基于WFPSO算法的云虚拟机放置策略

随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量。为解决此问题,提出了一种基于粒子群优化算法的虚拟机放置策略。该策略通过建立云环境内部时延模型,利用改进的粒子群优化算法求解目标函数来降低应用的时延,提高运行效率。在CloudSim平台上进行仿真实验,结果表明,该策略的响应时间低于基本粒子群优化算法(PSO),并且修改后的PSO算法在不影响收敛精度的前提下较大幅度地提高了粒子群算法的收敛速度和云环境中应用的运行效率。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 2; pp. 591 - 594
Main Author 何利文 袁野 王延松 呼学理 牛小兵
Format Journal Article
LanguageChinese
Published 南京邮电大学计算机学院,南京,210046%中兴通讯股份有限公司,南京,210012 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.02.060

Cover

Abstract 随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量。为解决此问题,提出了一种基于粒子群优化算法的虚拟机放置策略。该策略通过建立云环境内部时延模型,利用改进的粒子群优化算法求解目标函数来降低应用的时延,提高运行效率。在CloudSim平台上进行仿真实验,结果表明,该策略的响应时间低于基本粒子群优化算法(PSO),并且修改后的PSO算法在不影响收敛精度的前提下较大幅度地提高了粒子群算法的收敛速度和云环境中应用的运行效率。
AbstractList TN915.05; 随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量.为解决此问题,提出了一种基于粒子群优化算法的虚拟机放置策略.该策略通过建立云环境内部时延模型,利用改进的粒子群优化算法求解目标函数来降低应用的时延,提高运行效率.在CloudSim平台上进行仿真实验,结果表明,该策略的响应时间低于基本粒子群优化算法(PSO),并且修改后的PSO算法在不影响收敛精度的前提下较大幅度地提高了粒子群算法的收敛速度和云环境中应用的运行效率.
随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量。为解决此问题,提出了一种基于粒子群优化算法的虚拟机放置策略。该策略通过建立云环境内部时延模型,利用改进的粒子群优化算法求解目标函数来降低应用的时延,提高运行效率。在CloudSim平台上进行仿真实验,结果表明,该策略的响应时间低于基本粒子群优化算法(PSO),并且修改后的PSO算法在不影响收敛精度的前提下较大幅度地提高了粒子群算法的收敛速度和云环境中应用的运行效率。
Abstract_FL With the large-scale application of cloud computing technology,the interaction of cloud applications more dependent on the network,a poor network topology would increase the network traffic of application,seriously affected the application of the operation efficiency and service quality.In order to solve this problem,this paper presented a virtual machine deployment strategy based on particle swarm optimization algorithm.This strategy used the improved particle swarm optimization algorithm to solve the objective function,and reduced the time delay to improve the operating efficiency.This paper gave the simulation experiment on CloudSim platform.And the results show that response time the strategy of is less than basic particle swarm optimization algorithm(PSO),and the modified PSO algorithm can improve the convergence speed of the particle swarm optimization,and improve the operating efficiency of the cloud environment.
Author 何利文 袁野 王延松 呼学理 牛小兵
AuthorAffiliation 南京邮电大学计算机学院,南京210046 中兴通讯股份有限公司,南京210012
AuthorAffiliation_xml – name: 南京邮电大学计算机学院,南京,210046%中兴通讯股份有限公司,南京,210012
Author_FL Yuan Ye
He Liwen
Hu Xueli
Wang Yansong
Niu Xiaobing
Author_FL_xml – sequence: 1
  fullname: He Liwen
– sequence: 2
  fullname: Yuan Ye
– sequence: 3
  fullname: Wang Yansong
– sequence: 4
  fullname: Hu Xueli
– sequence: 5
  fullname: Niu Xiaobing
Author_xml – sequence: 1
  fullname: 何利文 袁野 王延松 呼学理 牛小兵
BookMark eNo9jzFLw0AYhm-oYFv9E-LgYM7v7pIv3ijFqlCoYMExXNJLTdCLJohkdxMKglUsQidHu7gF9NfUxJ9hpOL0wMvD-_K2SMMkRhOyyYAKiXInplGWGcoAmCVQOpQDcylwCggN0vzPV0kry2IAmzMJTbL9NSsWxfi0e3zSr-ZP5fukmt4uivvv52l5NytfivLhs_qYV2-P1eR1jayE6jzT639sk0F3f9A5tHr9g6POXs8KEMDSCoWDAn3mayU1qykUBsIX2nVs7nCNQ1sis3kYQuDoQEKALrrKRnsoOBNtsrWsvVEmVGbkxcl1aupBL87iPM_j32vA62O1urFUg7PEjK6iWr5MowuV5h66DHZRABc_K6JgyA
ClassificationCodes TN915.05
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.02.060
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Placement strategy of cloud virtual machine based on WFPSO algorithm
DocumentTitle_FL Placement strategy of cloud virtual machine based on WFPSO algorithm
EndPage 594
ExternalDocumentID jsjyyyj201702060
671086302
GrantInformation_xml – fundername: 南京邮电大学引进人才科研启动基金资助项目; 中兴通讯研究基金资助项目
  funderid: (NY212012); (2015 外 38)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-ea635636b1bea9e1b1b3a6c3b3e754252e6d496142ff0c5ec90c6767a464d3213
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:06:25 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords time delay
粒子群优化算法
virtual machine placement
时延
particle swarm optimization algorithm
虚拟机放置
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-ea635636b1bea9e1b1b3a6c3b3e754252e6d496142ff0c5ec90c6767a464d3213
Notes 51-1196/TP
He Liwen1, Yuan Ye1, Wang Yansong2, Hu Xueli2, Niu Xiaobing2( 1. School of Computer Science & Technology, Nanjing University of Posts & Telecommunications, Nanjing 210046, China; 2. Zhongxing Telecommunication Equipment Corporation, Nanjing 210012, China)
particle swarm optimization algorithm; virtual machine placement; time delay
With the large-scale application of cloud computing technology, the interaction of cloud applications more depen- dent on the network, a poor network topology would increase the network traffic of application, seriously affected the application of the operation efficiency and service quality. In order to solve this problem, this paper presented a virtual machine deployment strategy based on particle swarm optimization algorithm. This strategy used the improved particle swarm optimization algorithm to solve the objective function, and reduced the time delay to improve the operating efficiency. This paper gave the simulation experiment on CloudSim platform. And the results sho
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201702060
chongqing_primary_671086302
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 南京邮电大学计算机学院,南京,210046%中兴通讯股份有限公司,南京,210012
Publisher_xml – name: 南京邮电大学计算机学院,南京,210046%中兴通讯股份有限公司,南京,210012
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.085974
Snippet 随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量。为解决此问题,提出了一...
TN915.05; 随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量.为解决此问题,提...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 591
SubjectTerms 时延
粒子群优化算法
虚拟机放置
Title 基于WFPSO算法的云虚拟机放置策略
URI http://lib.cqvip.com/qk/93231X/201702/671086302.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201702060
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Gq3EuLCG1EKqEj1jZTEjp34mOxmVSHxkCiit1WebfewBdoetmduSEhIFESF1BNHeuG2EvwBf1F2-QxmbHc3VFVVuGSd8Xge9iYzHsUzhCwUQZjKPM0dAb644xd56YQMNit5JQPl8jTgOvH8w0dy6Zn_YEWsTE3_rH21tL2VLeY7J54r-Z9VBRisK56S_YeVHRMFALRhfeEKKwzXM60xTQRVbRpHNPHxGibP20-ePqZJQKOEqoAmksacKoEQBf2-RVQeTUKqFAIBJ4yRDDRUUxODBqAlOCpuISkk2KJKajqCRqLu0yIpwIm8v_haUkKz8_VAn0ahxnEtJFI0HkcGtWgtLaygYYidSAakCyYoAGbg_NJEARj0nfTgHSqCHGMgqwe3QIsJikC94yY2QJvIaONSmyTbhj7MGU_9N9WCtLQ-etaipubL7IzgHGlhI1AsqFE9dTosjsLZB11Y8wQurMkwxZ6kTGhgiKMQDXTztQyuXjnDqI0NlMrTyDHOouEYKssItDTDI8OujTRPYe3VgsF463BpipQeWTMbGl6vBRWMaRKmKpr1coQpLX3cgHIllTagyGBxzAA_gQx0bltT_OFYivLuZrff73cRCXYf0p0mMwzDYw0yE8WtuD3xz8GdredrZJgKabIfxmIGsmaAsMIiWNSxARIeD4Qu12BcLR86TboRK-c5smCVuH-aCphHZW2jt_oSvEN9WK9Xpb3Vml-5fIlcsBvC-cg83ZfJ1M7aFXLxqNjKvLW9V8m9X_uDw8Fb_YCPDj4Ov-2O9l4fDt79_rQ3fLM__DwYvv8x-n4w-vphtPvlGlluJ8vNJceWOnFy2HE4ZYppIrnMvKxMVenBL4dXKM94iRWqBStl4SvwpFlVubkoc-XmmGkx9aVfcObx66TR2-iVN8h84WI4UylWuIVfViyreJUBNV6q3JNKzZK5se6dFyajTUcGWHCNu2yW3LWz0bHvuc3O8dW9eQacOXIe2yZWeYs0tl5tl7fBe9_K7tj_xB9xMKu8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EWFPSO%E7%AE%97%E6%B3%95%E7%9A%84%E4%BA%91%E8%99%9A%E6%8B%9F%E6%9C%BA%E6%94%BE%E7%BD%AE%E7%AD%96%E7%95%A5&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E4%BD%95%E5%88%A9%E6%96%87&rft.au=%E8%A2%81%E9%87%8E&rft.au=%E7%8E%8B%E5%BB%B6%E6%9D%BE&rft.au=%E5%91%BC%E5%AD%A6%E7%90%86&rft.date=2017&rft.pub=%E5%8D%97%E4%BA%AC%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210046%25%E4%B8%AD%E5%85%B4%E9%80%9A%E8%AE%AF%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%8D%97%E4%BA%AC%2C210012&rft.issn=1001-3695&rft.volume=34&rft.issue=2&rft.spage=591&rft.epage=594&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.02.060&rft.externalDocID=jsjyyyj201702060
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg