htsint: a Python library for sequencing pipelines that combines data through gene set generation

Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relation...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 16; no. 1; p. 307
Main Authors Richards, Adam J., Herrel, Anthony, Bonneaud, Camille
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.09.2015
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-015-0729-3

Cover

Abstract Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages. Conclusion The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint .
AbstractList Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.
Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages. Conclusion The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint .
Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.
Background : Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses.Results : We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for ‘enrichment’ or conditional differences using one of a number of commonly available packages.Conclusion : The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.
BACKGROUNDSequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses.RESULTSWe introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages.CONCLUSIONThe database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.
Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic features into a context of known functional information, but the relationships between ontology terms are often ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to both integrate annotation data and detect small coordinated changes between experimental conditions, a known caveat of gene level analyses. Results We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes, like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for 'enrichment' or conditional differences using one of a number of commonly available packages. Conclusion The database and bundled tools to generate functional modules were designed with sequencing pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is freely available as a Python library through GitHub at Keywords: Gene set analysis, Gene ontology, RNA-Seq
ArticleNumber 307
Audience Academic
Author Richards, Adam J.
Bonneaud, Camille
Herrel, Anthony
Author_xml – sequence: 1
  givenname: Adam J.
  surname: Richards
  fullname: Richards, Adam J.
  email: adamricha@gmail.com
  organization: Station d’Ecologie Expérimentale du CNRS
– sequence: 2
  givenname: Anthony
  surname: Herrel
  fullname: Herrel, Anthony
  organization: UMR 7179 CNRS/MNHN, Département d’Ecologie et de Gestion de la Biodiversité 57 rue Cuvier, Ghent University, Evolutionary Morphology of Vertebrates
– sequence: 3
  givenname: Camille
  surname: Bonneaud
  fullname: Bonneaud, Camille
  organization: Station d’Ecologie Expérimentale du CNRS, Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26399714$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02145303$$DView record in HAL
BookMark eNqNkk1v1DAQhiNURD_gB3BBkbjQQ4rHsWOHA9KqKrTSSiA-zsbrOImrrL21ncL--zrNAl2EEPLB9vh5x57Xc5wdWGd1lj0HdAbAq9cBMKd1gYAWiOG6KB9lR0AYFBgQPXiwPsyOQ7hGCBhH9El2iKuyrhmQo-xbH4Ox8U0u84_b2DubD2blpd_mrfN50DejtsrYLt-YjR6M1SGPvYy5cuvV_a6RUaaQd2PX5522Ooni_cLLaJx9mj1u5RD0s918kn19d_Hl_LJYfnh_db5YForWdSy4QohjWreVVpgQiWuCQTWoqogqV4SveFvRhnFZctqm1wPTDDdUVbjELSJ1eZLhOe9oN3L7XQ6D2HizTpUIQGKyS8x2iWSXmOwSZRK9nUWbcbXWjdI2evlb6KQR-yfW9KJzt4JQDkCrlOB0TtD_IbtcLMUUQxgILVF5C4l9tbvMu2RriGJtgtLDIK12YxDAgBGWMuOEvpzRTg5aGNu6dLuacLGgBErKeD2VfPYXKo1Gr41KrdKaFN8TnO4JEhP1j9jJMQRx9fnTPvvioTW_ivvZOgmAGVDeheB1-19-7z4pJNZ22otrN3qb-uIfojuaUOLh
Cites_doi 10.1093/bioinformatics/bti565
10.1371/journal.pcbi.1000443
10.1093/bib/bbr049
10.1214/07-AOAS101
10.25080/Majora-8b375195-00e
10.1186/gb-2004-5-10-r80
10.1186/1752-0509-6-S3-S7
10.1371/journal.pcbi.1000703
10.1093/nar/gkj102
10.1093/bib/bbt002
10.1038/nrg2484
10.25080/TCWV9851
10.1186/s12859-014-0397-8
10.1073/pnas.0308661100
10.1073/pnas.0506580102
10.1093/bioinformatics/btm051
10.1101/gr.141424.112
10.1007/BF01386390
10.1186/1471-2105-10-421
10.1371/journal.pcbi.0030199
10.1101/gr.1239303
10.1126/science.1183670
10.1093/bioinformatics/btp163
10.1093/bioinformatics/btu638
10.1109/MCSE.2007.55
10.1093/bioinformatics/btu090
10.1371/journal.pcbi.1002533
10.1038/nprot.2008.211
ContentType Journal Article
Copyright Richards et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Richards et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-015-0729-3
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 307
ExternalDocumentID 10.1186/s12859-015-0729-3
PMC4581156
oai:HAL:hal-02145303v1
A541357899
26399714
10_1186_s12859_015_0729_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
123
1XC
2VQ
C1A
IPNFZ
RIG
VOOES
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c599t-8c008259f6ec244a29421cd0664c3b48b8f65d78a385f63917e72d5c6232f0493
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 12:06:09 EDT 2025
Tue Sep 30 16:49:42 EDT 2025
Sat Oct 25 07:18:47 EDT 2025
Thu Oct 02 05:41:34 EDT 2025
Mon Oct 20 22:50:27 EDT 2025
Mon Oct 20 16:57:19 EDT 2025
Thu Oct 16 16:17:44 EDT 2025
Thu Apr 03 06:55:27 EDT 2025
Wed Oct 01 05:49:13 EDT 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene ontology
RNA-Seq
Gene set analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-8c008259f6ec244a29421cd0664c3b48b8f65d78a385f63917e72d5c6232f0493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0991-4434
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-015-0729-3
PMID 26399714
PQID 1717474582
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12859_015_0729_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4581156
hal_primary_oai_HAL_hal_02145303v1
proquest_miscellaneous_1717474582
gale_infotracmisc_A541357899
gale_infotracacademiconefile_A541357899
gale_incontextgauss_ISR_A541357899
pubmed_primary_26399714
crossref_primary_10_1186_s12859_015_0729_3
springer_journals_10_1186_s12859_015_0729_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-24
PublicationDateYYYYMMDD 2015-09-24
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References H Maciejewski (729_CR9) 2013; 15
D Lin (729_CR25) 1998
P Shannon (729_CR21) 2003; 13
729_CR34
JD Hunter (729_CR20) 2007; 9
RC Gentleman (729_CR15) 2004; 5
Z Wang (729_CR1) 2009; 10
JJ Goeman (729_CR7) 2007; 23
729_CR19
C Camacho (729_CR22) 2009; 10
P Khatri (729_CR4) 2005; 21
JH Hung (729_CR8) 2012; 13
EW Dijkstra (729_CR28) 1959; 1
A Tanay (729_CR2) 2004; 101
U Hellsten (729_CR30) 2010; 328
PJA Cock (729_CR23) 2009; 25
JB Bowes (729_CR32) 2008; 36
X Wang (729_CR16) 2014; 30
C Pesquita (729_CR27) 2009; 5
AY Ng (729_CR29) 2001
Y Rahmatallah (729_CR10) 2014; 15
N Skunca (729_CR33) 2012; 8
A Subramanian (729_CR3) 2005; 102
P Resnik (729_CR24) 1995
MH Tan (729_CR31) 2013; 23
M Kanehisa (729_CR5) 2006; 34
G Fang (729_CR12) 2010; 6
AJ Richards (729_CR26) 2012; 6
DW Huang (729_CR11) 2009; 4
S Bassi (729_CR13) 2007; 3
S Anders (729_CR14) 2015; 31
U Consortium (729_CR18) 2014; 42
M Ashburner (729_CR6) 2000; 25
B Efron (729_CR17) 2007; 1
References_xml – volume: 21
  start-page: 3587
  issue: 18
  year: 2005
  ident: 729_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti565
– volume: 5
  start-page: 1000443
  issue: 7
  year: 2009
  ident: 729_CR27
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000443
– volume: 13
  start-page: 281
  issue: 3
  year: 2012
  ident: 729_CR8
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr049
– volume: 1
  start-page: 107
  issue: 1
  year: 2007
  ident: 729_CR17
  publication-title: Ann Appl Stat
  doi: 10.1214/07-AOAS101
– volume-title: Advances in Neural Information Processing Systems 14
  year: 2001
  ident: 729_CR29
– ident: 729_CR34
  doi: 10.25080/Majora-8b375195-00e
– volume: 42
  start-page: 191
  issue: Database issue
  year: 2014
  ident: 729_CR18
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 80
  year: 2004
  ident: 729_CR15
  publication-title: Genome Biology
  doi: 10.1186/gb-2004-5-10-r80
– volume: 6
  start-page: 7
  issue: Suppl 3
  year: 2012
  ident: 729_CR26
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-S3-S7
– volume: 6
  start-page: 1000703
  issue: 3
  year: 2010
  ident: 729_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000703
– volume: 34
  start-page: 354
  issue: Database issue
  year: 2006
  ident: 729_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj102
– volume-title: Proceedings of IJCAI. IJCAI’95
  year: 1995
  ident: 729_CR24
– volume: 15
  start-page: 504
  issue: 4
  year: 2013
  ident: 729_CR9
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt002
– volume: 10
  start-page: 57
  issue: 1
  year: 2009
  ident: 729_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2484
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 729_CR6
  publication-title: Nat Geosci
– ident: 729_CR19
  doi: 10.25080/TCWV9851
– volume: 15
  start-page: 397
  issue: 1
  year: 2014
  ident: 729_CR10
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-014-0397-8
– volume: 101
  start-page: 2981
  issue: 9
  year: 2004
  ident: 729_CR2
  publication-title: PNAS
  doi: 10.1073/pnas.0308661100
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 729_CR3
  publication-title: PNAS
  doi: 10.1073/pnas.0506580102
– volume: 23
  start-page: 980
  issue: 8
  year: 2007
  ident: 729_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm051
– volume: 23
  start-page: 201
  issue: 1
  year: 2013
  ident: 729_CR31
  publication-title: Genome Res
  doi: 10.1101/gr.141424.112
– volume: 1
  start-page: 269
  year: 1959
  ident: 729_CR28
  publication-title: Numer Math
  doi: 10.1007/BF01386390
– volume: 10
  start-page: 421
  year: 2009
  ident: 729_CR22
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-421
– volume: 3
  start-page: 199
  issue: 11
  year: 2007
  ident: 729_CR13
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030199
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 729_CR21
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 328
  start-page: 633
  issue: 5978
  year: 2010
  ident: 729_CR30
  publication-title: Science
  doi: 10.1126/science.1183670
– volume: 25
  start-page: 1422
  issue: 11
  year: 2009
  ident: 729_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp163
– volume: 31
  start-page: 166
  issue: 2
  year: 2015
  ident: 729_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 729_CR20
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.55
– volume: 30
  start-page: 1777
  issue: 12
  year: 2014
  ident: 729_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu090
– volume: 8
  start-page: 1002533
  issue: 5
  year: 2012
  ident: 729_CR33
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002533
– volume: 4
  start-page: 44
  issue: 1
  year: 2009
  ident: 729_CR11
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 36
  start-page: 761
  issue: Database issue
  year: 2008
  ident: 729_CR32
  publication-title: Nucleic Acids Res
– volume-title: Proceedings of the Fifteenth International Conference on Machine Learning. ICML ’98
  year: 1998
  ident: 729_CR25
SSID ssj0017805
Score 2.1487699
Snippet Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard...
Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for...
Background Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard...
BACKGROUNDSequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard for...
Background : Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants, polymorphisms, and other features. A standard...
SourceID unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 307
SubjectTerms Algorithms
Analysis
Animal biology
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Genetic
Genetic aspects
Genome, Human
Genomics
Genomics - methods
High-Throughput Nucleotide Sequencing - methods
Humans
Life Sciences
Microarrays
Programming Languages
Sequence Analysis, RNA
Software
SummonAdditionalLinks – databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9sRdQPxberrcQiCJbQyz6ySb8dpeUUFVEL_RY32axXKHuHu6fcf-_Mbm7pUlH8to88lswk85udyS8Ar9CnkJWwJZdpNeGpixW3Xmru0dYjfi-d7dj1P3yUs7P03Xl2HsiiaS_M1fi9UPKwEcSwhg5vxonjmidbcBNtlOzisvJ4CBgQNX8IWv6x2sjshMV3a065j9eB5fX8yCFIehdur-plsf5VXF5esUOn92AnAEg27SV-H274-gHc6o-UXD-Eb_MWvf_2iBXs05p4AVj4T8MQnbKQOI2dsOXFkrai-4a186JlqHi2u6OUURZO72GoXR4rtd1FryuP4Oz05OvxjIdTFLjLtG65cp0bqCvpHdryItZpLFyJUCN1iU2VVZXMylwVicoqxCsi93lcZg5xUVyh_5A8hu16UfunwBI_SSxiJq9KgXNda59I7eOJzYtJWTkbwZvNIJtlT5ZhOidDSdNLxKBEDEnEJBHskxgMkVDUlOXyvVg1jXn75bOZZmhacSnROoLXoVC1QFG4ImwawO8h3qpRyd1RSZwlbvR6H6U9fBWRas-m7w09I9a4DC35TxHBy40yGKpP-We1X6waI9DrTXOKMUbwpFeOoa2YQF4u0gjykdqMOhu_qS_mHZM3NoiIXEZwsFEwE5aQ5m8DdzDo4L-H-dl_tf0c7sTdpKGw2y5stz9Wfg9RV2tfdPPtN9mVIiU
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOiHGA_dLYCAzISExpWtuTsJbhZgKgmlcKo0nEzvOWlHSqElA5ddzTuJUC0MgJN7axk6c48_2d-pzPgM8QZ-CZ45Mbe5nI9tXbmRLzWNb41qP_D1VslHXf3vMJ1P_9WlwugXvulwY-VXJ-dKIhpJQ8fB8GvqizXKgUxT06rBIs3bQR_ywdEiJDR3jwCYtbNvbhh0eID0fwM70-GT8qckyCh0bXZzA7G7-tl5vfTKz9PaMgiQvMtCLgZSb3dQrcLnOi2T9PVkszi1YR9dg1b1qG6fyZVhXcqh-_KIC-V9tcR2uGnrLxi0eb8CWzm_CpfbAy_Ut-DyrynlePWcJO1mTagEz_yIxfDozYd34ZqyYF5Qor0tWzZKKYRtk840CWpk5W4gh9jVWqpoPLZJvw_To5ccXE9uc8WCrII4rO1KNkxpnXCtkGokb-66jUiRCvvKkH8ko40EaRokXBRmyKSfUoZsGClmbm6F3492BQb7M9T1gnh55EhmdjlIHZ6I41h6PtTuSYTJKMyUteNb1rChaKQ_RuEARF63JBJpMkMmEZ8E-9b0giYycYnDOkrosxasP78U4wIUfJ7o4tuCpKZQtsUdUYlIasD2kqtUrudcriWNY9S7vI8Q2rSLJ78n4jaDfSNMuQJ7xzbHgcYdAQfUpOi7Xy7oUDvrkfkg7oBbcbRG5uZdLFDR0fAvCHlZ7D-tfyeezRmccb4j-ArfgoEO1MBNc-SfDHWyA_3cz3_-n0g9g121QTZuCezCoVrV-iJywko_MKP8JQvBadw
  priority: 102
  providerName: Unpaywall
Title htsint: a Python library for sequencing pipelines that combines data through gene set generation
URI https://link.springer.com/article/10.1186/s12859-015-0729-3
https://www.ncbi.nlm.nih.gov/pubmed/26399714
https://www.proquest.com/docview/1717474582
https://hal.science/hal-02145303
https://pubmed.ncbi.nlm.nih.gov/PMC4581156
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-015-0729-3
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tmxDjAfE5AqMyExISU6D5cmIkhEK1UipWVRuVuieTOA6tVKVlSYH-99wlaSHaBLy0Tew4qe_O97vc-Q7gOdoUPLXixORu2jFdZQdmrLkwNep6xO-Jisvs-qdD3h-7g4k32YFNeat6AvNrTTuqJzW-nL_6-W39DgX-bSnwAX-dW5SFDY1iz6Q82KbTgj1UVIIqOZy6v50KlL6_3GzkWyZaOl7t5Lx2iIaaqhfr1pRiJa8C0avxlFun6i24ucqW0fpHNJ__obd6d-B2DThZWHHIXdjR2T24UZWgXN-HL9Min2XFGxax0ZryCLD6vQ5DNMvqQGu8CVvOlrR1XeesmEYFQ0aNyyMKMWV1tR-G3KjxoqL8UfHWAxj3Tj53-2ZddcFUnhCFGajSbBQp1wp1f2QL17ZUgtDEVU7sBnGQci_xg8gJvBTxjeVr3048hTjKTtHecB7CbrbI9CNgju44MWIsHSQWrg1CaIcLbXdiP-okqYoNeLmZZLmskmvI0igJuKwoIpEikigiHQOOiAySklZkFBXzNVrlufx4fiZDD1UxLj1CGPCi7pQukBQqqjcZ4PNQnqtGz8NGT5Qq1Wg-Qmpvn4qScPfDT5LOUZY5DzX_d8uAZxtmkHQ9xatlerHKpYVWsuuTT9KAg4o5tmPZBAp9yzXAb7BN42bNlmw2LTN_44CI4LkBxxsGkxuJ-dvEHW958N_T_Ph__vgT2LdLWSHv3CHsFpcr_RTBWRG3oeVPfPwMeh_asBeGg_MBfr8_GY7O8GyXd9vla492KZrYMh6Owotf-hc4xA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9si7Q-FD9rtOpaBMESvHxtsn0LxXI9r0VsC31bs5uNd1Byh8kp9987k2xCQ0Xx7XLZ3YSdmZ3fZGZ_C_AOYwpeeCp3eViM3FD7iasMF65BX4_4PdeqYdc_O-fjq3ByHV3bfdxVV-3epSSblbox64R_rDziWsPQN3KJ7doNNmCLaqzQGrfSdHIx6ZMHRNNvE5h_7DhwQXYh3phRHeRdkHm3VrJPmD6A7VW5zNa_spubWz7p5CHsWjDJ0lb6j-CeKR_D_fZ4yfUT-Darq3lZH7GMfVkTRwCz32wYIlVmi6jxIWw5X9K2dFOxepbVDOdDNVdUPsrsST4MNc1gp7r50erNU7g6-XR5PHbtiQqujoSo3UQ3IaEouNHo1zNfhL6nc4QdoQ5UmKik4FEeJ1mQRAViFy82sZ9HGjGSX2AsETyDzXJRmufAAjMKFOInk-Qe2r0QJuDC-CMVZ6O80MqBD90ky2VLnCGbgCPhspWIRIlIkogMHDggMUgipCip4uV7tqoqeXrxVaYoYWLkEcKB97ZRsUBR6MxuIMD3IQ6rQcv9QUu0GD24fYDS7t-KCLbH6VTSf8QgF6FX_-k58LZTBkn9qRatNItVJT2MgMOY8o0O7LXK0Y_lE-CLvdCBeKA2g4cN75TzWcPqjQMiOucOHHYKJu1yUv1t4g57Hfz3NL_4r7HfwPb48mwqp6fnn1_Cjt8YEKXj9mGz_rEyrxCN1eq1tb7fIQEqfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIb4eJj5H2AAzISFtitZ8OfHeqkLVwZgmYNLeTOw4a6UpjUgK6n_PXeJEi4ZAvDWN7US-s-93ufPvAN6iT8FzT2UuD_ORG2o_cZXhwjVo6xG_Z1o17PqfT_nsPPx4EV3YOqdVl-3ehSTbMw3E0lTUh2WWt0s84YeVR7xr6AZHLjFfu8EG3A7RuFEJgwmf9GEEIuy3ocw_dhsYI7slb8wpI_Im3LyZNdmHTh_AvVVRputf6dXVNes0fQhbFlaycasHj-CWKR7DnbbQ5PoJfJ_X1aKoj1jKztbEFsDs1xuGmJXZdGp8CCsXJR1QNxWr52nNcGZUc0WJpMzW9GGocwY71c2PVoOewvn0w7fJzLW1FVwdCVG7iW6cQ5Fzo9HCp74IfU9nCEBCHagwUUnOoyxO0iCJckQxXmxiP4s0oiU_R68ieAabxbIwz4EFZhQoRFImyTzcAYQwARfGH6k4HWW5Vg7sd5Msy5ZCQzauR8JlKxGJEpEkERk4sEdikERNUVDuy2W6qip5_PWLHEdocHGDEcKBd7ZRvkRR6NQeJcD3ITarQcvdQUtcO3pwew-l3b8VUW3PxieS_iMuuQjt-0_PgTedMkjqT1lphVmuKumhLxzGFHl0YLtVjn4sn6Bf7IUOxAO1GTxseKdYzBt-bxwQcTp34KBTMGk3lupvE3fQ6-C_p_nFf439Gu6evZ_Kk-PTTztw32_WD8XldmGz_rEyLxGW1epVs_R-A9l8LVs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOiHGA_dLYCAzISExpWtuTsJbhZgKgmlcKo0nEzvOWlHSqElA5ddzTuJUC0MgJN7axk6c48_2d-pzPgM8QZ-CZ45Mbe5nI9tXbmRLzWNb41qP_D1VslHXf3vMJ1P_9WlwugXvulwY-VXJ-dKIhpJQ8fB8GvqizXKgUxT06rBIs3bQR_ywdEiJDR3jwCYtbNvbhh0eID0fwM70-GT8qckyCh0bXZzA7G7-tl5vfTKz9PaMgiQvMtCLgZSb3dQrcLnOi2T9PVkszi1YR9dg1b1qG6fyZVhXcqh-_KIC-V9tcR2uGnrLxi0eb8CWzm_CpfbAy_Ut-DyrynlePWcJO1mTagEz_yIxfDozYd34ZqyYF5Qor0tWzZKKYRtk840CWpk5W4gh9jVWqpoPLZJvw_To5ccXE9uc8WCrII4rO1KNkxpnXCtkGokb-66jUiRCvvKkH8ko40EaRokXBRmyKSfUoZsGClmbm6F3492BQb7M9T1gnh55EhmdjlIHZ6I41h6PtTuSYTJKMyUteNb1rChaKQ_RuEARF63JBJpMkMmEZ8E-9b0giYycYnDOkrosxasP78U4wIUfJ7o4tuCpKZQtsUdUYlIasD2kqtUrudcriWNY9S7vI8Q2rSLJ78n4jaDfSNMuQJ7xzbHgcYdAQfUpOi7Xy7oUDvrkfkg7oBbcbRG5uZdLFDR0fAvCHlZ7D-tfyeezRmccb4j-ArfgoEO1MBNc-SfDHWyA_3cz3_-n0g9g121QTZuCezCoVrV-iJywko_MKP8JQvBadw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=htsint%3A+a+Python+library+for+sequencing+pipelines+that+combines+data+through+gene+set+generation&rft.jtitle=BMC+bioinformatics&rft.au=Richards%2C+Adam+J.&rft.au=Herrel%2C+Anthony&rft.au=Bonneaud%2C+Camille&rft.date=2015-09-24&rft.pub=BioMed+Central&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-015-0729-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02145303v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon