htsint: a Python library for sequencing pipelines that combines data through gene set generation
Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relation...
Saved in:
| Published in | BMC bioinformatics Vol. 16; no. 1; p. 307 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
24.09.2015
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-015-0729-3 |
Cover
| Abstract | Background
Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses.
Results
We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages.
Conclusion
The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at
https://github.com/ajrichards/htsint
. |
|---|---|
| AbstractList | Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint. Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages. Conclusion The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint . Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint. Background : Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses.Results : We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages.Conclusion : The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint. BACKGROUNDSequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses.RESULTSWe introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages.CONCLUSIONThe database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint. Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. Conclusion The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at Keywords: Gene set analysis, Gene ontology, RNA-Seq |
| ArticleNumber | 307 |
| Audience | Academic |
| Author | Richards, Adam J. Bonneaud, Camille Herrel, Anthony |
| Author_xml | – sequence: 1 givenname: Adam J. surname: Richards fullname: Richards, Adam J. email: adamricha@gmail.com organization: Station d’Ecologie Expérimentale du CNRS – sequence: 2 givenname: Anthony surname: Herrel fullname: Herrel, Anthony organization: UMR 7179 CNRS/MNHN, Département d’Ecologie et de Gestion de la Biodiversité 57 rue Cuvier, Ghent University, Evolutionary Morphology of Vertebrates – sequence: 3 givenname: Camille surname: Bonneaud fullname: Bonneaud, Camille organization: Station d’Ecologie Expérimentale du CNRS, Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26399714$$D View this record in MEDLINE/PubMed https://hal.science/hal-02145303$$DView record in HAL |
| BookMark | eNqNkk1v1DAQhiNURD_gB3BBkbjQQ4rHsWOHA9KqKrTSSiA-zsbrOImrrL21ncL--zrNAl2EEPLB9vh5x57Xc5wdWGd1lj0HdAbAq9cBMKd1gYAWiOG6KB9lR0AYFBgQPXiwPsyOQ7hGCBhH9El2iKuyrhmQo-xbH4Ox8U0u84_b2DubD2blpd_mrfN50DejtsrYLt-YjR6M1SGPvYy5cuvV_a6RUaaQd2PX5522Ooni_cLLaJx9mj1u5RD0s918kn19d_Hl_LJYfnh_db5YForWdSy4QohjWreVVpgQiWuCQTWoqogqV4SveFvRhnFZctqm1wPTDDdUVbjELSJ1eZLhOe9oN3L7XQ6D2HizTpUIQGKyS8x2iWSXmOwSZRK9nUWbcbXWjdI2evlb6KQR-yfW9KJzt4JQDkCrlOB0TtD_IbtcLMUUQxgILVF5C4l9tbvMu2RriGJtgtLDIK12YxDAgBGWMuOEvpzRTg5aGNu6dLuacLGgBErKeD2VfPYXKo1Gr41KrdKaFN8TnO4JEhP1j9jJMQRx9fnTPvvioTW_ivvZOgmAGVDeheB1-19-7z4pJNZ22otrN3qb-uIfojuaUOLh |
| Cites_doi | 10.1093/bioinformatics/bti565 10.1371/journal.pcbi.1000443 10.1093/bib/bbr049 10.1214/07-AOAS101 10.25080/Majora-8b375195-00e 10.1186/gb-2004-5-10-r80 10.1186/1752-0509-6-S3-S7 10.1371/journal.pcbi.1000703 10.1093/nar/gkj102 10.1093/bib/bbt002 10.1038/nrg2484 10.25080/TCWV9851 10.1186/s12859-014-0397-8 10.1073/pnas.0308661100 10.1073/pnas.0506580102 10.1093/bioinformatics/btm051 10.1101/gr.141424.112 10.1007/BF01386390 10.1186/1471-2105-10-421 10.1371/journal.pcbi.0030199 10.1101/gr.1239303 10.1126/science.1183670 10.1093/bioinformatics/btp163 10.1093/bioinformatics/btu638 10.1109/MCSE.2007.55 10.1093/bioinformatics/btu090 10.1371/journal.pcbi.1002533 10.1038/nprot.2008.211 |
| ContentType | Journal Article |
| Copyright | Richards et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Richards et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 1XC VOOES 5PM ADTOC UNPAY |
| DOI | 10.1186/s12859-015-0729-3 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 307 |
| ExternalDocumentID | 10.1186/s12859-015-0729-3 PMC4581156 oai:HAL:hal-02145303v1 A541357899 26399714 10_1186_s12859_015_0729_3 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 123 1XC 2VQ C1A IPNFZ RIG VOOES 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c599t-8c008259f6ec244a29421cd0664c3b48b8f65d78a385f63917e72d5c6232f0493 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 12:06:09 EDT 2025 Tue Sep 30 16:49:42 EDT 2025 Sat Oct 25 07:18:47 EDT 2025 Thu Oct 02 05:41:34 EDT 2025 Mon Oct 20 22:50:27 EDT 2025 Mon Oct 20 16:57:19 EDT 2025 Thu Oct 16 16:17:44 EDT 2025 Thu Apr 03 06:55:27 EDT 2025 Wed Oct 01 05:49:13 EDT 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gene ontology RNA-Seq Gene set analysis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c599t-8c008259f6ec244a29421cd0664c3b48b8f65d78a385f63917e72d5c6232f0493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0991-4434 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-015-0729-3 |
| PMID | 26399714 |
| PQID | 1717474582 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_s12859_015_0729_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4581156 hal_primary_oai_HAL_hal_02145303v1 proquest_miscellaneous_1717474582 gale_infotracmisc_A541357899 gale_infotracacademiconefile_A541357899 gale_incontextgauss_ISR_A541357899 pubmed_primary_26399714 crossref_primary_10_1186_s12859_015_0729_3 springer_journals_10_1186_s12859_015_0729_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-24 |
| PublicationDateYYYYMMDD | 2015-09-24 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | H Maciejewski (729_CR9) 2013; 15 D Lin (729_CR25) 1998 P Shannon (729_CR21) 2003; 13 729_CR34 JD Hunter (729_CR20) 2007; 9 RC Gentleman (729_CR15) 2004; 5 Z Wang (729_CR1) 2009; 10 JJ Goeman (729_CR7) 2007; 23 729_CR19 C Camacho (729_CR22) 2009; 10 P Khatri (729_CR4) 2005; 21 JH Hung (729_CR8) 2012; 13 EW Dijkstra (729_CR28) 1959; 1 A Tanay (729_CR2) 2004; 101 U Hellsten (729_CR30) 2010; 328 PJA Cock (729_CR23) 2009; 25 JB Bowes (729_CR32) 2008; 36 X Wang (729_CR16) 2014; 30 C Pesquita (729_CR27) 2009; 5 AY Ng (729_CR29) 2001 Y Rahmatallah (729_CR10) 2014; 15 N Skunca (729_CR33) 2012; 8 A Subramanian (729_CR3) 2005; 102 P Resnik (729_CR24) 1995 MH Tan (729_CR31) 2013; 23 M Kanehisa (729_CR5) 2006; 34 G Fang (729_CR12) 2010; 6 AJ Richards (729_CR26) 2012; 6 DW Huang (729_CR11) 2009; 4 S Bassi (729_CR13) 2007; 3 S Anders (729_CR14) 2015; 31 U Consortium (729_CR18) 2014; 42 M Ashburner (729_CR6) 2000; 25 B Efron (729_CR17) 2007; 1 |
| References_xml | – volume: 21 start-page: 3587 issue: 18 year: 2005 ident: 729_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti565 – volume: 5 start-page: 1000443 issue: 7 year: 2009 ident: 729_CR27 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000443 – volume: 13 start-page: 281 issue: 3 year: 2012 ident: 729_CR8 publication-title: Brief Bioinform doi: 10.1093/bib/bbr049 – volume: 1 start-page: 107 issue: 1 year: 2007 ident: 729_CR17 publication-title: Ann Appl Stat doi: 10.1214/07-AOAS101 – volume-title: Advances in Neural Information Processing Systems 14 year: 2001 ident: 729_CR29 – ident: 729_CR34 doi: 10.25080/Majora-8b375195-00e – volume: 42 start-page: 191 issue: Database issue year: 2014 ident: 729_CR18 publication-title: Nucleic Acids Res – volume: 5 start-page: 80 year: 2004 ident: 729_CR15 publication-title: Genome Biology doi: 10.1186/gb-2004-5-10-r80 – volume: 6 start-page: 7 issue: Suppl 3 year: 2012 ident: 729_CR26 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-S3-S7 – volume: 6 start-page: 1000703 issue: 3 year: 2010 ident: 729_CR12 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000703 – volume: 34 start-page: 354 issue: Database issue year: 2006 ident: 729_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj102 – volume-title: Proceedings of IJCAI. IJCAI’95 year: 1995 ident: 729_CR24 – volume: 15 start-page: 504 issue: 4 year: 2013 ident: 729_CR9 publication-title: Brief Bioinform doi: 10.1093/bib/bbt002 – volume: 10 start-page: 57 issue: 1 year: 2009 ident: 729_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg2484 – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 729_CR6 publication-title: Nat Geosci – ident: 729_CR19 doi: 10.25080/TCWV9851 – volume: 15 start-page: 397 issue: 1 year: 2014 ident: 729_CR10 publication-title: BMC Bioinforma doi: 10.1186/s12859-014-0397-8 – volume: 101 start-page: 2981 issue: 9 year: 2004 ident: 729_CR2 publication-title: PNAS doi: 10.1073/pnas.0308661100 – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 729_CR3 publication-title: PNAS doi: 10.1073/pnas.0506580102 – volume: 23 start-page: 980 issue: 8 year: 2007 ident: 729_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm051 – volume: 23 start-page: 201 issue: 1 year: 2013 ident: 729_CR31 publication-title: Genome Res doi: 10.1101/gr.141424.112 – volume: 1 start-page: 269 year: 1959 ident: 729_CR28 publication-title: Numer Math doi: 10.1007/BF01386390 – volume: 10 start-page: 421 year: 2009 ident: 729_CR22 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-10-421 – volume: 3 start-page: 199 issue: 11 year: 2007 ident: 729_CR13 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030199 – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 729_CR21 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 328 start-page: 633 issue: 5978 year: 2010 ident: 729_CR30 publication-title: Science doi: 10.1126/science.1183670 – volume: 25 start-page: 1422 issue: 11 year: 2009 ident: 729_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp163 – volume: 31 start-page: 166 issue: 2 year: 2015 ident: 729_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 729_CR20 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.55 – volume: 30 start-page: 1777 issue: 12 year: 2014 ident: 729_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu090 – volume: 8 start-page: 1002533 issue: 5 year: 2012 ident: 729_CR33 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002533 – volume: 4 start-page: 44 issue: 1 year: 2009 ident: 729_CR11 publication-title: Nat Protoc doi: 10.1038/nprot.2008.211 – volume: 36 start-page: 761 issue: Database issue year: 2008 ident: 729_CR32 publication-title: Nucleic Acids Res – volume-title: Proceedings of the Fifteenth International Conference on Machine Learning. ICML ’98 year: 1998 ident: 729_CR25 |
| SSID | ssj0017805 |
| Score | 2.1487699 |
| Snippet | Background
Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard... Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for... Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard... BACKGROUNDSequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for... Background : Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard... |
| SourceID | unpaywall pubmedcentral hal proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 307 |
| SubjectTerms | Algorithms Analysis Animal biology Bioinformatics Biomedical and Life Sciences Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Databases, Genetic Genetic aspects Genome, Human Genomics Genomics - methods High-Throughput Nucleotide Sequencing - methods Humans Life Sciences Microarrays Programming Languages Sequence Analysis, RNA Software |
| SummonAdditionalLinks | – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9sRdQPxberrcQiCJbQyz6ySb8dpeUUFVEL_RY32axXKHuHu6fcf-_Mbm7pUlH8to88lswk85udyS8Ar9CnkJWwJZdpNeGpixW3Xmru0dYjfi-d7dj1P3yUs7P03Xl2HsiiaS_M1fi9UPKwEcSwhg5vxonjmidbcBNtlOzisvJ4CBgQNX8IWv6x2sjshMV3a065j9eB5fX8yCFIehdur-plsf5VXF5esUOn92AnAEg27SV-H274-gHc6o-UXD-Eb_MWvf_2iBXs05p4AVj4T8MQnbKQOI2dsOXFkrai-4a186JlqHi2u6OUURZO72GoXR4rtd1FryuP4Oz05OvxjIdTFLjLtG65cp0bqCvpHdryItZpLFyJUCN1iU2VVZXMylwVicoqxCsi93lcZg5xUVyh_5A8hu16UfunwBI_SSxiJq9KgXNda59I7eOJzYtJWTkbwZvNIJtlT5ZhOidDSdNLxKBEDEnEJBHskxgMkVDUlOXyvVg1jXn75bOZZmhacSnROoLXoVC1QFG4ImwawO8h3qpRyd1RSZwlbvR6H6U9fBWRas-m7w09I9a4DC35TxHBy40yGKpP-We1X6waI9DrTXOKMUbwpFeOoa2YQF4u0gjykdqMOhu_qS_mHZM3NoiIXEZwsFEwE5aQ5m8DdzDo4L-H-dl_tf0c7sTdpKGw2y5stz9Wfg9RV2tfdPPtN9mVIiU priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOiHGA_dLYCAzISExpWtuTsJbhZgKgmlcKo0nEzvOWlHSqElA5ddzTuJUC0MgJN7axk6c48_2d-pzPgM8QZ-CZ45Mbe5nI9tXbmRLzWNb41qP_D1VslHXf3vMJ1P_9WlwugXvulwY-VXJ-dKIhpJQ8fB8GvqizXKgUxT06rBIs3bQR_ywdEiJDR3jwCYtbNvbhh0eID0fwM70-GT8qckyCh0bXZzA7G7-tl5vfTKz9PaMgiQvMtCLgZSb3dQrcLnOi2T9PVkszi1YR9dg1b1qG6fyZVhXcqh-_KIC-V9tcR2uGnrLxi0eb8CWzm_CpfbAy_Ut-DyrynlePWcJO1mTagEz_yIxfDozYd34ZqyYF5Qor0tWzZKKYRtk840CWpk5W4gh9jVWqpoPLZJvw_To5ccXE9uc8WCrII4rO1KNkxpnXCtkGokb-66jUiRCvvKkH8ko40EaRokXBRmyKSfUoZsGClmbm6F3492BQb7M9T1gnh55EhmdjlIHZ6I41h6PtTuSYTJKMyUteNb1rChaKQ_RuEARF63JBJpMkMmEZ8E-9b0giYycYnDOkrosxasP78U4wIUfJ7o4tuCpKZQtsUdUYlIasD2kqtUrudcriWNY9S7vI8Q2rSLJ78n4jaDfSNMuQJ7xzbHgcYdAQfUpOi7Xy7oUDvrkfkg7oBbcbRG5uZdLFDR0fAvCHlZ7D-tfyeezRmccb4j-ArfgoEO1MBNc-SfDHWyA_3cz3_-n0g9g121QTZuCezCoVrV-iJywko_MKP8JQvBadw priority: 102 providerName: Unpaywall |
| Title | htsint: a Python library for sequencing pipelines that combines data through gene set generation |
| URI | https://link.springer.com/article/10.1186/s12859-015-0729-3 https://www.ncbi.nlm.nih.gov/pubmed/26399714 https://www.proquest.com/docview/1717474582 https://hal.science/hal-02145303 https://pubmed.ncbi.nlm.nih.gov/PMC4581156 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-015-0729-3 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tmxDjAfE5AqMyExISU6D5cmIkhEK1UipWVRuVuieTOA6tVKVlSYH-99wlaSHaBLy0Tew4qe_O97vc-Q7gOdoUPLXixORu2jFdZQdmrLkwNep6xO-Jisvs-qdD3h-7g4k32YFNeat6AvNrTTuqJzW-nL_6-W39DgX-bSnwAX-dW5SFDY1iz6Q82KbTgj1UVIIqOZy6v50KlL6_3GzkWyZaOl7t5Lx2iIaaqhfr1pRiJa8C0avxlFun6i24ucqW0fpHNJ__obd6d-B2DThZWHHIXdjR2T24UZWgXN-HL9Min2XFGxax0ZryCLD6vQ5DNMvqQGu8CVvOlrR1XeesmEYFQ0aNyyMKMWV1tR-G3KjxoqL8UfHWAxj3Tj53-2ZddcFUnhCFGajSbBQp1wp1f2QL17ZUgtDEVU7sBnGQci_xg8gJvBTxjeVr3048hTjKTtHecB7CbrbI9CNgju44MWIsHSQWrg1CaIcLbXdiP-okqYoNeLmZZLmskmvI0igJuKwoIpEikigiHQOOiAySklZkFBXzNVrlufx4fiZDD1UxLj1CGPCi7pQukBQqqjcZ4PNQnqtGz8NGT5Qq1Wg-Qmpvn4qScPfDT5LOUZY5DzX_d8uAZxtmkHQ9xatlerHKpYVWsuuTT9KAg4o5tmPZBAp9yzXAb7BN42bNlmw2LTN_44CI4LkBxxsGkxuJ-dvEHW958N_T_Ph__vgT2LdLWSHv3CHsFpcr_RTBWRG3oeVPfPwMeh_asBeGg_MBfr8_GY7O8GyXd9vla492KZrYMh6Owotf-hc4xA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9si7Q-FD9rtOpaBMESvHxtsn0LxXI9r0VsC31bs5uNd1Byh8kp9987k2xCQ0Xx7XLZ3YSdmZ3fZGZ_C_AOYwpeeCp3eViM3FD7iasMF65BX4_4PdeqYdc_O-fjq3ByHV3bfdxVV-3epSSblbox64R_rDziWsPQN3KJ7doNNmCLaqzQGrfSdHIx6ZMHRNNvE5h_7DhwQXYh3phRHeRdkHm3VrJPmD6A7VW5zNa_spubWz7p5CHsWjDJ0lb6j-CeKR_D_fZ4yfUT-Darq3lZH7GMfVkTRwCz32wYIlVmi6jxIWw5X9K2dFOxepbVDOdDNVdUPsrsST4MNc1gp7r50erNU7g6-XR5PHbtiQqujoSo3UQ3IaEouNHo1zNfhL6nc4QdoQ5UmKik4FEeJ1mQRAViFy82sZ9HGjGSX2AsETyDzXJRmufAAjMKFOInk-Qe2r0QJuDC-CMVZ6O80MqBD90ky2VLnCGbgCPhspWIRIlIkogMHDggMUgipCip4uV7tqoqeXrxVaYoYWLkEcKB97ZRsUBR6MxuIMD3IQ6rQcv9QUu0GD24fYDS7t-KCLbH6VTSf8QgF6FX_-k58LZTBkn9qRatNItVJT2MgMOY8o0O7LXK0Y_lE-CLvdCBeKA2g4cN75TzWcPqjQMiOucOHHYKJu1yUv1t4g57Hfz3NL_4r7HfwPb48mwqp6fnn1_Cjt8YEKXj9mGz_rEyrxCN1eq1tb7fIQEqfg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIb4eJj5H2AAzISFtitZ8OfHeqkLVwZgmYNLeTOw4a6UpjUgK6n_PXeJEi4ZAvDWN7US-s-93ufPvAN6iT8FzT2UuD_ORG2o_cZXhwjVo6xG_Z1o17PqfT_nsPPx4EV3YOqdVl-3ehSTbMw3E0lTUh2WWt0s84YeVR7xr6AZHLjFfu8EG3A7RuFEJgwmf9GEEIuy3ocw_dhsYI7slb8wpI_Im3LyZNdmHTh_AvVVRputf6dXVNes0fQhbFlaycasHj-CWKR7DnbbQ5PoJfJ_X1aKoj1jKztbEFsDs1xuGmJXZdGp8CCsXJR1QNxWr52nNcGZUc0WJpMzW9GGocwY71c2PVoOewvn0w7fJzLW1FVwdCVG7iW6cQ5Fzo9HCp74IfU9nCEBCHagwUUnOoyxO0iCJckQxXmxiP4s0oiU_R68ieAabxbIwz4EFZhQoRFImyTzcAYQwARfGH6k4HWW5Vg7sd5Msy5ZCQzauR8JlKxGJEpEkERk4sEdikERNUVDuy2W6qip5_PWLHEdocHGDEcKBd7ZRvkRR6NQeJcD3ITarQcvdQUtcO3pwew-l3b8VUW3PxieS_iMuuQjt-0_PgTedMkjqT1lphVmuKumhLxzGFHl0YLtVjn4sn6Bf7IUOxAO1GTxseKdYzBt-bxwQcTp34KBTMGk3lupvE3fQ6-C_p_nFf439Gu6evZ_Kk-PTTztw32_WD8XldmGz_rEyLxGW1epVs_R-A9l8LVs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOiHGA_dLYCAzISExpWtuTsJbhZgKgmlcKo0nEzvOWlHSqElA5ddzTuJUC0MgJN7axk6c48_2d-pzPgM8QZ-CZ45Mbe5nI9tXbmRLzWNb41qP_D1VslHXf3vMJ1P_9WlwugXvulwY-VXJ-dKIhpJQ8fB8GvqizXKgUxT06rBIs3bQR_ywdEiJDR3jwCYtbNvbhh0eID0fwM70-GT8qckyCh0bXZzA7G7-tl5vfTKz9PaMgiQvMtCLgZSb3dQrcLnOi2T9PVkszi1YR9dg1b1qG6fyZVhXcqh-_KIC-V9tcR2uGnrLxi0eb8CWzm_CpfbAy_Ut-DyrynlePWcJO1mTagEz_yIxfDozYd34ZqyYF5Qor0tWzZKKYRtk840CWpk5W4gh9jVWqpoPLZJvw_To5ccXE9uc8WCrII4rO1KNkxpnXCtkGokb-66jUiRCvvKkH8ko40EaRokXBRmyKSfUoZsGClmbm6F3492BQb7M9T1gnh55EhmdjlIHZ6I41h6PtTuSYTJKMyUteNb1rChaKQ_RuEARF63JBJpMkMmEZ8E-9b0giYycYnDOkrosxasP78U4wIUfJ7o4tuCpKZQtsUdUYlIasD2kqtUrudcriWNY9S7vI8Q2rSLJ78n4jaDfSNMuQJ7xzbHgcYdAQfUpOi7Xy7oUDvrkfkg7oBbcbRG5uZdLFDR0fAvCHlZ7D-tfyeezRmccb4j-ArfgoEO1MBNc-SfDHWyA_3cz3_-n0g9g121QTZuCezCoVrV-iJywko_MKP8JQvBadw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=htsint%3A+a+Python+library+for+sequencing+pipelines+that+combines+data+through+gene+set+generation&rft.jtitle=BMC+bioinformatics&rft.au=Richards%2C+Adam+J.&rft.au=Herrel%2C+Anthony&rft.au=Bonneaud%2C+Camille&rft.date=2015-09-24&rft.pub=BioMed+Central&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-015-0729-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02145303v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |