基于小生境遗传优化的Rao-Blackwellised SLAM算法

同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其随着粒子数目的增加会频繁重采样从而导致粒子退化问题。为了解决该问题,改善SLAM性能,提出了一种基于改进小生境遗传优化的RBPF SLAM算法INGO-RBPF,采用改进的Rao-Blackwellised粒子滤波器解决SLAM路径估计问题,采用扩展卡尔曼滤波器解决SLAM地图估计问题。最后通过MATLAB仿真表明INGO-RBPF算法具有较高的估计精度和稳定性,抗干扰能力较强,定位较准确,比较适合应用在S...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 8; pp. 2368 - 2371
Main Author 陈建军 廖小飞 吴赟 陈光 庄新闯
Format Journal Article
LanguageChinese
Published 东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620 2017
东华大学 信息科学与技术学院,上海,201620%东华大学 信息科学与技术学院,上海 201620
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.08.030

Cover

Abstract 同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其随着粒子数目的增加会频繁重采样从而导致粒子退化问题。为了解决该问题,改善SLAM性能,提出了一种基于改进小生境遗传优化的RBPF SLAM算法INGO-RBPF,采用改进的Rao-Blackwellised粒子滤波器解决SLAM路径估计问题,采用扩展卡尔曼滤波器解决SLAM地图估计问题。最后通过MATLAB仿真表明INGO-RBPF算法具有较高的估计精度和稳定性,抗干扰能力较强,定位较准确,比较适合应用在SLAM实时定位中。
AbstractList TP301.6; 同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其随着粒子数目的增加会频繁重采样从而导致粒子退化问题.为了解决该问题,改善SLAM性能,提出了一种基于改进小生境遗传优化的RBPF SLAM算法INGO-RBPF,采用改进的Rao-Blackwellised粒子滤波器解决SLAM路径估计问题,采用扩展卡尔曼滤波器解决SLAM地图估计问题.最后通过MATLAB仿真表明INGO-RBPF算法具有较高的估计精度和稳定性,抗干扰能力较强,定位较准确,比较适合应用在SLAM实时定位中.
同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其随着粒子数目的增加会频繁重采样从而导致粒子退化问题。为了解决该问题,改善SLAM性能,提出了一种基于改进小生境遗传优化的RBPF SLAM算法INGO-RBPF,采用改进的Rao-Blackwellised粒子滤波器解决SLAM路径估计问题,采用扩展卡尔曼滤波器解决SLAM地图估计问题。最后通过MATLAB仿真表明INGO-RBPF算法具有较高的估计精度和稳定性,抗干扰能力较强,定位较准确,比较适合应用在SLAM实时定位中。
Abstract_FL Simulation localization and mapping (SLAM) is one of the key problems in realizing robot self-navigation.As an effective method for SLAM location, it widely used Rao-Blackwellised particle filter(RBPF) in the field of real time location.However, the RBPF behavior of frequent resampling results in particle impoverishment problem along with particles increased.In order to solve the problem and improve the algorithm performance, this paper proposed a RBPF SLAM algorithm based on improved niched genetic optimization (INGO-RBPF).The INGO-RBPF algorithm solves the robot path estimation using improved Rao-Blackwellised particle filter(PF), and solves the map estimation using extended Kalman filter (EKF).Finally the MATLAB simulations prove that INGO-RBPF performs well on estimated accuracy, stability, disturbance and location accuracy, and therefore it is suitable to apply in SLAM real-time location.
Author 陈建军 廖小飞 吴赟 陈光 庄新闯
AuthorAffiliation 东华大学信息科学与技术学院,上海201620 东华大学数字化纺织服装技术教育部工程研究中心,上海201620
AuthorAffiliation_xml – name: 东华大学 信息科学与技术学院,上海,201620%东华大学 信息科学与技术学院,上海 201620;东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620
Author_FL Zhuang Xinchuang
Liao Xiaofei
Wu Yun
Chen Guang
Chen Jianjun
Author_FL_xml – sequence: 1
  fullname: Chen Jianjun
– sequence: 2
  fullname: Liao Xiaofei
– sequence: 3
  fullname: Wu Yun
– sequence: 4
  fullname: Chen Guang
– sequence: 5
  fullname: Zhuang Xinchuang
Author_xml – sequence: 1
  fullname: 陈建军 廖小飞 吴赟 陈光 庄新闯
BookMark eNo9j81Kw0AUhWdRwbb6DiIu3CTe6U0mibta_IOKoN2Xmcm0JsaJdpCSpehSdKNW3FR8ABHclT5OY_AtjFRcHTh8nMNXIxWdakXIGgUbAxZsxHZkjLYpALWQBa7dAOrZ4NuAUCHV_36R1IyJAZwGDaBKNvPxZDa5yz_ui4dx_nb9fTWaTV9n0-f89ql4uTniqbWVcHk6VEkSGRWuHLebB8X76OvzcYks9Hhi1PJf1klnZ7vT2rPah7v7rWbbkgzA4o4MfS58BI8DdUExRCF86QRCSa7Qk-gqjpSGCikqIZgSLhdeSH0JwADrZH0-O-S6x3W_G6eXA10edmMTZ1kW_4qCX2qW6OoclSep7l9EJXw-iM74IOsyr-GBCwHgD8EtZX4
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.08.030
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Rao-Blackwellised SLAM based on niched genetic optimized method
DocumentTitle_FL Rao-Blackwellised SLAM based on niched genetic optimized method
EndPage 2371
ExternalDocumentID jsjyyyj201708030
672705090
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 中央高校基本科研业务费专项基金资助项目
  funderid: (71171045); (15D110422)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-a4cd8ab8307a0150e633bb8c49becae37c35ea311de313ebb6eb5ab7d18c00603
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:59:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Rao-Blackwellised粒子滤波器
小生境遗传算法
Rao-Blackwellised particle filter
同步定位与地图创建(SLAM)
simulation location and mapping (SLAM)
niched genetic algorithm
INGO-RBPF
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-a4cd8ab8307a0150e633bb8c49becae37c35ea311de313ebb6eb5ab7d18c00603
Notes 51-1196/TP
simulation location and mapping (SLAM) ; Rao-Blackwellised particle filter; niched genetic algorithm; INGO- RBPF
Simulation localization and mapping (SLAM) is one of the key problems in realizing robot self-navigation. As an effective method for SLAM location, it widely used Rao-Blackwellised particle filter(RBPF) in the field of real time location. However, the RBPF behavior of frequent resampling results in particle impoverishment problem along with particles increased. In order to solve the problem and improve the algorithm performance, this paper proposed a RBPF SLAM algorithm based on improved niched genetic optimization (INGO-RBPF). The INGO-RBPF algorithm solves the robot path estimation using im- proved Rao-Blackwellised particle filter( PF), and solves the map estimation using extended Kalman filter (EKF). Finally the MATLAB simulations prove that INGO-RBPF performs well on estimated accuracy, stability, disturbance and location accura- cy, and therefore it is suitable to apply in SLAM real-
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201708030
chongqing_primary_672705090
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620
东华大学 信息科学与技术学院,上海,201620%东华大学 信息科学与技术学院,上海 201620
Publisher_xml – name: 东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620
– name: 东华大学 信息科学与技术学院,上海,201620%东华大学 信息科学与技术学院,上海 201620
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0857975
Snippet 同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其...
TP301.6; 同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2368
SubjectTerms INGO-RBPF
Rao-Blackwellised粒子滤波器
同步定位与地图创建(SLAM)
小生境遗传算法
Title 基于小生境遗传优化的Rao-Blackwellised SLAM算法
URI http://lib.cqvip.com/qk/93231X/201708/672705090.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201708030
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFA59gLjxLdaqXKFZlakzk3kk7pLbuRSxLqRCd5fJTNraxa3a20W7E12KbtSKm4o_QARxU_pzei3-C8_J5E6nD6QKQwjJmeTLOZOck0xyQshUUeCHo43HS1PCBMWknoAx0MM_XiLRDFQC_tGdf5TMPYkeLMaLI6M_G7uWNvp6ptg69VzJ_0gV0kCueEr2HyRbFwoJEAf5QggShvBMMqZZTEWHKkmzCEOeYYryKe_QLKUiwlxIkSHljGYCzEYqUkvcptJ3EcGRhkMksW9BOdHjfM2r1_aerqNV-lDOY7bMbBEJVYxWF1cObVuaccyVwREy0bb4YgwBUAVLckvjuxQpqKpXCBGnAKgWlVLubQ4lqUMSm4N46-YKKgFQ1iQRPlURolLIplPL5_CI5spHdcTTfqWWPRwbgISzjrsS0Kc2MktlMm2baEFUSSI9wkwAj_hThMuH_ICykFUMa4cULnG7SZUlO65AQAg0PKQqtIJjlmdQEXArtjyDXHWSiw40IEHiDr4Ytl0iVIRyw0KmoaVJ6DdUEm56Y4mTqNNZbgG46pu8qYBYdUuRM2ZCVl1wc1xRMpEIqyixipm6CtzqmFqXtu5n2VFX5Kvrq5ubm6tIBBMN5o-S8RCXwcbIuFSzqnNoh4PZ2vTLGKLLo8N5L15akDQUDd6kCJqzVjRxwNLYXstQmVQRZFZuRRzOc2TKNeLe35qA_lJW1nrLz8EKtIfyekt5b7lhPy5cIhfcxK8lq158mYxsrVwhF4eXqrScjr1K7g92dvd33w6-vzt4vzP4-ur3y-39vS_7e58Gbz4efH59omO2sGMefNv-9ePDNbLQyRbac5674MQrYJ7h5VFR8lxzGC1zXHg0CWNa8yISMLDmhqUFi03OgqA0LGBG68ToONdpGfAC_Six62Sst9YzN0gr5DkzIihSjXwrDQfNWnKd6zBIluI4nSCTNSe6zyo_Nl3chIHun_wJctfxputGt_XucVnfPAPNJDmP8WqF8hYZ67_YMLfBZu_rO-4L-QNZR6zb
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B0%8F%E7%94%9F%E5%A2%83%E9%81%97%E4%BC%A0%E4%BC%98%E5%8C%96%E7%9A%84Rao-Blackwellised+SLAM%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E9%99%88%E5%BB%BA%E5%86%9B&rft.au=%E5%BB%96%E5%B0%8F%E9%A3%9E&rft.au=%E5%90%B4%E8%B5%9F&rft.au=%E9%99%88%E5%85%89&rft.date=2017&rft.pub=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6+%E6%95%B0%E5%AD%97%E5%8C%96%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E4%B8%8A%E6%B5%B7+201620&rft.issn=1001-3695&rft.volume=34&rft.issue=8&rft.spage=2368&rft.epage=2371&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.08.030&rft.externalDocID=jsjyyyj201708030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg