Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations
Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are...
Saved in:
| Published in | BMC bioinformatics Vol. 9; no. 1; p. 539 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
16.12.2008
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-9-539 |
Cover
| Abstract | Background
During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.
Results
We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and
a priori
specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.
Conclusion
The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at
http://web.abo.fi/fak/mnf//mate/jc/software/baps.html
. |
|---|---|
| AbstractList | During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.
We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.
The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.BACKGROUNDDuring the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.RESULTSWe discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.CONCLUSIONThe Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html. Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html . |
| ArticleNumber | 539 |
| Audience | Academic |
| Author | Marttinen, Pekka Sirén, Jukka Corander, Jukka Tang, Jing |
| AuthorAffiliation | 2 Department of Mathematics and Statistics, P.O. Box 68, Fin-00014 University of Helsinki, Finland 1 Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500 Åbo, Finland |
| AuthorAffiliation_xml | – name: 1 Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500 Åbo, Finland – name: 2 Department of Mathematics and Statistics, P.O. Box 68, Fin-00014 University of Helsinki, Finland |
| Author_xml | – sequence: 1 givenname: Jukka surname: Corander fullname: Corander, Jukka organization: Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University – sequence: 2 givenname: Pekka surname: Marttinen fullname: Marttinen, Pekka organization: Department of Mathematics and Statistics, University of Helsinki – sequence: 3 givenname: Jukka surname: Sirén fullname: Sirén, Jukka organization: Department of Mathematics and Statistics, University of Helsinki – sequence: 4 givenname: Jing surname: Tang fullname: Tang, Jing email: jing.tang@helsinki.fi organization: Department of Mathematics and Statistics, University of Helsinki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19087322$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9rFDEUx4NUbLt69iYDguBh2iQzyUwuwrZUXSgoVk8eQibzMk2ZTdYkY93_3mx3qV3xR-aQ4eXz_fLyzTtGB847QOg5wSeEtPyU1A0pKcGsFCWrxCN0dF85ePB_iI5jvMGYNC1mT9AhEbhtKkqP0NcLd62chr44U2uIVrli6XsYR-uGwrribP7xqojepFsVoDA-FCOo4DanAzhIVhcxhUmnKUAsvClWfjWNKlnv4lP02KgxwrPdPkNf3l58Pn9fXn54tzifX5aaCZFK3mPeGSFqpoluNWt7LaqaGJqrDas71opKEd6SxtTUAFYNqygXvOMdaNNDNUOLrW_v1Y1cBbtUYS29svKu4MMgVcidjiA1JjUnnNMW6ppR1WFGG6VZpUk2zZnMEN56TW6l1rdqHO8NCZabzOUmVblJVQqZM8-SN1vJauqW0GtwKahxr4_9E2ev5eC_S8qpaJo2G7zaGQT_bYKY5NJGnd9AOfBTlDyvCnOSwZdbcFD5LtYZn_30BpZzImidu2lopk7-QOWvh6XVeX6MzfU9wes9QWYS_EiDmmKUi6tP--yLh5f9Fc5uojLAtoAOPsYARmqb7uYhd2HHf6R4-pvu_7nvnipm0g0Q5I2fgsuT9lfJT8xP-hI |
| CitedBy_id | crossref_primary_10_1111_jav_00972 crossref_primary_10_4141_cjps2013_140 crossref_primary_10_7717_peerj_14389 crossref_primary_10_1002_wat2_1269 crossref_primary_10_1093_aob_mcaa044 crossref_primary_10_1089_mdr_2017_0147 crossref_primary_10_1111_j_1365_294X_2012_05626_x crossref_primary_10_1111_j_1463_6409_2011_00477_x crossref_primary_10_1071_MF20157 crossref_primary_10_1007_s00227_021_03970_4 crossref_primary_10_1007_s11295_018_1287_4 crossref_primary_10_1016_j_biocon_2016_01_007 crossref_primary_10_14411_eje_2012_057 crossref_primary_10_1111_eva_12065 crossref_primary_10_1111_j_1365_3059_2011_02502_x crossref_primary_10_1111_j_1365_294X_2011_05258_x crossref_primary_10_1111_jbi_12132 crossref_primary_10_1111_jbi_13105 crossref_primary_10_1007_s10592_011_0277_y crossref_primary_10_1016_j_ympev_2013_10_015 crossref_primary_10_1111_jbi_14554 crossref_primary_10_3389_fmicb_2021_756991 crossref_primary_10_3389_fpls_2018_01932 crossref_primary_10_1134_S1022795417010100 crossref_primary_10_3389_fpls_2019_01466 crossref_primary_10_3390_d15030310 crossref_primary_10_3389_fpls_2023_1178245 crossref_primary_10_3390_horticulturae9070743 crossref_primary_10_1073_pnas_2316971121 crossref_primary_10_1111_j_1365_294X_2011_05137_x crossref_primary_10_1111_mec_13840 crossref_primary_10_3832_ifor1885_009 crossref_primary_10_1038_ejhg_2010_32 crossref_primary_10_1111_eva_12055 crossref_primary_10_1071_MF20046 crossref_primary_10_1590_1678_4685_gmb_2017_0079 crossref_primary_10_1111_j_1365_294X_2010_04986_x crossref_primary_10_1111_j_1095_8649_2010_02784_x crossref_primary_10_3732_ajb_1700054 crossref_primary_10_1016_j_flora_2019_151522 crossref_primary_10_1038_s41598_020_62300_8 crossref_primary_10_1111_evo_13566 crossref_primary_10_1111_oik_09442 crossref_primary_10_1186_s12864_019_6078_2 crossref_primary_10_1007_s10592_014_0621_0 crossref_primary_10_1007_s10592_010_0109_5 crossref_primary_10_1038_s41396_018_0199_5 crossref_primary_10_1038_s41598_021_93072_4 crossref_primary_10_1111_j_1365_294X_2009_04515_x crossref_primary_10_1093_jac_dky506 crossref_primary_10_1016_j_molbiopara_2017_01_003 crossref_primary_10_1186_1475_2875_8_259 crossref_primary_10_1371_journal_pgen_1004547 crossref_primary_10_3390_antibiotics11091170 crossref_primary_10_1128_AEM_02196_15 crossref_primary_10_1111_jfb_15340 crossref_primary_10_1186_1471_2180_13_302 crossref_primary_10_1007_s10980_021_01297_5 crossref_primary_10_1371_journal_pone_0085240 crossref_primary_10_1007_s11295_013_0680_2 crossref_primary_10_1038_ng_2878 crossref_primary_10_1111_jbi_12358 crossref_primary_10_1111_jbi_12115 crossref_primary_10_1111_jbi_13562 crossref_primary_10_1128_JCM_01193_15 crossref_primary_10_3161_15081109ACC2016_18_2_006 crossref_primary_10_1101_gr_189803_115 crossref_primary_10_1371_journal_pone_0137919 crossref_primary_10_1139_cjb_2017_0116 crossref_primary_10_1111_mec_12972 crossref_primary_10_1371_journal_pgen_1003568 crossref_primary_10_1093_botlinnean_boac006 crossref_primary_10_1101_gr_250092_119 crossref_primary_10_1007_s10750_010_0297_5 crossref_primary_10_1016_j_ympev_2018_04_005 crossref_primary_10_1111_j_1365_2052_2011_02296_x crossref_primary_10_2989_1814232X_2015_1010577 crossref_primary_10_1093_jme_tjaa047 crossref_primary_10_1093_biolinnean_blx163 crossref_primary_10_1093_botlinnean_boab043 crossref_primary_10_1128_microbiolspec_MTBP_0014_2016 crossref_primary_10_7717_peerj_1759 crossref_primary_10_1111_jse_12099 crossref_primary_10_1111_zph_12141 crossref_primary_10_1534_g3_111_001123 crossref_primary_10_1038_hdy_2015_67 crossref_primary_10_1093_zoolinnean_zlac011 crossref_primary_10_1093_femspd_ftx021 crossref_primary_10_1007_s00239_010_9335_1 crossref_primary_10_1111_boj_12416 crossref_primary_10_1016_j_livsci_2018_09_003 crossref_primary_10_1038_s41559_018_0617_0 crossref_primary_10_1093_botlinnean_boae001 crossref_primary_10_1016_j_mambio_2018_09_005 crossref_primary_10_1093_ee_nvy184 crossref_primary_10_1371_journal_pone_0079621 crossref_primary_10_1186_1471_2105_12_302 crossref_primary_10_1007_s10709_018_0040_0 crossref_primary_10_1098_rsif_2011_0601 crossref_primary_10_1002_ece3_101 crossref_primary_10_1002_ece3_100 crossref_primary_10_1007_s12686_013_9987_4 crossref_primary_10_1002_jwmg_22038 crossref_primary_10_1093_biolinnean_blaa220 crossref_primary_10_1002_ece3_2269 crossref_primary_10_1093_aesa_saaa011 crossref_primary_10_1111_j_1365_294X_2012_05681_x crossref_primary_10_1371_journal_pone_0085196 crossref_primary_10_1016_j_ympev_2015_06_003 crossref_primary_10_1111_jbi_12567 crossref_primary_10_1093_biolinnean_blw017 crossref_primary_10_1111_j_1365_294X_2012_05507_x crossref_primary_10_3389_fmicb_2021_661798 crossref_primary_10_1038_s41437_018_0158_y crossref_primary_10_1186_s12864_022_08572_y crossref_primary_10_1111_j_1365_294X_2012_05473_x crossref_primary_10_1080_00028487_2013_793613 crossref_primary_10_1515_sg_2013_0017 crossref_primary_10_1016_j_aspen_2022_101962 crossref_primary_10_1016_j_biocon_2015_01_022 crossref_primary_10_1080_20477724_2015_1103503 crossref_primary_10_1080_00275514_2018_1543508 crossref_primary_10_1111_bij_12358 crossref_primary_10_1007_s10592_017_0935_9 crossref_primary_10_1038_ncomms7740 crossref_primary_10_1080_15627020_2017_1387504 crossref_primary_10_1111_ddi_12546 crossref_primary_10_1111_mec_13912 crossref_primary_10_1016_j_jip_2024_108081 crossref_primary_10_1111_jfb_14054 crossref_primary_10_3389_fgene_2024_1453005 crossref_primary_10_1038_jhg_2013_73 crossref_primary_10_1371_journal_pone_0175239 crossref_primary_10_1038_s41467_023_41152_6 crossref_primary_10_1111_mec_13909 crossref_primary_10_1007_s00122_011_1539_2 crossref_primary_10_1016_j_ijid_2022_10_034 crossref_primary_10_1111_j_1863_2378_2012_01525_x crossref_primary_10_1111_mec_16065 crossref_primary_10_1093_gbe_evz119 crossref_primary_10_1016_j_biocon_2017_09_016 crossref_primary_10_1371_journal_pone_0223256 crossref_primary_10_1016_j_meegid_2016_07_011 crossref_primary_10_1093_jhered_est055 crossref_primary_10_7717_peerj_1865 crossref_primary_10_1007_s10592_021_01336_3 crossref_primary_10_1007_s10914_018_9450_0 crossref_primary_10_1590_0001_3765202320210503 crossref_primary_10_1111_fwb_12449 crossref_primary_10_1186_s12936_019_2917_5 crossref_primary_10_1371_journal_pone_0141236 crossref_primary_10_1038_hdy_2014_64 crossref_primary_10_3389_fgene_2019_00297 crossref_primary_10_3390_ani13020302 crossref_primary_10_1016_j_meegid_2020_104256 crossref_primary_10_1007_s00338_015_1344_5 crossref_primary_10_1093_infdis_jiaa002 crossref_primary_10_1007_s11692_020_09525_7 crossref_primary_10_1007_s10658_011_9853_8 crossref_primary_10_1093_aob_mcw257 crossref_primary_10_1093_nar_gkz361 crossref_primary_10_1016_j_jcz_2017_08_007 crossref_primary_10_3390_sci6020035 crossref_primary_10_1093_botlinnean_boab084 crossref_primary_10_1007_s10709_018_0031_1 crossref_primary_10_1007_s10531_023_02605_y crossref_primary_10_1016_j_ympev_2020_107020 crossref_primary_10_1093_botlinnean_boy080 crossref_primary_10_1093_molbev_msq236 crossref_primary_10_3390_d3030375 crossref_primary_10_1007_s11295_023_01633_7 crossref_primary_10_3389_fpls_2021_695746 crossref_primary_10_1111_jfb_15961 crossref_primary_10_1111_jeb_12170 crossref_primary_10_1128_AEM_03661_14 crossref_primary_10_1371_journal_pcbi_1000455 crossref_primary_10_3390_fishes6040044 crossref_primary_10_3832_ifor1860_009 crossref_primary_10_1111_jbi_13977 crossref_primary_10_1111_mec_13457 crossref_primary_10_1007_s11692_012_9205_4 crossref_primary_10_1111_icad_12129 crossref_primary_10_1007_s00606_016_1381_8 crossref_primary_10_1128_CMR_00050_19 crossref_primary_10_1186_s12863_015_0188_x crossref_primary_10_1371_journal_pone_0127268 crossref_primary_10_1038_hdy_2013_84 crossref_primary_10_1093_botlinnean_boad078 crossref_primary_10_3390_insects11080472 crossref_primary_10_1093_botlinnean_boz045 crossref_primary_10_1016_j_ympev_2016_10_013 crossref_primary_10_1089_mdr_2017_0314 crossref_primary_10_1002_ajp_22343 crossref_primary_10_1111_j_1365_294X_2011_05349_x crossref_primary_10_1080_00218839_2023_2229978 crossref_primary_10_1007_s10531_015_0913_9 crossref_primary_10_1016_j_flora_2019_151497 crossref_primary_10_1186_1756_3305_7_345 crossref_primary_10_1007_s00439_019_02069_7 crossref_primary_10_1007_s10750_016_2872_x crossref_primary_10_1016_j_jmii_2023_08_005 crossref_primary_10_1007_s10530_014_0753_7 crossref_primary_10_1371_journal_pone_0151137 crossref_primary_10_1128_JCM_00643_12 crossref_primary_10_1111_bij_12102 crossref_primary_10_1080_11263504_2012_706237 crossref_primary_10_1111_j_1095_8312_2010_01482_x crossref_primary_10_1111_mve_12701 crossref_primary_10_1134_S1022795419020169 crossref_primary_10_3389_fpls_2019_00303 crossref_primary_10_1007_s10682_018_9939_2 crossref_primary_10_1525_auk_2013_12196 crossref_primary_10_1111_mec_12340 crossref_primary_10_1007_s10592_010_0131_7 crossref_primary_10_1139_cjz_2019_0154 crossref_primary_10_1038_s41467_023_37332_z crossref_primary_10_1111_jeb_12032 crossref_primary_10_1016_j_mib_2015_03_002 crossref_primary_10_1007_s00425_021_03798_8 crossref_primary_10_1080_17550874_2013_771475 crossref_primary_10_1371_journal_pone_0087381 crossref_primary_10_1007_s10709_019_00068_0 crossref_primary_10_1139_g2012_054 crossref_primary_10_1007_s10592_017_1035_6 crossref_primary_10_1111_mec_14997 crossref_primary_10_1186_s12936_016_1217_6 crossref_primary_10_1016_j_scitotenv_2022_160739 crossref_primary_10_1089_zeb_2023_0036 crossref_primary_10_1007_s10750_016_2819_2 crossref_primary_10_1371_journal_pone_0140344 crossref_primary_10_1007_s10592_014_0690_0 crossref_primary_10_1371_journal_pone_0105265 crossref_primary_10_1038_hdy_2014_22 crossref_primary_10_1099_mgen_0_000089 crossref_primary_10_3390_ani13243754 crossref_primary_10_1111_j_1469_8137_2012_04377_x crossref_primary_10_1007_s40415_019_00567_6 crossref_primary_10_1099_mic_0_063073_0 crossref_primary_10_1111_1755_0998_12387 crossref_primary_10_1111_conl_12621 crossref_primary_10_1111_mec_12459 crossref_primary_10_1111_mec_13788 crossref_primary_10_1134_S1022795419010034 crossref_primary_10_1007_s10592_020_01258_6 crossref_primary_10_1007_s13592_014_0329_7 crossref_primary_10_1111_jbi_13953 crossref_primary_10_1128_aem_01044_22 crossref_primary_10_1371_journal_pone_0190091 crossref_primary_10_1038_hdy_2013_54 crossref_primary_10_1007_s10592_018_1049_8 crossref_primary_10_1016_j_fishres_2021_106127 crossref_primary_10_1038_s41598_022_05162_6 crossref_primary_10_1016_j_fishres_2021_106126 crossref_primary_10_1093_cz_zoz002 crossref_primary_10_1038_s41598_019_49097_x crossref_primary_10_1007_s10336_021_01948_z crossref_primary_10_1128_JCM_02453_16 crossref_primary_10_1002_ece3_1681 crossref_primary_10_1007_s00227_016_2939_2 crossref_primary_10_1038_s41437_019_0229_8 crossref_primary_10_1371_journal_pone_0082501 crossref_primary_10_7717_peerj_10782 crossref_primary_10_1111_j_1365_294X_2011_05312_x crossref_primary_10_1371_journal_pcbi_1011424 crossref_primary_10_1186_s12862_018_1317_8 crossref_primary_10_3389_fgene_2017_00214 crossref_primary_10_1080_17550874_2013_851294 crossref_primary_10_1146_annurev_phyto_072910_095246 crossref_primary_10_3390_horticulturae10030253 crossref_primary_10_1093_jhered_ess025 crossref_primary_10_1093_botlinnean_box062 crossref_primary_10_1093_botlinnean_boae089 crossref_primary_10_1007_s00606_012_0719_0 crossref_primary_10_1007_s10841_019_00202_5 crossref_primary_10_1080_24701394_2021_2024814 crossref_primary_10_1111_bij_12305 crossref_primary_10_1007_s10592_012_0334_1 crossref_primary_10_1016_j_ympev_2018_06_015 crossref_primary_10_1111_mec_12317 crossref_primary_10_1002_ece3_3873 crossref_primary_10_1111_mec_12313 crossref_primary_10_1111_mec_13523 crossref_primary_10_1111_jse_12949 crossref_primary_10_1111_j_1756_1051_2013_00138_x crossref_primary_10_1007_s10530_012_0356_0 crossref_primary_10_1016_j_resmic_2015_06_008 crossref_primary_10_22201_ib_20078706e_2021_92_3370 crossref_primary_10_1007_s10592_023_01539_w crossref_primary_10_1371_journal_ppat_1002191 crossref_primary_10_1002_ecs2_4784 crossref_primary_10_2478_contagri_2023_0028 crossref_primary_10_1186_s12862_018_1207_0 crossref_primary_10_1016_j_crvi_2012_10_004 crossref_primary_10_1111_1755_0998_13027 crossref_primary_10_1002_ajb2_1851 crossref_primary_10_1111_jbi_12948 crossref_primary_10_1186_s12862_016_0779_9 crossref_primary_10_1146_annurev_phyto_080614_115936 crossref_primary_10_1007_s10530_019_02138_y crossref_primary_10_1002_ps_6663 crossref_primary_10_1080_14772000_2015_1117027 crossref_primary_10_1093_isd_ixab032 crossref_primary_10_1371_journal_pone_0110910 crossref_primary_10_3389_fgene_2018_00001 crossref_primary_10_3390_ijms150711614 crossref_primary_10_1007_s10592_020_01290_6 crossref_primary_10_1007_s11634_009_0043_x crossref_primary_10_1073_pnas_1110020108 crossref_primary_10_1186_1471_2148_11_42 crossref_primary_10_1186_1471_2148_10_71 crossref_primary_10_3354_meps10537 crossref_primary_10_1007_s10530_012_0213_1 crossref_primary_10_1111_jbi_12938 crossref_primary_10_3732_ajb_1700103 crossref_primary_10_1002_ece3_845 crossref_primary_10_1111_mec_13622 crossref_primary_10_1111_j_1365_2052_2011_02309_x crossref_primary_10_1038_ismej_2012_170 crossref_primary_10_1101_gr_216606_116 crossref_primary_10_1038_s41467_021_24720_6 crossref_primary_10_1038_s41598_021_82183_7 crossref_primary_10_1007_s10530_014_0734_x crossref_primary_10_1038_hdy_2011_73 crossref_primary_10_1007_s11634_015_0199_5 crossref_primary_10_1071_IS16082 crossref_primary_10_1093_aob_mcw096 crossref_primary_10_1002_tax_12710 crossref_primary_10_1099_mgen_0_000337 crossref_primary_10_1016_j_tplants_2010_09_002 crossref_primary_10_1016_j_gecco_2021_e01928 crossref_primary_10_5897_AJB2018_16467 crossref_primary_10_1186_s12862_015_0389_y crossref_primary_10_1111_mec_14387 crossref_primary_10_1111_1755_0998_13647 crossref_primary_10_1038_s41598_021_00567_1 crossref_primary_10_1016_j_ympev_2023_107829 crossref_primary_10_1038_hdy_2010_95 crossref_primary_10_1186_s12864_018_4557_5 crossref_primary_10_1111_mec_13170 crossref_primary_10_1038_ng_3145 crossref_primary_10_1128_mSphere_00472_18 crossref_primary_10_1111_boj_12174 crossref_primary_10_1111_j_1365_294X_2011_05273_x crossref_primary_10_1371_journal_pone_0057337 crossref_primary_10_1642_AUK_13_187_1 crossref_primary_10_3389_fpls_2022_935975 crossref_primary_10_3389_fevo_2024_1436320 crossref_primary_10_1099_mgen_0_000220 crossref_primary_10_1007_s00425_012_1777_9 crossref_primary_10_1007_s11295_012_0509_4 crossref_primary_10_1073_pnas_1108973109 crossref_primary_10_1038_hdy_2010_84 crossref_primary_10_1007_s10336_016_1355_1 crossref_primary_10_1016_j_scitotenv_2016_04_056 crossref_primary_10_1111_eva_12726 crossref_primary_10_1038_hdy_2010_80 crossref_primary_10_1007_s11295_015_0943_1 crossref_primary_10_1007_s10750_017_3399_5 crossref_primary_10_1016_j_ympev_2019_106544 crossref_primary_10_3389_fgene_2018_00295 crossref_primary_10_3390_ani13010090 crossref_primary_10_1093_molbev_msaa323 crossref_primary_10_1002_ece3_6031 crossref_primary_10_1644_11_MAMM_A_326_2 crossref_primary_10_1007_s12526_017_0768_2 crossref_primary_10_1038_s41598_021_03548_6 crossref_primary_10_1038_s41598_018_32369_3 crossref_primary_10_1007_s11295_017_1137_9 crossref_primary_10_1111_j_1095_8312_2010_01583_x crossref_primary_10_3732_ajb_1400431 crossref_primary_10_3389_fpls_2021_637009 crossref_primary_10_1002_jwmg_21452 crossref_primary_10_1111_jse_12830 crossref_primary_10_1111_jen_12333 crossref_primary_10_1371_journal_pone_0194165 crossref_primary_10_1007_s13364_020_00546_3 crossref_primary_10_1371_journal_pone_0202196 crossref_primary_10_1007_s10641_015_0419_z crossref_primary_10_1371_journal_pntd_0000889 crossref_primary_10_2903_j_efsa_2019_5898 crossref_primary_10_3389_fmars_2019_00791 crossref_primary_10_1111_jeb_12556 crossref_primary_10_1128_mBio_00151_12 crossref_primary_10_3389_fgene_2018_00047 crossref_primary_10_1016_j_ympev_2023_107723 crossref_primary_10_1111_aab_12113 crossref_primary_10_1007_s10336_018_1538_z crossref_primary_10_1128_jcm_01725_23 crossref_primary_10_1111_j_1095_8312_2011_01743_x crossref_primary_10_3389_fpls_2022_826158 crossref_primary_10_1007_s42991_023_00374_3 crossref_primary_10_1007_s10750_019_04033_y crossref_primary_10_1111_bij_12844 crossref_primary_10_1111_mec_12174 crossref_primary_10_3398_064_073_0413 crossref_primary_10_1093_jac_dkz268 crossref_primary_10_1073_pnas_1014971108 crossref_primary_10_1073_pnas_1416707112 crossref_primary_10_1111_j_1600_0633_2011_00527_x crossref_primary_10_1128_mBio_00644_19 crossref_primary_10_1007_s41208_024_00689_z crossref_primary_10_1007_BF03544378 crossref_primary_10_1038_s41598_018_21265_5 crossref_primary_10_1371_journal_ppat_1002013 crossref_primary_10_5358_hsj_37_11 crossref_primary_10_3732_ajb_1100021 crossref_primary_10_1111_j_1469_7998_2010_00767_x crossref_primary_10_1101_gr_079509_108 crossref_primary_10_3390_ani12111462 crossref_primary_10_1071_ZO13029 crossref_primary_10_1128_JCM_03345_15 crossref_primary_10_1111_j_1600_048X_2009_04681_x crossref_primary_10_1038_s41598_020_71319_w crossref_primary_10_1111_jse_12531 crossref_primary_10_1111_maec_12640 crossref_primary_10_1038_s41598_020_67259_0 crossref_primary_10_1099_mgen_0_000659 crossref_primary_10_1111_jzs_12422 crossref_primary_10_1186_1471_2105_10_382 crossref_primary_10_1080_14772000_2022_2084470 crossref_primary_10_1093_botlinnean_box103 crossref_primary_10_1007_s11295_014_0722_4 crossref_primary_10_1128_JCM_01987_17 crossref_primary_10_1038_ncomms12827 crossref_primary_10_1093_gbe_evt038 crossref_primary_10_1007_s10592_015_0696_2 crossref_primary_10_1038_hdy_2009_163 crossref_primary_10_1655_HERPETOLOGICA_D_12_00033R2 crossref_primary_10_7717_peerj_4479 crossref_primary_10_1371_journal_pone_0138989 crossref_primary_10_1111_j_1365_294X_2010_04543_x crossref_primary_10_14411_eje_2022_032 crossref_primary_10_1111_j_1600_048X_2012_05761_x crossref_primary_10_1038_s41467_019_12823_0 crossref_primary_10_1007_s11295_020_01429_z crossref_primary_10_1111_1755_0998_12242 crossref_primary_10_1002_ajb2_1424 crossref_primary_10_1016_j_meegid_2013_06_020 crossref_primary_10_1016_j_yqres_2016_01_002 crossref_primary_10_3390_plants13060885 crossref_primary_10_7717_peerj_1193 crossref_primary_10_1038_s41437_021_00460_7 crossref_primary_10_1007_s10592_016_0905_7 crossref_primary_10_3389_fgene_2020_00410 crossref_primary_10_1111_jbi_14064 crossref_primary_10_1371_journal_pone_0017085 crossref_primary_10_1643_CG_13_040 crossref_primary_10_1371_journal_pone_0099903 crossref_primary_10_1016_j_ympev_2020_106820 crossref_primary_10_1139_gen_2018_0043 crossref_primary_10_1111_mec_12266 crossref_primary_10_1111_mec_13355 crossref_primary_10_3389_fevo_2022_777172 crossref_primary_10_3390_ijms141223454 crossref_primary_10_1111_jzo_12278 crossref_primary_10_1111_j_1365_294X_2009_04237_x crossref_primary_10_1534_genetics_115_176404 crossref_primary_10_1016_j_ympev_2023_107809 crossref_primary_10_1093_biolinnean_blad145 crossref_primary_10_1007_s00606_020_01695_3 crossref_primary_10_1590_1982_0224_2021_0162 crossref_primary_10_3835_plantgenome2011_08_0022 crossref_primary_10_1007_s10592_018_1130_3 crossref_primary_10_1016_j_ympev_2017_12_003 crossref_primary_10_1111_zsc_12517 crossref_primary_10_1128_JB_00234_10 crossref_primary_10_1093_aobpla_plv142 crossref_primary_10_1007_s00227_012_2006_6 crossref_primary_10_1007_s10709_019_00058_2 crossref_primary_10_1016_j_anres_2018_11_021 crossref_primary_10_1038_hdy_2010_155 crossref_primary_10_1111_j_1095_8312_2010_01597_x crossref_primary_10_1186_1471_2156_12_56 crossref_primary_10_1007_s10709_014_9777_2 crossref_primary_10_1007_s10530_012_0233_x crossref_primary_10_1002_ece3_1874 crossref_primary_10_1371_journal_pone_0145165 crossref_primary_10_1016_j_jembe_2013_09_012 crossref_primary_10_1111_j_1600_0633_2011_00529_x crossref_primary_10_1038_s41598_019_39128_y crossref_primary_10_1111_zsc_12406 crossref_primary_10_1007_s13595_015_0508_3 crossref_primary_10_1016_j_funeco_2017_01_002 crossref_primary_10_1371_journal_pone_0036242 crossref_primary_10_1002_ece3_11411 crossref_primary_10_1371_journal_pone_0070162 crossref_primary_10_1111_jvec_12208 crossref_primary_10_1093_biolinnean_blaa135 crossref_primary_10_1007_s00203_018_1573_4 crossref_primary_10_7717_peerj_3584 crossref_primary_10_1371_journal_pone_0170685 crossref_primary_10_4236_nr_2017_81003 crossref_primary_10_1080_09064702_2010_538714 crossref_primary_10_1186_s12864_022_08984_w crossref_primary_10_1007_s10592_014_0676_y crossref_primary_10_3389_fpls_2020_00688 crossref_primary_10_1016_j_virol_2013_09_002 crossref_primary_10_1111_jbi_14154 crossref_primary_10_1016_j_seares_2013_11_003 crossref_primary_10_1371_journal_pone_0076930 crossref_primary_10_1007_s10592_013_0464_0 crossref_primary_10_1128_mBio_00550_16 crossref_primary_10_3906_bot_1706_11 crossref_primary_10_1093_infdis_jiz098 crossref_primary_10_1186_s13029_019_0072_6 crossref_primary_10_1186_s12864_017_4399_6 crossref_primary_10_1007_s10750_020_04292_0 crossref_primary_10_1016_j_scitotenv_2018_05_003 crossref_primary_10_1080_24701394_2018_1546300 crossref_primary_10_1038_s41437_018_0155_1 crossref_primary_10_1111_jfb_15395 crossref_primary_10_1371_journal_pone_0308066 crossref_primary_10_1002_ece3_3036 crossref_primary_10_1007_s10592_021_01391_w crossref_primary_10_1371_journal_pone_0123207 crossref_primary_10_1038_nature10392 crossref_primary_10_1016_j_mambio_2016_12_001 crossref_primary_10_1093_jmammal_gyv191 crossref_primary_10_3389_fpls_2022_842842 crossref_primary_10_1007_s10344_013_0731_x crossref_primary_10_1038_hdy_2013_116 crossref_primary_10_7868_S0016675817010106 crossref_primary_10_1371_journal_pntd_0004732 crossref_primary_10_1093_jhered_esu062 crossref_primary_10_1007_s10530_015_0915_2 crossref_primary_10_1371_journal_pone_0111011 crossref_primary_10_17660_ActaHortic_2022_1352_11 crossref_primary_10_7554_eLife_07335 crossref_primary_10_1007_s00122_014_2423_7 crossref_primary_10_1111_jse_12675 crossref_primary_10_18697_ajfand_83_17155 crossref_primary_10_1111_aen_12665 crossref_primary_10_1007_s10592_013_0466_y crossref_primary_10_1016_j_jcz_2018_10_004 crossref_primary_10_1016_j_pecon_2020_06_006 crossref_primary_10_1186_s12862_017_1047_3 crossref_primary_10_1111_boj_12110 crossref_primary_10_1186_s12863_020_00845_3 crossref_primary_10_1007_s00035_010_0084_y crossref_primary_10_1371_journal_pone_0204653 crossref_primary_10_1111_jbi_12195 crossref_primary_10_1016_j_ympev_2019_03_004 crossref_primary_10_1093_bfgp_elp048 crossref_primary_10_1002_ecs2_1844 crossref_primary_10_1038_srep28984 crossref_primary_10_1002_ece3_360 crossref_primary_10_1017_S0007485311000563 crossref_primary_10_1007_s00122_011_1671_z crossref_primary_10_1099_mgen_0_000528 crossref_primary_10_1007_s13131_023_2265_8 crossref_primary_10_1093_cid_cir1032 crossref_primary_10_1371_journal_pntd_0001448 crossref_primary_10_1371_journal_ppat_1002776 crossref_primary_10_1371_journal_pone_0101467 crossref_primary_10_1186_s12862_015_0517_8 crossref_primary_10_1038_s41598_020_80586_6 crossref_primary_10_1371_journal_pone_0179228 crossref_primary_10_3389_fmars_2023_1050055 crossref_primary_10_1016_j_mambio_2019_11_002 crossref_primary_10_3390_pathogens12070878 crossref_primary_10_1093_jhered_esv046 crossref_primary_10_1093_molbev_mst055 crossref_primary_10_1016_j_fgb_2019_06_002 crossref_primary_10_1071_MF18272 crossref_primary_10_1007_s10709_012_9653_x crossref_primary_10_1007_s10592_015_0763_8 crossref_primary_10_1007_s10144_013_0373_6 crossref_primary_10_1093_aob_mct119 crossref_primary_10_1111_mec_14069 crossref_primary_10_1111_1755_0998_12512 crossref_primary_10_1093_biolinnean_blab030 crossref_primary_10_1051_alr_2012027 crossref_primary_10_1371_journal_ppat_1000583 crossref_primary_10_1111_boj_12377 crossref_primary_10_1073_pnas_1718712115 crossref_primary_10_1007_s10914_017_9397_6 crossref_primary_10_1093_molbev_mst028 crossref_primary_10_1038_ng_2895 crossref_primary_10_1073_pnas_1602675113 crossref_primary_10_1093_nar_gkr928 crossref_primary_10_1038_srep24041 crossref_primary_10_1371_journal_pone_0097556 crossref_primary_10_1111_jav_00401 crossref_primary_10_1093_jhered_esy013 crossref_primary_10_1007_s10750_013_1748_6 crossref_primary_10_1371_journal_pntd_0001381 crossref_primary_10_1007_s10592_012_0319_0 crossref_primary_10_1038_s41396_018_0211_0 crossref_primary_10_1590_1982_0224_2024_0027 crossref_primary_10_1134_S1022795416040037 crossref_primary_10_1371_journal_pone_0082198 crossref_primary_10_1371_journal_pone_0148967 crossref_primary_10_1515_mammalia_2021_0141 crossref_primary_10_1534_genetics_109_112532 crossref_primary_10_1093_biolinnean_blaa193 crossref_primary_10_1080_00218839_2021_1905373 crossref_primary_10_1007_s10344_012_0631_5 crossref_primary_10_1007_s10811_024_03379_8 crossref_primary_10_1111_1365_2745_12680 crossref_primary_10_1111_boj_12147 crossref_primary_10_1111_j_1439_0469_2010_00572_x crossref_primary_10_1111_jbi_13011 crossref_primary_10_1111_evo_13244 crossref_primary_10_1111_jbi_12048 crossref_primary_10_1016_j_mambio_2019_03_008 crossref_primary_10_1186_1471_2164_13_580 crossref_primary_10_1214_13_EJS844 crossref_primary_10_1002_aqc_2602 crossref_primary_10_1016_j_ympev_2012_08_010 crossref_primary_10_1002_aqc_3939 crossref_primary_10_1186_s12866_017_1132_1 crossref_primary_10_1111_j_1365_294X_2012_05625_x crossref_primary_10_1645_18_135 crossref_primary_10_1098_rspb_2020_0712 crossref_primary_10_1080_00028487_2011_567875 crossref_primary_10_1371_journal_pone_0086409 crossref_primary_10_1002_ece3_3087 crossref_primary_10_1007_s10592_012_0362_x crossref_primary_10_1111_jse_12119 crossref_primary_10_1098_rstb_2018_0346 crossref_primary_10_1093_aob_mcr194 crossref_primary_10_3389_fevo_2022_1081114 crossref_primary_10_1021_jf205109b crossref_primary_10_1086_683799 crossref_primary_10_3390_foods10102284 crossref_primary_10_1111_plb_12925 crossref_primary_10_1007_s10530_018_1667_6 crossref_primary_10_1139_cjfas_2016_0012 crossref_primary_10_7717_peerj_17700 crossref_primary_10_1038_nmicrobiol_2016_260 crossref_primary_10_1111_jav_02723 crossref_primary_10_1371_journal_pone_0131298 crossref_primary_10_1186_s12862_016_0708_y crossref_primary_10_1038_nmicrobiol_2016_263 crossref_primary_10_1007_s00300_023_03193_x crossref_primary_10_1111_mec_14156 crossref_primary_10_1007_s00606_011_0469_4 crossref_primary_10_1139_f2011_098 crossref_primary_10_1590_1982_0224_2024_0040 crossref_primary_10_3168_jds_2019_17334 crossref_primary_10_3161_15081109ACC2021_23_2_003 crossref_primary_10_1186_1471_2180_12_208 crossref_primary_10_1371_journal_pone_0178459 crossref_primary_10_1111_mec_15360 crossref_primary_10_1186_s13595_023_01207_6 crossref_primary_10_1007_s00040_018_0606_y crossref_primary_10_1186_s12862_014_0274_0 crossref_primary_10_1371_journal_pone_0202281 crossref_primary_10_1016_j_ympev_2013_01_009 crossref_primary_10_1093_molbev_msr199 crossref_primary_10_1007_s00606_020_01665_9 crossref_primary_10_1007_s12224_012_9127_z crossref_primary_10_1007_s12237_021_01007_z crossref_primary_10_1093_botlinnean_boaa030 |
| Cites_doi | 10.1198/016214505000000664 10.2202/1544-6115.1303 10.1093/genetics/164.4.1567 10.1126/science.1078311 10.1093/bioinformatics/btn136 10.1016/j.mbs.2006.09.015 10.1111/j.1471-8286.2005.01031.x 10.1080/01621459.1995.10476572 10.1017/S001667230100502X 10.1093/bioinformatics/bth250 10.1186/1471-2105-9-421 10.1016/j.tpb.2007.06.004 10.1038/nrg1904 10.1109/TPAMI.2008.53 10.2174/157489306777011932 10.1139/f05-224 10.1093/bioinformatics/btn419 10.1038/nrg1318 10.1007/s10592-005-9098-1 10.1007/s11538-006-9161-1 10.1371/journal.pgen.0030185 10.1128/JCM.43.9.4665-4673.2005 10.1534/genetics.104.033803 10.1534/genetics.106.059923 10.1093/oso/9780198522195.001.0001 10.1111/j.1365-294X.2006.02994.x 10.1093/genetics/163.3.1177 10.1093/genetics/155.2.945 10.1534/genetics.107.072371 10.1093/genetics/163.1.367 10.1007/s00180-007-0072-x 10.1093/genetics/160.3.1217 10.1007/s11222-006-9391-y 10.1534/genetics.106.061317 |
| ContentType | Journal Article |
| Copyright | Corander et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Corander et al; licensee BioMed Central Ltd. 2008 Corander et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Corander et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Corander et al; licensee BioMed Central Ltd. 2008 Corander et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-9-539 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 539 |
| ExternalDocumentID | oai_doaj_org_article_c014616628e4452ab0527ac53c153287 10.1186/1471-2105-9-539 PMC2629778 A192453972 19087322 10_1186_1471_2105_9_539 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Finland |
| GeographicLocations_xml | – name: Finland |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c599t-6d06bf9945c1c8c58dc9341f26bf754b5893a16817f42fe0a7532696b6becfde3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:44:08 EDT 2025 Wed Oct 29 11:50:19 EDT 2025 Thu Aug 21 14:32:41 EDT 2025 Fri Sep 05 06:55:54 EDT 2025 Mon Oct 20 23:09:18 EDT 2025 Mon Oct 20 17:17:22 EDT 2025 Thu Oct 16 15:48:13 EDT 2025 Mon Jul 21 05:58:36 EDT 2025 Wed Oct 01 01:46:31 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Sat Sep 06 07:27:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Terminal Restriction Fragment Length Polymorphism Admixture Analysis Ancestral Origin Marginal Likelihood Genetic Structure |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c599t-6d06bf9945c1c8c58dc9341f26bf754b5893a16817f42fe0a7532696b6becfde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c014616628e4452ab0527ac53c153287 |
| PMID | 19087322 |
| PQID | 66663061 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c014616628e4452ab0527ac53c153287 unpaywall_primary_10_1186_1471_2105_9_539 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2629778 proquest_miscellaneous_66663061 gale_infotracmisc_A192453972 gale_infotracacademiconefile_A192453972 gale_incontextgauss_ISR_A192453972 pubmed_primary_19087322 crossref_citationtrail_10_1186_1471_2105_9_539 crossref_primary_10_1186_1471_2105_9_539 springer_journals_10_1186_1471_2105_9_539 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-12-16 |
| PublicationDateYYYYMMDD | 2008-12-16 |
| PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2008 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | J Corander (2524_CR9) 2008; 23 GA Wilson (2524_CR12) 2003; 163 S Wang (2524_CR38) 2007; 3 SL Lauritzen (2524_CR31) 1996 NA Rosenberg (2524_CR36) 2002; 298 J Corander (2524_CR27) 2007; 69 D Gasbarra (2524_CR34) 2007; 72 R Kass (2524_CR30) 1995; 90 J Corander (2524_CR7) 2004; 20 J Corander (2524_CR25) 2006; 1 L Excoffier (2524_CR2) 2006; 7 JK Pritchard (2524_CR22) 2000; 155 A Baldwin (2524_CR37) 2005; 43 SA Sisson (2524_CR28) 2005; 100 J Corander (2524_CR8) 2006; 104 J Corander (2524_CR4) 2006; 15 H Gao (2524_CR18) 2007; 176 MA Beaumont (2524_CR1) 2004; 5 EK Latch (2524_CR3) 2006; 7 JP Huelsenbeck (2524_CR21) 2007; 175 J Tang (2524_CR35) 2007; 6 EC Anderson (2524_CR19) 2002; 160 J Pella (2524_CR10) 2001; 99 CP Robert (2524_CR24) 2005 G Guillot (2524_CR17) 2008; 24 J Pella (2524_CR11) 2006; 63 D Falush (2524_CR23) 2003; 164 J Corander (2524_CR26) 2006; 16 P Marttinen (2524_CR29) 2008; 9 J Corander (2524_CR6) 2003; 163 G Guillot (2524_CR14) 2005; 170 KJ Dawson (2524_CR20) 2001; 78 J Corander (2524_CR5) 2007; 205 G Guillot (2524_CR15) 2005; 5 G Guillot (2524_CR16) 2008; 24 P Marttinen (2524_CR32) 2009; 31 O François (2524_CR13) 2006; 174 J Felsenstein (2524_CR33) 2004 19029547 - IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):74-85 12493913 - Science. 2002 Dec 20;298(5602):2381-5 15131649 - Nat Rev Genet. 2004 Apr;5(4):251-61 12930761 - Genetics. 2003 Aug;164(4):1567-87 16888334 - Genetics. 2006 Oct;174(2):805-16 11556138 - Genet Res. 2001 Aug;78(1):59-77 15520263 - Genetics. 2005 Jul;170(3):1261-80 16924258 - Nat Rev Genet. 2006 Oct;7(10):745-58 17237522 - Genetics. 2007 Apr;175(4):1787-802 18052913 - Stat Appl Genet Mol Biol. 2007;6:Article30 10835412 - Genetics. 2000 Jun;155(2):945-59 18413327 - Bioinformatics. 2008 Jun 1;24(11):1406-7 18840286 - BMC Bioinformatics. 2008;9:421 17681576 - Theor Popul Biol. 2007 Nov;72(3):305-22 12586722 - Genetics. 2003 Jan;163(1):367-74 17087977 - Math Biosci. 2007 Jan;205(1):19-31 15073024 - Bioinformatics. 2004 Oct 12;20(15):2363-9 17483417 - Genetics. 2007 Jul;176(3):1635-51 12663554 - Genetics. 2003 Mar;163(3):1177-91 16911204 - Mol Ecol. 2006 Sep;15(10):2833-43 16145124 - J Clin Microbiol. 2005 Sep;43(9):4665-73 17086368 - Bull Math Biol. 2007 Apr;69(3):797-815 18039031 - PLoS Genet. 2007 Nov;3(11):e185 11901135 - Genetics. 2002 Mar;160(3):1217-29 18710873 - Bioinformatics. 2008 Oct 1;24(19):2222-8 |
| References_xml | – volume: 100 start-page: 1077 issue: 471 year: 2005 ident: 2524_CR28 publication-title: Journal of the American Statistical Association doi: 10.1198/016214505000000664 – volume: 6 start-page: Article30 year: 2007 ident: 2524_CR35 publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1303 – volume: 164 start-page: 1567 issue: 4 year: 2003 ident: 2524_CR23 publication-title: Genetics doi: 10.1093/genetics/164.4.1567 – volume: 298 start-page: 2381 issue: 5602 year: 2002 ident: 2524_CR36 publication-title: Science doi: 10.1126/science.1078311 – volume: 24 start-page: 1406 issue: 11 year: 2008 ident: 2524_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn136 – volume: 205 start-page: 19 issue: 1 year: 2007 ident: 2524_CR5 publication-title: Mathematical Biosciences doi: 10.1016/j.mbs.2006.09.015 – volume: 5 start-page: 712 issue: 3 year: 2005 ident: 2524_CR15 publication-title: Molecular Ecology Notes doi: 10.1111/j.1471-8286.2005.01031.x – volume: 90 start-page: 773 year: 1995 ident: 2524_CR30 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476572 – volume: 78 start-page: 59 issue: 1 year: 2001 ident: 2524_CR20 publication-title: Genetical Research doi: 10.1017/S001667230100502X – volume: 20 start-page: 2363 issue: 15 year: 2004 ident: 2524_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth250 – volume: 9 start-page: 421 year: 2008 ident: 2524_CR29 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-421 – volume: 104 start-page: 550 year: 2006 ident: 2524_CR8 publication-title: Fishery Bulletin – volume: 72 start-page: 305 issue: 3 year: 2007 ident: 2524_CR34 publication-title: Theoretical Population Biology doi: 10.1016/j.tpb.2007.06.004 – volume: 7 start-page: 745 issue: 10 year: 2006 ident: 2524_CR2 publication-title: Nature Reviews Genetics doi: 10.1038/nrg1904 – volume: 31 start-page: 1 year: 2009 ident: 2524_CR32 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.53 – volume: 1 start-page: 161 issue: 2 year: 2006 ident: 2524_CR25 publication-title: Current Bioinformatics doi: 10.2174/157489306777011932 – volume: 63 start-page: 576 issue: 3 year: 2006 ident: 2524_CR11 publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/f05-224 – volume: 24 start-page: 2222 issue: 19 year: 2008 ident: 2524_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn419 – volume: 5 start-page: 251 issue: 4 year: 2004 ident: 2524_CR1 publication-title: Nature Reviews Genetics doi: 10.1038/nrg1318 – volume: 7 start-page: 295 issue: 2 year: 2006 ident: 2524_CR3 publication-title: Conservation Genetics doi: 10.1007/s10592-005-9098-1 – volume: 69 start-page: 797 issue: 3 year: 2007 ident: 2524_CR27 publication-title: Bulletin of Mathematical Biology doi: 10.1007/s11538-006-9161-1 – volume: 3 start-page: 2045 issue: 11 year: 2007 ident: 2524_CR38 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0030185 – volume: 43 start-page: 4665 issue: 9 year: 2005 ident: 2524_CR37 publication-title: Journal of Clinical Microbiology doi: 10.1128/JCM.43.9.4665-4673.2005 – volume: 170 start-page: 1261 issue: 3 year: 2005 ident: 2524_CR14 publication-title: Genetics doi: 10.1534/genetics.104.033803 – volume-title: Monte Carlo Statistical Methods year: 2005 ident: 2524_CR24 – volume: 174 start-page: 805 issue: 2 year: 2006 ident: 2524_CR13 publication-title: Genetics doi: 10.1534/genetics.106.059923 – volume-title: Graphical models year: 1996 ident: 2524_CR31 doi: 10.1093/oso/9780198522195.001.0001 – volume: 15 start-page: 2833 issue: 10 year: 2006 ident: 2524_CR4 publication-title: Molecular Ecology doi: 10.1111/j.1365-294X.2006.02994.x – volume: 99 start-page: 151 issue: 1 year: 2001 ident: 2524_CR10 publication-title: Fishery Bulletin – volume: 163 start-page: 1177 issue: 3 year: 2003 ident: 2524_CR12 publication-title: Genetics doi: 10.1093/genetics/163.3.1177 – volume: 155 start-page: 945 issue: 2 year: 2000 ident: 2524_CR22 publication-title: Genetics doi: 10.1093/genetics/155.2.945 – volume: 176 start-page: 1635 issue: 3 year: 2007 ident: 2524_CR18 publication-title: Genetics doi: 10.1534/genetics.107.072371 – volume: 163 start-page: 367 year: 2003 ident: 2524_CR6 publication-title: Genetics doi: 10.1093/genetics/163.1.367 – volume: 23 start-page: 111 issue: 1 year: 2008 ident: 2524_CR9 publication-title: Computational Statistics doi: 10.1007/s00180-007-0072-x – volume: 160 start-page: 1217 issue: 3 year: 2002 ident: 2524_CR19 publication-title: Genetics doi: 10.1093/genetics/160.3.1217 – volume: 16 start-page: 355 issue: 4 year: 2006 ident: 2524_CR26 publication-title: Statistics and Computing doi: 10.1007/s11222-006-9391-y – volume: 175 start-page: 1787 issue: 4 year: 2007 ident: 2524_CR21 publication-title: Genetics doi: 10.1534/genetics.106.061317 – volume-title: Inferring phylogenies year: 2004 ident: 2524_CR33 – reference: 12493913 - Science. 2002 Dec 20;298(5602):2381-5 – reference: 16911204 - Mol Ecol. 2006 Sep;15(10):2833-43 – reference: 16888334 - Genetics. 2006 Oct;174(2):805-16 – reference: 17681576 - Theor Popul Biol. 2007 Nov;72(3):305-22 – reference: 16924258 - Nat Rev Genet. 2006 Oct;7(10):745-58 – reference: 19029547 - IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):74-85 – reference: 16145124 - J Clin Microbiol. 2005 Sep;43(9):4665-73 – reference: 18039031 - PLoS Genet. 2007 Nov;3(11):e185 – reference: 17483417 - Genetics. 2007 Jul;176(3):1635-51 – reference: 11556138 - Genet Res. 2001 Aug;78(1):59-77 – reference: 15073024 - Bioinformatics. 2004 Oct 12;20(15):2363-9 – reference: 18710873 - Bioinformatics. 2008 Oct 1;24(19):2222-8 – reference: 15131649 - Nat Rev Genet. 2004 Apr;5(4):251-61 – reference: 17087977 - Math Biosci. 2007 Jan;205(1):19-31 – reference: 17086368 - Bull Math Biol. 2007 Apr;69(3):797-815 – reference: 12663554 - Genetics. 2003 Mar;163(3):1177-91 – reference: 12586722 - Genetics. 2003 Jan;163(1):367-74 – reference: 11901135 - Genetics. 2002 Mar;160(3):1217-29 – reference: 10835412 - Genetics. 2000 Jun;155(2):945-59 – reference: 15520263 - Genetics. 2005 Jul;170(3):1261-80 – reference: 18840286 - BMC Bioinformatics. 2008;9:421 – reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87 – reference: 18413327 - Bioinformatics. 2008 Jun 1;24(11):1406-7 – reference: 17237522 - Genetics. 2007 Apr;175(4):1787-802 – reference: 18052913 - Stat Appl Genet Mol Biol. 2007;6:Article30 |
| SSID | ssj0017805 |
| Score | 2.5095198 |
| Snippet | Background
During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying... During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population... Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 539 |
| SubjectTerms | Algorithms Alleles Applications software Bayes Theorem Bayesian statistical decision theory Bioinformatics Biomedical and Life Sciences Cluster Analysis Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Databases, Genetic Genetic Linkage Genetic Structures Genetics, Population Humans Life Sciences Methodology Methodology Article Methods Microarrays Models, Genetic Population - genetics Sequence Analysis, DNA Software Statistical models Stochastic Processes |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEPVB_O62VYMI2oe1m-wmmzzeSUsVFLEWCj6EbDZpC8fe4fYo9987s5tbb5XSF1-THHvJ_DIfZOY3hLx1SoqgqpAGz_O0AAObVkqxlLsyy7ysrMyx3vnLV3l8Wnw-E2cbrb4wJ6ynB-4P7sAhuwmTkitfFILbKhO8tE7kDu4quPuofTOl18FUfD9Apv6urqiEz4ILEUl9mJIHw1iqU4E9wjfsUUfb_69y3rBOf2dODs-nD8i9ZbOwq2s7m21YqKNH5GF0Lemk39Jjcsc3T8jdvtnk6in5edhcdM_9dGpXHmsnadcGB-vR6WVDp5NvJ7QFrXxtf3kKviyNHSXOKYAMax1pTza7hAidzgNdDL2_2mfk9Ojwx8fjNLZWSJ3Q-iqVdSaroHUhHHPKCVU7DfYscBgtRVEJcGMsk4qVoeDBZxaiGi61rCTIPNQ-f062mnnjtwllNS-RFw5CLVXkvFYahA1-mmdYU8tkQj6sD9i4yDuO7S9mpos_lDQoEYMSMdqARBLyfvjBoqfcuHnpFCU2LEOu7G4AEGQigsxtCErIG5S3QTaMBtNtzu2ybc2nk-9mguEpfKfkCXkXF4U5_HtnY_UCnAESaI1W7o1WwnV1o-nXa1gZnMIct8bPl62BQFJCAMcS8qIH2Z_d60yVoHkTUo7gN9r3eKa5vOi4wrnk4OGrhOyvgWqikmpvPtT9Acm3CWDnfwhgl9zvsnAYT5ncI1uAZf8SXL2r6lV3q38DRRFGsg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G311CCC3kPOJm3S5HH3uOMUFPE8OPAhpGl6d7B0F3vLsf-9M222btVDfG0mbZOZzAeT-Q0hb7xWstZlzeogMpaDgWWl1pwJX6RpUKVTGdY7f_qsDo_zjyfyJIIkYS3MZv6ea_Weg_JkEJZIZpjMzHVyAyyU6rKyam9IFyAwf8Tt-cukkcnpkPn_1L8bBuj3y5FDhvQOubVsFm516WazDSN0cI_cjd4jnfTsvk-uheYBudn3k1w9JN_3m7Muo0-nbhWwPJJ2nW6w5JyeN3Q6-XJEW1C8l-5HoOCu0tg04pSCHGE5I-3xZJcQhNN5TRdDe6_2ETk-2P-2d8hi9wTmpTEXTFWpKmtjcum5117qyhswWbWAp4XMSwmeiuNK86LORR1SB4GLUEaVCthaVyF7TLaaeROeEsorUSD0G0RTOs9EpQ3wE1yxwLFslquE7K432PoILY4dLma2CzG0ssgRixyxxgJHEvJumLDoUTWuJp0ixwYyhMPuHoCU2Hi6rEcIHK6U0CHPpXBlKkXhvMw8KHSICRPyGvltEfCiwRs1p27ZtvbD0Vc7wQgUvlOIhLyNRPUc_t67WKAAe4AYWSPK7RElnEg_Gn61FiuLQ3iNrQnzZWshVlQQo_GEPOmF7NfqTaoLUK4JKUbiN1r3eKQ5P-vgwIUS4MTrhOysBdVGPdRevak7gyT_iwHP_uO9z8nt7j4NF4yrbbIFIhtegNN2Ub7sDuxPwl81cA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PsjMMBCSLCHdLUTO85jizYNJMbEqDS0BytxnK6iJFXTaip_PefELc1gQki8xhclvvx8H8rd7wBeayl4LtPczw0L_BAdrJ9KSX2mo17PiDQRge13_ngkDofhh1N-ugWfVr0w6XedjktHGmqJirubbeiTpsvBTlEws71pljeHXoo9ikbWx_SF-7HPg_gabAuOwXkHtodHx_2vdY-Rk3AEP3-4q-Wbagr_3w31hqe6XEW5_pV6C24simmyvEgmkw1vdXAHpqt9NkUq37qLedrVPy5RQP5HRdyF2y6yJf0GivdgyxT34Xoz63L5AM72i_O62oAMkqWxrZuknsJj2-HJuCCD_vEJqdApXCQzQ_B9iBtoMSKIcdtqSRqu28XMVKTMyXQ9eqx6CMOD_S_vDn032cHXPI7nvsh6Is3jOOSaaqm5zHSM7jRneDXiYcoxikqokDTKQ5abXoJJFROxSAVCLs9M8Ag6RVmYJ0BoxiJLS4eZngwDlskYsYZhoqG2pZcKD7qrb6q0oz230zcmqk5_pFBWY8pqTMUKNebB2_UN04bx42rRgQXJWsxSddcXytlIuZOvtKXnoUIwacKQsyTtcRYlmgcanQ3mqx68shBTloyjsNU-o2RRVer9yWfVt9kxPidiHrxxQnmJb68T1zyBOrD8XS3JnZYkWgvdWn65QrKyS7bErjDlolKYxwrMH6kHjxtc_9p93JMRGn4PohbiW_turxTj85qqnAmGCYb0YHd1NpSzkdXVSt1dH56_fYCn_yD7DG7WtT6U-VTsQAcha55jQDlPXzgj8RMiFW0Y priority: 102 providerName: Unpaywall |
| Title | Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations |
| URI | https://link.springer.com/article/10.1186/1471-2105-9-539 https://www.ncbi.nlm.nih.gov/pubmed/19087322 https://www.proquest.com/docview/66663061 https://pubmed.ncbi.nlm.nih.gov/PMC2629778 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-9-539 https://doaj.org/article/c014616628e4452ab0527ac53c153287 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJgQ8IL4XGMVCSLAHj9iJHfsBobTaNCptmiiVhvZgOa7TTarSrlk1-t9zTtN2gU3wGl8_ch---yW-3yH0wUrBc5nlJHcsIjEkWJJJSQmzSRg6kRkR-X7no2Nx2I-7p_x0PQ6oVmB5K7Tz86T609Her8v5Vwj4L1XAS_GZwgZLALpwogiP1AbagjSl_ByHo3j9SsGT91etRrVwzfNzyxc0UlTF5P_3fn0jYf15mHL1RvURejArJmZ-bUajG0nr4Al6XFebOF24x1N0zxXP0P3F_Mn5c3S2X5xXJwBw28ydb6fE1WQc36KOLwrcTk96uISN-tpMHYbyFtdDJoYY_M63P-IF_-wMQDse53iyGgdWvkD9g_0fnUNST1sglit1RcQgFFmuVMwttdJyObAKUlzO4GrC44xDZWOokDTJY5a70ADQYUKJTIAb5AMXvUSbxbhw2wjTAUs8VRygLxlHbCAV2B9KN0d9my0VAdpbKljbmorcT8QY6QqSSKG9RbS3iFYaLBKgT6sPTBYsHHeLtr3FVmKePru6MJ4OdR2N2nrKHCoEky6OOTNZyFliLI8sJADAkAF67-2tPUFG4U_gDM2sLPW33nedesQKv5OwAH2shfIx_Htr6oYG0IHn1GpI7jQkIYJtY_nd0q20X_LH3go3npUasKUATEcD9GrhZOu7V6FMYDMOUNJwv8Z9N1eKi_OKPpwJBkW_DNDu0lH1MuzuVuruypP_ZYDX_6O7N-hhdfCGMkLFDtoEX3Vvobq7ylpoK027vW4LbXREp1U9I2lVkQwr_eOT9Odvzy1JgA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTWjwgPgmMJiFkGAPHrETO_ZjizZtZZsQ3aRJPFiO63STqrRaVk397zmnaViACfEaX7583_Ld7wA-OCVFofKCFp4nNEUHS3OlGOUui2MvcyuT0O98fCIPztLBuThfA7bqhamr3VdHkrWlrtVayc8MzSjFBEVQTUWi78FGqLBCXdzo9QbDQXt0EED6Gwyfv9zWcT81Sv-ftviWM_q9ULI9LX0Im_NyZhc3djK55ZD2H8OjJpIkvSXrn8CaL5_C_eVsycUz-LFXXtSn-6RvFz60SpJ66k1oPyeXJen3vg1JhUb4xl55gqEraQZIjAnKVGhtJEts2Tkm5GRakFk76qt6Dmf7e6dfDmgzSYE6ofU1laNY5oXWqXDMKSfUyGl0XwXHq5lIc4FRi2VSsaxIeeFji0kMl1rmEllcjHzyAtbLaelfAWEjngUYOMysVJrwkdLIWwzLPAsttExGsLvaYOMamPEw7WJi6nRDSRM4YgJHjDbIkQg-tTfMlggbd5P2A8dasgCNXV-YXo1No2nGBTgcJiVXPk0Ft3kseGadSBwad8wPI3gf-G0C-EUZqmvGdl5V5nD43fRCNorvyXgEHxuiYopf72zTrIB7EPCyOpRbHUrUTtdZ3l6JlQlLoaSt9NN5ZTBvlJivsQheLoXs19_rWGVoaCPIOuLX-e_uSnl5UUODc8kxoFcR7KwE1TQ2qbp7U3daSf4XA17_x3O3YfPg9PjIHB2efH0DD-o6G8Ypk1uwjuLr32Iwd52_a9T3J0YVPck |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxDeBwSyEBHswi53YsR_bsmrjY5oYkybtwXIcu5tUpdXSaup_zzlJwwJMiNf4nMS-833Id79D6J2VgnuZe-IdS0gKBpbkUlLCbBbHTuRGJKHe-duB2DtOP5_wkzY3p1pnu6-vJJuahoDSVC525oVvjrgUOxRUKoFghRNFeKJuolspmLbQwGAkRt0lQoDrb9F8_jKpZ4hqvP4_tfIVs_R7ymR3b3of3V2Wc7O6NNPpFdM0fogetD4lHjRC8AjdcOVjdLvpMrl6gk53y7P6nh8PzcqFoklc978Jhej4vMTDweERrkAdX5oLh8GJxW0riQkG6QpFjrhBmV1CaI5nHs-7pl_VU3Q83v0x2iNtTwViuVILIopY5F6plFtqpeWysAoMmWfwNONpzsF_MVRImvmUeRcbCGeYUCIXwGxfuOQZ2ihnpXuBMC1YFgDhIMaSacIKqYDL4KA5GoppqYjQx_UGa9sCjoe-F1NdBx5S6MARHTiilQaOROhDN2HeYG1cTzoMHOvIAkh2_WB2MdHtmdM2AONQIZh0acqZyWPOMmN5YkHNQ6QYobeB3zrAYJQhz2ZillWl94--60GIS-E7GYvQ-5bIz-DvrWnLFmAPAnJWj3KzRwnn1PaGt9ZipcNQSG4r3WxZaYggBURuNELPGyH7tXoVywxUboSynvj11t0fKc_PapBwJhi49jJC22tB1a12qq7f1O1Okv_FgJf_8d4tdOfw01h_3T_48grdqxNuKCNUbKINkF73Gry6Rf6mPrs_AbzbQKY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PsjMMBCSLCHdLUTO85jizYNJMbEqDS0BytxnK6iJFXTaip_PefELc1gQki8xhclvvx8H8rd7wBeayl4LtPczw0L_BAdrJ9KSX2mo17PiDQRge13_ngkDofhh1N-ugWfVr0w6XedjktHGmqJirubbeiTpsvBTlEws71pljeHXoo9ikbWx_SF-7HPg_gabAuOwXkHtodHx_2vdY-Rk3AEP3-4q-Wbagr_3w31hqe6XEW5_pV6C24simmyvEgmkw1vdXAHpqt9NkUq37qLedrVPy5RQP5HRdyF2y6yJf0GivdgyxT34Xoz63L5AM72i_O62oAMkqWxrZuknsJj2-HJuCCD_vEJqdApXCQzQ_B9iBtoMSKIcdtqSRqu28XMVKTMyXQ9eqx6CMOD_S_vDn032cHXPI7nvsh6Is3jOOSaaqm5zHSM7jRneDXiYcoxikqokDTKQ5abXoJJFROxSAVCLs9M8Ag6RVmYJ0BoxiJLS4eZngwDlskYsYZhoqG2pZcKD7qrb6q0oz230zcmqk5_pFBWY8pqTMUKNebB2_UN04bx42rRgQXJWsxSddcXytlIuZOvtKXnoUIwacKQsyTtcRYlmgcanQ3mqx68shBTloyjsNU-o2RRVer9yWfVt9kxPidiHrxxQnmJb68T1zyBOrD8XS3JnZYkWgvdWn65QrKyS7bErjDlolKYxwrMH6kHjxtc_9p93JMRGn4PohbiW_turxTj85qqnAmGCYb0YHd1NpSzkdXVSt1dH56_fYCn_yD7DG7WtT6U-VTsQAcha55jQDlPXzgj8RMiFW0Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Bayesian+modelling+in+BAPS+software+for+learning+genetic+structures+of+populations&rft.jtitle=BMC+bioinformatics&rft.au=Corander%2C+Jukka&rft.au=Marttinen%2C+Pekka&rft.au=Siren%2C+Jukka&rft.au=Tang%2C+Jing&rft.date=2008-12-16&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=9&rft.spage=539&rft_id=info:doi/10.1186%2F1471-2105-9-539&rft.externalDBID=ISR&rft.externalDocID=A192453972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |