基于多表观模型竞争的视觉跟踪算法

在视觉跟踪中,如何适时地更新目标模型是影响跟踪算法跟踪精度和鲁棒性的关键性因素,也是当前研究中面临的重点和难点问题。对此,提出了一种基于多表观模型竞争的模型更新策略。通过多表观模型中各子模型的贡献度大小确定竞争优势排序,当最优子模型的贡献度满足多表观模型更新阈值时,对各子模型及其对应的系数进行更新;否则,仅对部分子模型进行更新。在此基础上,以粒子滤波算法为跟踪框架,提出了基于多表现模型竞争的视觉跟踪算法。实验结果表明,所提算法能够较好地处理视觉跟踪中的模型更新问题,跟踪性能较无模型更新策略的粒子滤波算法有明显提高。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 35; no. 2; pp. 604 - 607
Main Author 余旺盛;侯志强;李建朋
Format Journal Article
LanguageChinese
Published 空军工程大学信息与导航学院,西安,710077%中国人民解放军空军94402部队,济南,250002 2018
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2018.02.060

Cover

Abstract 在视觉跟踪中,如何适时地更新目标模型是影响跟踪算法跟踪精度和鲁棒性的关键性因素,也是当前研究中面临的重点和难点问题。对此,提出了一种基于多表观模型竞争的模型更新策略。通过多表观模型中各子模型的贡献度大小确定竞争优势排序,当最优子模型的贡献度满足多表观模型更新阈值时,对各子模型及其对应的系数进行更新;否则,仅对部分子模型进行更新。在此基础上,以粒子滤波算法为跟踪框架,提出了基于多表现模型竞争的视觉跟踪算法。实验结果表明,所提算法能够较好地处理视觉跟踪中的模型更新问题,跟踪性能较无模型更新策略的粒子滤波算法有明显提高。
AbstractList TP391.41; 在视觉跟踪中,如何适时地更新目标模型是影响跟踪算法跟踪精度和鲁棒性的关键性因素,也是当前研究中面临的重点和难点问题.对此,提出了一种基于多表观模型竞争的模型更新策略.通过多表观模型中各子模型的贡献度大小确定竞争优势排序,当最优子模型的贡献度满足多表观模型更新阈值时,对各子模型及其对应的系数进行更新;否则,仅对部分子模型进行更新.在此基础上,以粒子滤波算法为跟踪框架,提出了基于多表观模型竞争的视觉跟踪算法.实验结果表明,所提算法能够较好地处理视觉跟踪中的模型更新问题,跟踪性能较无模型更新策略的粒子滤波算法有明显提高.
在视觉跟踪中,如何适时地更新目标模型是影响跟踪算法跟踪精度和鲁棒性的关键性因素,也是当前研究中面临的重点和难点问题。对此,提出了一种基于多表观模型竞争的模型更新策略。通过多表观模型中各子模型的贡献度大小确定竞争优势排序,当最优子模型的贡献度满足多表观模型更新阈值时,对各子模型及其对应的系数进行更新;否则,仅对部分子模型进行更新。在此基础上,以粒子滤波算法为跟踪框架,提出了基于多表现模型竞争的视觉跟踪算法。实验结果表明,所提算法能够较好地处理视觉跟踪中的模型更新问题,跟踪性能较无模型更新策略的粒子滤波算法有明显提高。
Abstract_FL During the visual tracking,how to update the target model timely is the key factor that affects the tracking performance and robustness.This problem is also considered to be the important and hard issue of the visual tracking.To this point,this paper proposed a model update strategy based on the competition of multiple appearance models.It assigned the competition superiority order according to the contribution of each sub model.When the contribution of the best sub model subjects to model update threshold,it updated all the sub models and the corresponding weights.Otherwise,it partially updated the multiple appearance models.Based on this,it proposed a visual tracking algorithm based on multiple appearance models under the framework of particle filter.The experimental results indicate that the proposed algorithm can well cope with the model update problem,which obviously improves the tracking performance compared with the particle filter tracking without model update.
Author 余旺盛;侯志强;李建朋
AuthorAffiliation 空军工程大学信息与导航学院,西安710077;中国人民解放军空军94402部队,济南250002
AuthorAffiliation_xml – name: 空军工程大学信息与导航学院,西安,710077%中国人民解放军空军94402部队,济南,250002
Author_FL Li Jianpeng
Yu Wangsheng
Hou Zhiqiang
Author_FL_xml – sequence: 1
  fullname: Yu Wangsheng
– sequence: 2
  fullname: Hou Zhiqiang
– sequence: 3
  fullname: Li Jianpeng
Author_xml – sequence: 1
  fullname: 余旺盛;侯志强;李建朋
BookMark eNo9j0tLw0AUhWdRwbb6J8SFm8Q7j0wySym-oOCm-zB5TG3QqTaIZCsiFMGdCF20FIQUBTculPyepsnPcKTi3Ry45-McTgs19FDHCO1isKngYj-xB2mqbQyALcqFYxPAng3EBg4N1Pz_b6JWmiYAjGABTQTlrFgWT-XrpJ4v6vxutZiX08fqfbosxtXkvs4f6nxcf83q77fq42X1-byFNpS8SOPtP22j3tFhr3Nidc-OTzsHXSvkAJakPMJBQCMvYDKMzTGmQldGjBAXew5mUipMnUBSqYTi1DiRy0kUC2VE0TbaW8feSq2k7vvJ8GakTaGfpEmWZcnvPCBmnEF31mh4PtT964GBr0aDSznKfO4yRrjjCfoDO_hnGQ
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2018.02.060
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Visual tracking algorithm based on competition of multiple appearance models
DocumentTitle_FL Visual tracking algorithm based on competition of multiple appearance models
EndPage 607
ExternalDocumentID jsjyyyj201802060
674426589
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 陕西省自然科学基础研究计划项目
  funderid: (61703423,61473309); (2016JM6050)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-a36d1bb3d8b4aceeee44fc7ad422718514aaf135ba3af9f63ad4d762de9f762f3
ISSN 1001-3695
IngestDate Thu May 29 03:54:52 EDT 2025
Wed Feb 14 10:09:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords 多表观模型
model update
multiple appearance models
模型更新
visual tracking
视觉跟踪
粒子滤波
particle filter
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-a36d1bb3d8b4aceeee44fc7ad422718514aaf135ba3af9f63ad4d762de9f762f3
Notes 51-1196/TP
During the visual tracking, how to update the target model timely is the key factor that affects the tracking perfor- mance and robustness. This problem is also considered to be the important and hard issue of the visual tracking. To this point, this paper proposed a model update strategy based on the competition of multiple appearance models. It assigned the competition superiority order according to the contribution of each sub model. When the contribution of the best sub model subjects to model update threshold, it updated all the sub models and the corresponding weights. Otherwise, it partially updated the multiple appearance models. Based on this, it proposed a visual tracking algorithm based on multiple appearance models under the framework of particle filter. The experimental results indicate that the proposed algorithm can well cope with the model update problem, which obviously improves the tracking performance compared with the particle filter tracking without model update.
Yu Wangsheng1, H
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201802060
chongqing_primary_674426589
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2018
Publisher 空军工程大学信息与导航学院,西安,710077%中国人民解放军空军94402部队,济南,250002
Publisher_xml – name: 空军工程大学信息与导航学院,西安,710077%中国人民解放军空军94402部队,济南,250002
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.130262
Snippet ...
TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 604
SubjectTerms 多表观模型
模型更新
粒子滤波
视觉跟踪
Title 基于多表观模型竞争的视觉跟踪算法
URI http://lib.cqvip.com/qk/93231X/201802/674426589.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201802060
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB9iCuLFb7FWJULnuDXZmZ2dOe40G4qgpwi9hdmvlhxStekhPYoIRfAmQg8tBSFFwUsPSv6eptk_wzezk-1apKgQJi9v9s17u28y7zfL7nsILUdxTOOmxx3YKqcOJdBEXqycJItoK6Isapo8Bc9fsLWX9Nm6t16rnVSeWtoZRivx7h_fK_kfrwIP_Krfkv0Hz5aDAgNo8C-04GFo_8rHOPSw6GAZ4JDqloeaE1AsgMNx0MIBN4SPuYtDpn8CU0uFmEsc-jiQmrbiQnNAltO5FJsTQhPS1-o0AczAiIdY-HpkSXBRxnKOdI1gaNRVDhOrxlpPt4IaddQYCcc0LScQWJb3C41pbSyEkfaNNAhJ_SHS9IKSjhmyY5QAYZToXhBp26sipZE1JnBZvdnx28qsn_0izJ6KXbqLTCd2irqVdZgVNY1tSGdFYd2L0YIIJky00ApWSgX6eT9uErkWlQ4u5ONmPgVU43FxBS24PsCbOloIZFt2zlEogLZqVkJXJ_w53_XplP2ssszqOoIQN8pl1msR3zNFCQpAQaGzSKphDbyKlq31Ty-zXWcL2dwabLwGDGReSRtkarBRQU_dm-i63fY0gmIO30K13c3b6Ma8pEjDRpg7qDk9nJxOPk6_7OdHx_n47dnx0fTgw-zbwelkb7b_Lh-_z8d7-Y_D_OfX2ffPZyef7qJuJ-yurjm2qIcTA7Z2FGFJK4pIwiOqAKClKaVZ7KuEui7AJIDvSmUt4kWKqExkjEBPAgE7SUUGXxm5h-qDrUF6HzUSlpAmV77wU4hElIosTmPl-glVVMSKLaKl8vx7r4rcLb3Se4voib0iPfuP3u71t_uj0aivryHsoljzwaUjLKFr-sjiftxDVB--2UkfAUIdRo_tjPgF-c5vkA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E8%A1%A8%E8%A7%82%E6%A8%A1%E5%9E%8B%E7%AB%9E%E4%BA%89%E7%9A%84%E8%A7%86%E8%A7%89%E8%B7%9F%E8%B8%AA%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E4%BD%99%E6%97%BA%E7%9B%9B%3B%E4%BE%AF%E5%BF%97%E5%BC%BA%3B%E6%9D%8E%E5%BB%BA%E6%9C%8B&rft.date=2018&rft.issn=1001-3695&rft.volume=35&rft.issue=2&rft.spage=604&rft.epage=607&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2018.02.060&rft.externalDocID=674426589
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg