page: 663 year: 2006 ident: 3523_CR17 publication-title: Nature Genetics doi: 10.1038/ng1816 – volume: 120 start-page: 58 year: 2006 ident: 3523_CR15 publication-title: Human Genetics doi: 10.1007/s00439-006-0182-5 – volume: 41 start-page: 953 issue: 6 year: 2008 ident: 3523_CR18 publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2008.04.003 – start-page: 466 volume-title: Pacific Symposium on Biocomputing year: 2003 ident: 3523_CR4 – volume: 17 start-page: 35 year: 2008 ident: 3523_CR25 publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0111-5 – volume: 69 start-page: 1 year: 2001 ident: 3523_CR14 publication-title: Am J Hum Genet doi: 10.1086/321275 – volume: 31 start-page: 881 issue: 4 year: 1975 ident: 3523_CR24 publication-title: Bioinformatics – volume: 296 start-page: 2225 issue: 5576 year: 2002 ident: 3523_CR3 publication-title: Science doi: 10.1126/science.1069424 – volume-title: Proc. of the International Conference on Genome Informatics year: 2008 ident: 3523_CR21 – reference: 4531429 - Heredity (Edinb). 1974 Oct;33(2):229-39 – reference: 19425145 - Genome Inform. 2008;21:27-41 – reference: 15078859 - Genome Res. 2004 May;14(5):908-16 – reference: 12029063 - Science. 2002 Jun 21;296(5576):2225-9 – reference: 17094267 - Pac Symp Biocomput. 2006;:535-43 – reference: 12900503 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9900-5 – reference: 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 – reference: 16244653 - Nat Genet. 2005 Nov;37(11):1217-23 – reference: 11721056 - Science. 2001 Nov 23;294(5547):1719-23 – reference: 18490200 - J Biomed Inform. 2008 Dec;41(6):953-61 – reference: 12603050 - Pac Symp Biocomput. 2003;:466-77 – reference: 16715096 - Nat Genet. 2006 Jun;38(6):663-7 – reference: 18006555 - Bioinformatics. 2007 Dec 1;23(23):3178-84 – reference: 15961458 - Bioinformatics. 2005 Jun;21 Suppl 1:i195-203 – reference: 1203429 - Biometrics. 1975 Dec;31(4):881-8 – reference: 16269414 - Bioinformatics. 2006 Jan 15;22(2):220-5 – reference: 16680432 - Hum Genet. 2006 Aug;120(1):58-68 – reference: 11586306 - Nat Genet. 2001 Oct;29(2):233-7 – reference: 11410837 - Am J Hum Genet. 2001 Jul;69(1):1-14 – reference: 14681826 - Am J Hum Genet. 2004 Jan;74(1):106-20 – reference: 15289481 - Genome Res. 2004 Aug;14(8):1633-40 – reference: 14614238 - Hum Hered. 2003;56(1-3):48-55 – reference: 17148510 - Bioinformatics. 2007 Jan 15;23(2):252-4  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.1877272 | 
    
| Snippet | Background
Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the... Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between... Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the... Abstract Background Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 66 | 
    
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Chromosome abnormalities Chromosome Mapping - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences DNA Mutational Analysis - methods Genetic algorithms Genetic Markers - genetics Life Sciences Linkage Disequilibrium - genetics Microarrays Polymorphism, Single Nucleotide - genetics Research Article Single nucleotide polymorphisms Software  | 
    
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8KA1kICfaQLZ-OjYTQQFQDaRNiq7Q3y3bsrFKbbk2i0f-eOzftFtjEC4-pr07su_Pd6c6_I-QtZ6GLXFEEWscuSE2cBMJpE1ilXIGAX5nFjO7-Adsbpd-Ps-OLdkDdBtZXhnbYT2o0n2z_Olt8AoX_6BWes50IDtgAQpcM74gxdpPcAjMlsI_DfnqRUkDwfn_VqCPucH6umKBnojyS_9_n9SWD9Wcx5Tqjeo_caatTtThXk8klozV8QO533ibdXYrHQ3LDVo_I7WX_ycVjUg1V3RypEmb5QFVFrceTgDdQNSln83FzMqXg1FIEcp3a4HxcWNqokh4e_KC1b6ADXKVYOl9SX5kYTLHaZ04xLQwHFcX0z1k79vcK2ukTMhp-PfqyF3QNGAIDflATRNZZoQpbCO5SFplciTyzNjaKW3BLUgPeR6HymOlEmZRpZY2Lw1wI7RzPtE2eko1qVtnnhDrNlWA604LHKYxyi_lOCE81WGmdqwHZXu25NB06OTbJmEgfpXAmkUkSmQSPkrEBeb_-w-kSmON60s_IxDUZImr7H2bzUnYKKm3iQqNzExkDIbNJVBEVUZjA92nD4igZkDcoAhIxMyosyilVW9fy2-FPuRvHIQPXKwsH5F1H5Gbw9UZ1dxxgDxBmq0e52aMEpTa9YbqSNIlDWAlX2VlbS-yxycHpFQPybCl463WhL5ekOaw374lkb-H9kWp84iHFk1DwKIQ5t1bCK1eqeP2ubq2l-18cePE_OPCS3F2WboCuik2y0cxb-wo8wka_9pr-G5HMXDg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPiO8FBrIQEuwhI86HY_M2JqqBxITYJu3Nsh27q9SmW5No2n_PXZJGDTAhHhtf3Nh39v2sO_-OkHeCR575ogiNiX2Y2jgJpTc2dFr7Agm_MocR3e9H_PA0_XaWnfUkSXgXZjN-zwT_yGDzDOFYkuH9L85vkzvgoXgbleUHQ7gAifl73p6_vDRyOS0z_5_774YD-j05coiQPiD3mvJCX1_p-XzDCU0ekYc9eqT7nbofk1uufELudvUkr5-ScqKr-kRPoZdPVJfUtfwQ8A9Uz6fL1aw-X1AAqRSJWRcuvJoVjtZ6So-PftCqLYgDWqKYCj-lbaZhuMDsnRXFMC9sPBTDOZfNrL0n0CyekdPJl5ODw7AvqBBawDV1yJx3UheukMKnnNlcyzxzLrZaOIAZqQU0Ueg85ibRNuVGO-vjKJfSeC8y45LnZKtclm6bUG-EltxkRoo4hVbhMH4Jx00DXtfkOiB76zlXtmcbx6IXc9WeOgRXqCSFSoKfivOAfBheuOiINm4W_YxKHMSQIbt9AIaj-gWnXOIja3LLrIUjsE10wQoWJfB9xvKYJQF5iyagkAOjxCSbqW6qSn09_qn24zjiAKWyKCDveyG_hK-3ur-zAHOAtFkjyZ2RJCxSO2qma0tT2ISZbaVbNpXCmpkCQKwMyIvO8IZxITZL0hzGm49McjTwcUs5O28pwpNIChZBn7tr41X93lTdPKu7g3X_SwMv_6PfV-R-l3EBS1LukK161bjXAORq86ZdxL8AcEFBtA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P1RGMhCSLCHdPl0Et4KohpIlImt0niybMfOItqkNImm8ddzl6RVM5gQEo-tL619OZ9_1t39jpBXEbONY5LEktI1lq9cz4qNVJYWwiRI-BVojOh-nrLDmf_pNDjdIV_WtTByoWRWdKShSFQ82i5Dn7dVDthFQa8OlolpN33EDhxwshZcXwKsE2PsGtllAYDzAdmdTY_G35oao06iI_j5w1O9s6mh8P_dUW-dVJezKDeh1FvkRp0vxcW5mM-3TqvJHbJcr7NNUvk-qis5Uj8vUUD-R0XcJbc7ZEvHrSneIzs6v0-ut70uLx6QfCLK6kSkMPG3VORUN9wV8DdUzNNilVVnCwqzoEgau9DWeZZoWomUHk-PaNk06wELopimn9ImC9JaYGbRimIIGpwixVDTjzprahjqxUMym3w4eX9odc0eLAWYq7IcbXQsEp3EkfGZo0IRh4HWrhKRBgjkK0A6iQhdJj2hfCaFVsa1wziWxkSB1N4jMsiLXD8h1MhIxEwGMo5cH0YjjbFVuApLQAQyFEMyWr9mrjomdGzIMefNjShiHJXIUYnwkTM2JG82DyxbEpCrRd-h3WzEkL27-aJYpbxzBlx7xlYyVI5ScD1XnkicxLE9mJ9UzHW8IXmJVseRnyPHBKBU1GXJPx5_5WPXtRnAvMAektedkClg9kp09RSgA6T06knu9STBgajeMF0bN8chzLrLdVGXHPt5RgCw4yF53Nr6Zl2IGz0_hPWGvV3QW3h_JM_OGvpyz44jx4bf3F_vF975zfJqre5vNtTf3sDTf5B9Rm622SCwZeI9MqhWtX4OILOSLzrH8QuPsnlQ priority: 102 providerName: Unpaywall  | 
    
| Title | FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium | 
    
| URI | https://link.springer.com/article/10.1186/1471-2105-11-66 https://www.ncbi.nlm.nih.gov/pubmed/20113476 https://www.proquest.com/docview/733185619 https://pubmed.ncbi.nlm.nih.gov/PMC3098109 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-66 https://doaj.org/article/e3f0cb7c1cc549c3ad1d1035bcbc6213  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8Ko7IQEuwhLJ-OzVtXrYxKq6p1lcaTZTt2V6lNR5to2n_P2UlDA5r2wkui-C4f9l3sO935dwh9osQ3gckyT8rQeLEKI48ZqTwthMks4FeibUT3dEROpvHwIrnYKfVlc8IqeOBq4A51ZHwlUxUoBa6MikQWZIEfJVJJRUJXrzb0Kds6U3X8wCL1u31FaeCBU5PUoD4BJYdNm91R5sAR_6xHDrb_38l5Z3X6O3OyCZ8-QY_K_ErcXIvFYmeFGjxDT2vTEveqLj1H93T-Aj2sik3evET5QGyKczGDp3zDIsfagUfAG7BYzFbreXG5xGDBYovautTe9TzTuBAzPBmN8cZVywERYpsnP8MuDdFb2tSeNbYxYJiVsI31_CrnbhNBuXyFpoPj8_6JV1db8BQYPYUXaKOZyHTGqIlJoFLB0kTrUAmqwQaJFZgamUhDIiOhYiKFVib0U8akMTSROnqN9vJVrt8ibCQVjMhEMhrGQKXaBjfBF5WwJMtUdNDX7ZhzVUOR24oYC-5cEkq4FRK3QoJLTkgHfWluuKpQOG5nPbJCbNgsfLZrAKXitVLxu5Sqgz5aFeAWICO3GTgzUW42_MfkjPfC0CdgZyV-B32umcwKvl6JekMDjIHF1Gpx7rc44Q9WLTLeahq3JJv2lutVueG2oCYFC5d10JtK8Zp-WcMtilPob9pSyVbH25R8funwwyOf0cCHZx5slZfXE9fm9lE9aLT7Lgm8-x8SeI8eV3ka8K-yfbRXrEv9Acy_QnbR_fQihSMdfO-iB73ecDKE89HxaHwGrX3S77q5AI6nMQXKdDTu_fwNIR5eTA | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJjR4QHxTGGAhJNhDIJ9OwltBVF3ZKkQ7aW-W7dhZpTYZTaJp_z13bhotwIR4THxxbN-Hz7rz7wh5mzDXeCbLHCl944TKD5zUSOVoIUyGgF-RxojuyZSNT8PJWXS2Q7ztXRib7b4NSVpLbdU6YR89MKMOHFAivAnG2C2yhxlWoIt7w-FkNulCBwjS32L4_OWz3vZjUfr_tMXXNqPfEyW7aOldst8UF-LqUiyX1zak0X1yr_Uk6XDD-gdkRxcPye1NbcmrR6QYiaqeixx6-URFQbXFioA_ULHMy_WiPl9RcFgpgrSutHO5yDStRU5n0--0ssVxgGMU0-JzarMOnRVm8qwprh0YIYqhnZ_Nwt4ZaFaPyeno6_zL2GmLKzgKfJza8bTRqch0liYmZJ6KRRpHWvtKJBpcjlCBZ5GJ2GcyECpkUmhlfDdOU2lMEkkdPCG7RVnoZ4QamYiUyUimiR9Ca6IxlglHTwk7sIzFgHzYrjlXLfI4FsBYcnsCSRhHJnFkEjxyxgbkfffBxQZ042bSz8jEjgzRsu2Lcp3zVvm4DoyrZKw8peA4rAKReZnnBjA-qZjvBQPyBkWAIx5GgQk3uWiqih_NfvCh77sM3KrIHZB3LZEpYfRKtPcXYA0QQqtHedCjBIVVvWa6lTSOTZjlVuiyqTjWz0zAoU0H5OlG8Lp5oZ8WhDHMN-6JZG_i_ZZicW7hwgM3TTwX-jzcCi9v7VR186oedtL9Lw48_49-X5P98fzkmB8fTb-9IHc2mRignukB2a3XjX4JDl4tX7Uq_QsKCkoN | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SiwUMBCSNBDaJ6Oza0srFoeVUVbqTfLdux0pd3ssklU9d8zk2SjBqgQx8QTx_bMeMaa8TeEvOHMd4HLMk_r0HmxCSNPOG08q5TLEPArsRjR_X7A9k7iL6fJaZebU66z3dchyfZOA6I0FdXOMnOtinO2E8CW6sFhJcFbYYxdJzdiMG1YwGDMxn0QAeH6OzSfv3w0MEQNXv-fu_Ils_R7ymQfN71LbtfFUl2cq9nskmma3Cf3Op-S7rZC8IBcs8VDcrOtMnnxiBQTVVbHKodePlBVUNugRsAfqJrli9W0OptTcF0pwrXOrXc-zSytVE6PDg5p2ZTJAd5RTJDPaZN_6M0xp2dFcRVhO6IY5PlZT5vbA_V8k5xMPh-P97yuzIJnwNupvMA6K1RmM8FdzAKTKpEm1oZGcQvOR2zAx8hUGjIdKRMzraxxoZ8KoZ3jibbRY7JRLAr7lFCnuRJMJ1rwMIZWbjGqCYdQDbZYp2pE3q_XXJoOgxxLYcxkcxbhTCKTJDIJHiVjI_Ku_2DZwm9cTfoRmdiTIW5282KxymWnhtJGzjc6NYExcDA2kcqCLPAjGJ82LAyiEXmNIiARGaPA1Jtc1WUp949-yN0w9Bk4WIk_Im87IreA0RvV3WSANUAwrQHl1oASVNcMmula0iQ2Yb5bYRd1KbGSJgfXVozIk1bw-nmhxxbFKcw3HYjkYOLDlmJ61gCHR77ggQ99bq-FV3Y7Vnn1qm730v0vDjz7j35fkVuHnyby2_7B1-fkTpuSAdoptshGtartC_D0Kv2y0edfs4NM6g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P1RGMhCSLCHdPl0Et4KohpIlImt0niybMfOItqkNImm8ddzl6RVM5gQEo-tL619OZ9_1t39jpBXEbONY5LEktI1lq9cz4qNVJYWwiRI-BVojOh-nrLDmf_pNDjdIV_WtTByoWRWdKShSFQ82i5Dn7dVDthFQa8OlolpN33EDhxwshZcXwKsE2PsGtllAYDzAdmdTY_G35oao06iI_j5w1O9s6mh8P_dUW-dVJezKDeh1FvkRp0vxcW5mM-3TqvJHbJcr7NNUvk-qis5Uj8vUUD-R0XcJbc7ZEvHrSneIzs6v0-ut70uLx6QfCLK6kSkMPG3VORUN9wV8DdUzNNilVVnCwqzoEgau9DWeZZoWomUHk-PaNk06wELopimn9ImC9JaYGbRimIIGpwixVDTjzprahjqxUMym3w4eX9odc0eLAWYq7IcbXQsEp3EkfGZo0IRh4HWrhKRBgjkK0A6iQhdJj2hfCaFVsa1wziWxkSB1N4jMsiLXD8h1MhIxEwGMo5cH0YjjbFVuApLQAQyFEMyWr9mrjomdGzIMefNjShiHJXIUYnwkTM2JG82DyxbEpCrRd-h3WzEkL27-aJYpbxzBlx7xlYyVI5ScD1XnkicxLE9mJ9UzHW8IXmJVseRnyPHBKBU1GXJPx5_5WPXtRnAvMAektedkClg9kp09RSgA6T06knu9STBgajeMF0bN8chzLrLdVGXHPt5RgCw4yF53Nr6Zl2IGz0_hPWGvV3QW3h_JM_OGvpyz44jx4bf3F_vF975zfJqre5vNtTf3sDTf5B9Rm622SCwZeI9MqhWtX4OILOSLzrH8QuPsnlQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastTagger%3A+an+efficient+algorithm+for+genome-wide+tag+SNP+selection+using+multi-marker+linkage+disequilibrium&rft.jtitle=BMC+bioinformatics&rft.au=Wang+Yue&rft.au=Liu+Guimei&rft.au=Wong+Limsoon&rft.date=2010-01-29&rft.pub=BMC&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1186%2F1471-2105-11-66&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3f0cb7c1cc549c3ad1d1035bcbc6213 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |