Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations

Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 9; no. 1; p. 539
Main Authors Corander, Jukka, Marttinen, Pekka, Sirén, Jukka, Tang, Jing
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.12.2008
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-9-539

Cover

Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html .
AbstractList During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.BACKGROUNDDuring the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions.We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.RESULTSWe discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software.The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.CONCLUSIONThe Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html.
Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are designed to meet the increasing need for analyzing large-scale population genetics data. The software is freely downloadable for Windows, Linux and Mac OS X systems at http://web.abo.fi/fak/mnf//mate/jc/software/baps.html .
ArticleNumber 539
Audience Academic
Author Marttinen, Pekka
Sirén, Jukka
Corander, Jukka
Tang, Jing
AuthorAffiliation 2 Department of Mathematics and Statistics, P.O. Box 68, Fin-00014 University of Helsinki, Finland
1 Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500 Åbo, Finland
AuthorAffiliation_xml – name: 1 Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University, Fin-20500 Åbo, Finland
– name: 2 Department of Mathematics and Statistics, P.O. Box 68, Fin-00014 University of Helsinki, Finland
Author_xml – sequence: 1
  givenname: Jukka
  surname: Corander
  fullname: Corander, Jukka
  organization: Department of Mathematics, Fänriksgatan 3B, Åbo Akademi University
– sequence: 2
  givenname: Pekka
  surname: Marttinen
  fullname: Marttinen, Pekka
  organization: Department of Mathematics and Statistics, University of Helsinki
– sequence: 3
  givenname: Jukka
  surname: Sirén
  fullname: Sirén, Jukka
  organization: Department of Mathematics and Statistics, University of Helsinki
– sequence: 4
  givenname: Jing
  surname: Tang
  fullname: Tang, Jing
  email: jing.tang@helsinki.fi
  organization: Department of Mathematics and Statistics, University of Helsinki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19087322$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFDEUx4NUbLt69iYDguBh2iQzyUwuwrZUXSgoVk8eQibzMk2ZTdYkY93_3mx3qV3xR-aQ4eXz_fLyzTtGB847QOg5wSeEtPyU1A0pKcGsFCWrxCN0dF85ePB_iI5jvMGYNC1mT9AhEbhtKkqP0NcLd62chr44U2uIVrli6XsYR-uGwrribP7xqojepFsVoDA-FCOo4DanAzhIVhcxhUmnKUAsvClWfjWNKlnv4lP02KgxwrPdPkNf3l58Pn9fXn54tzifX5aaCZFK3mPeGSFqpoluNWt7LaqaGJqrDas71opKEd6SxtTUAFYNqygXvOMdaNNDNUOLrW_v1Y1cBbtUYS29svKu4MMgVcidjiA1JjUnnNMW6ppR1WFGG6VZpUk2zZnMEN56TW6l1rdqHO8NCZabzOUmVblJVQqZM8-SN1vJauqW0GtwKahxr4_9E2ev5eC_S8qpaJo2G7zaGQT_bYKY5NJGnd9AOfBTlDyvCnOSwZdbcFD5LtYZn_30BpZzImidu2lopk7-QOWvh6XVeX6MzfU9wes9QWYS_EiDmmKUi6tP--yLh5f9Fc5uojLAtoAOPsYARmqb7uYhd2HHf6R4-pvu_7nvnipm0g0Q5I2fgsuT9lfJT8xP-hI
CitedBy_id crossref_primary_10_1111_jav_00972
crossref_primary_10_4141_cjps2013_140
crossref_primary_10_7717_peerj_14389
crossref_primary_10_1002_wat2_1269
crossref_primary_10_1093_aob_mcaa044
crossref_primary_10_1089_mdr_2017_0147
crossref_primary_10_1111_j_1365_294X_2012_05626_x
crossref_primary_10_1111_j_1463_6409_2011_00477_x
crossref_primary_10_1071_MF20157
crossref_primary_10_1007_s00227_021_03970_4
crossref_primary_10_1007_s11295_018_1287_4
crossref_primary_10_1016_j_biocon_2016_01_007
crossref_primary_10_14411_eje_2012_057
crossref_primary_10_1111_eva_12065
crossref_primary_10_1111_j_1365_3059_2011_02502_x
crossref_primary_10_1111_j_1365_294X_2011_05258_x
crossref_primary_10_1111_jbi_12132
crossref_primary_10_1111_jbi_13105
crossref_primary_10_1007_s10592_011_0277_y
crossref_primary_10_1016_j_ympev_2013_10_015
crossref_primary_10_1111_jbi_14554
crossref_primary_10_3389_fmicb_2021_756991
crossref_primary_10_3389_fpls_2018_01932
crossref_primary_10_1134_S1022795417010100
crossref_primary_10_3389_fpls_2019_01466
crossref_primary_10_3390_d15030310
crossref_primary_10_3389_fpls_2023_1178245
crossref_primary_10_3390_horticulturae9070743
crossref_primary_10_1073_pnas_2316971121
crossref_primary_10_1111_j_1365_294X_2011_05137_x
crossref_primary_10_1111_mec_13840
crossref_primary_10_3832_ifor1885_009
crossref_primary_10_1038_ejhg_2010_32
crossref_primary_10_1111_eva_12055
crossref_primary_10_1071_MF20046
crossref_primary_10_1590_1678_4685_gmb_2017_0079
crossref_primary_10_1111_j_1365_294X_2010_04986_x
crossref_primary_10_1111_j_1095_8649_2010_02784_x
crossref_primary_10_3732_ajb_1700054
crossref_primary_10_1016_j_flora_2019_151522
crossref_primary_10_1038_s41598_020_62300_8
crossref_primary_10_1111_evo_13566
crossref_primary_10_1111_oik_09442
crossref_primary_10_1186_s12864_019_6078_2
crossref_primary_10_1007_s10592_014_0621_0
crossref_primary_10_1007_s10592_010_0109_5
crossref_primary_10_1038_s41396_018_0199_5
crossref_primary_10_1038_s41598_021_93072_4
crossref_primary_10_1111_j_1365_294X_2009_04515_x
crossref_primary_10_1093_jac_dky506
crossref_primary_10_1016_j_molbiopara_2017_01_003
crossref_primary_10_1186_1475_2875_8_259
crossref_primary_10_1371_journal_pgen_1004547
crossref_primary_10_3390_antibiotics11091170
crossref_primary_10_1128_AEM_02196_15
crossref_primary_10_1111_jfb_15340
crossref_primary_10_1186_1471_2180_13_302
crossref_primary_10_1007_s10980_021_01297_5
crossref_primary_10_1371_journal_pone_0085240
crossref_primary_10_1007_s11295_013_0680_2
crossref_primary_10_1038_ng_2878
crossref_primary_10_1111_jbi_12358
crossref_primary_10_1111_jbi_12115
crossref_primary_10_1111_jbi_13562
crossref_primary_10_1128_JCM_01193_15
crossref_primary_10_3161_15081109ACC2016_18_2_006
crossref_primary_10_1101_gr_189803_115
crossref_primary_10_1371_journal_pone_0137919
crossref_primary_10_1139_cjb_2017_0116
crossref_primary_10_1111_mec_12972
crossref_primary_10_1371_journal_pgen_1003568
crossref_primary_10_1093_botlinnean_boac006
crossref_primary_10_1101_gr_250092_119
crossref_primary_10_1007_s10750_010_0297_5
crossref_primary_10_1016_j_ympev_2018_04_005
crossref_primary_10_1111_j_1365_2052_2011_02296_x
crossref_primary_10_2989_1814232X_2015_1010577
crossref_primary_10_1093_jme_tjaa047
crossref_primary_10_1093_biolinnean_blx163
crossref_primary_10_1093_botlinnean_boab043
crossref_primary_10_1128_microbiolspec_MTBP_0014_2016
crossref_primary_10_7717_peerj_1759
crossref_primary_10_1111_jse_12099
crossref_primary_10_1111_zph_12141
crossref_primary_10_1534_g3_111_001123
crossref_primary_10_1038_hdy_2015_67
crossref_primary_10_1093_zoolinnean_zlac011
crossref_primary_10_1093_femspd_ftx021
crossref_primary_10_1007_s00239_010_9335_1
crossref_primary_10_1111_boj_12416
crossref_primary_10_1016_j_livsci_2018_09_003
crossref_primary_10_1038_s41559_018_0617_0
crossref_primary_10_1093_botlinnean_boae001
crossref_primary_10_1016_j_mambio_2018_09_005
crossref_primary_10_1093_ee_nvy184
crossref_primary_10_1371_journal_pone_0079621
crossref_primary_10_1186_1471_2105_12_302
crossref_primary_10_1007_s10709_018_0040_0
crossref_primary_10_1098_rsif_2011_0601
crossref_primary_10_1002_ece3_101
crossref_primary_10_1002_ece3_100
crossref_primary_10_1007_s12686_013_9987_4
crossref_primary_10_1002_jwmg_22038
crossref_primary_10_1093_biolinnean_blaa220
crossref_primary_10_1002_ece3_2269
crossref_primary_10_1093_aesa_saaa011
crossref_primary_10_1111_j_1365_294X_2012_05681_x
crossref_primary_10_1371_journal_pone_0085196
crossref_primary_10_1016_j_ympev_2015_06_003
crossref_primary_10_1111_jbi_12567
crossref_primary_10_1093_biolinnean_blw017
crossref_primary_10_1111_j_1365_294X_2012_05507_x
crossref_primary_10_3389_fmicb_2021_661798
crossref_primary_10_1038_s41437_018_0158_y
crossref_primary_10_1186_s12864_022_08572_y
crossref_primary_10_1111_j_1365_294X_2012_05473_x
crossref_primary_10_1080_00028487_2013_793613
crossref_primary_10_1515_sg_2013_0017
crossref_primary_10_1016_j_aspen_2022_101962
crossref_primary_10_1016_j_biocon_2015_01_022
crossref_primary_10_1080_20477724_2015_1103503
crossref_primary_10_1080_00275514_2018_1543508
crossref_primary_10_1111_bij_12358
crossref_primary_10_1007_s10592_017_0935_9
crossref_primary_10_1038_ncomms7740
crossref_primary_10_1080_15627020_2017_1387504
crossref_primary_10_1111_ddi_12546
crossref_primary_10_1111_mec_13912
crossref_primary_10_1016_j_jip_2024_108081
crossref_primary_10_1111_jfb_14054
crossref_primary_10_3389_fgene_2024_1453005
crossref_primary_10_1038_jhg_2013_73
crossref_primary_10_1371_journal_pone_0175239
crossref_primary_10_1038_s41467_023_41152_6
crossref_primary_10_1111_mec_13909
crossref_primary_10_1007_s00122_011_1539_2
crossref_primary_10_1016_j_ijid_2022_10_034
crossref_primary_10_1111_j_1863_2378_2012_01525_x
crossref_primary_10_1111_mec_16065
crossref_primary_10_1093_gbe_evz119
crossref_primary_10_1016_j_biocon_2017_09_016
crossref_primary_10_1371_journal_pone_0223256
crossref_primary_10_1016_j_meegid_2016_07_011
crossref_primary_10_1093_jhered_est055
crossref_primary_10_7717_peerj_1865
crossref_primary_10_1007_s10592_021_01336_3
crossref_primary_10_1007_s10914_018_9450_0
crossref_primary_10_1590_0001_3765202320210503
crossref_primary_10_1111_fwb_12449
crossref_primary_10_1186_s12936_019_2917_5
crossref_primary_10_1371_journal_pone_0141236
crossref_primary_10_1038_hdy_2014_64
crossref_primary_10_3389_fgene_2019_00297
crossref_primary_10_3390_ani13020302
crossref_primary_10_1016_j_meegid_2020_104256
crossref_primary_10_1007_s00338_015_1344_5
crossref_primary_10_1093_infdis_jiaa002
crossref_primary_10_1007_s11692_020_09525_7
crossref_primary_10_1007_s10658_011_9853_8
crossref_primary_10_1093_aob_mcw257
crossref_primary_10_1093_nar_gkz361
crossref_primary_10_1016_j_jcz_2017_08_007
crossref_primary_10_3390_sci6020035
crossref_primary_10_1093_botlinnean_boab084
crossref_primary_10_1007_s10709_018_0031_1
crossref_primary_10_1007_s10531_023_02605_y
crossref_primary_10_1016_j_ympev_2020_107020
crossref_primary_10_1093_botlinnean_boy080
crossref_primary_10_1093_molbev_msq236
crossref_primary_10_3390_d3030375
crossref_primary_10_1007_s11295_023_01633_7
crossref_primary_10_3389_fpls_2021_695746
crossref_primary_10_1111_jfb_15961
crossref_primary_10_1111_jeb_12170
crossref_primary_10_1128_AEM_03661_14
crossref_primary_10_1371_journal_pcbi_1000455
crossref_primary_10_3390_fishes6040044
crossref_primary_10_3832_ifor1860_009
crossref_primary_10_1111_jbi_13977
crossref_primary_10_1111_mec_13457
crossref_primary_10_1007_s11692_012_9205_4
crossref_primary_10_1111_icad_12129
crossref_primary_10_1007_s00606_016_1381_8
crossref_primary_10_1128_CMR_00050_19
crossref_primary_10_1186_s12863_015_0188_x
crossref_primary_10_1371_journal_pone_0127268
crossref_primary_10_1038_hdy_2013_84
crossref_primary_10_1093_botlinnean_boad078
crossref_primary_10_3390_insects11080472
crossref_primary_10_1093_botlinnean_boz045
crossref_primary_10_1016_j_ympev_2016_10_013
crossref_primary_10_1089_mdr_2017_0314
crossref_primary_10_1002_ajp_22343
crossref_primary_10_1111_j_1365_294X_2011_05349_x
crossref_primary_10_1080_00218839_2023_2229978
crossref_primary_10_1007_s10531_015_0913_9
crossref_primary_10_1016_j_flora_2019_151497
crossref_primary_10_1186_1756_3305_7_345
crossref_primary_10_1007_s00439_019_02069_7
crossref_primary_10_1007_s10750_016_2872_x
crossref_primary_10_1016_j_jmii_2023_08_005
crossref_primary_10_1007_s10530_014_0753_7
crossref_primary_10_1371_journal_pone_0151137
crossref_primary_10_1128_JCM_00643_12
crossref_primary_10_1111_bij_12102
crossref_primary_10_1080_11263504_2012_706237
crossref_primary_10_1111_j_1095_8312_2010_01482_x
crossref_primary_10_1111_mve_12701
crossref_primary_10_1134_S1022795419020169
crossref_primary_10_3389_fpls_2019_00303
crossref_primary_10_1007_s10682_018_9939_2
crossref_primary_10_1525_auk_2013_12196
crossref_primary_10_1111_mec_12340
crossref_primary_10_1007_s10592_010_0131_7
crossref_primary_10_1139_cjz_2019_0154
crossref_primary_10_1038_s41467_023_37332_z
crossref_primary_10_1111_jeb_12032
crossref_primary_10_1016_j_mib_2015_03_002
crossref_primary_10_1007_s00425_021_03798_8
crossref_primary_10_1080_17550874_2013_771475
crossref_primary_10_1371_journal_pone_0087381
crossref_primary_10_1007_s10709_019_00068_0
crossref_primary_10_1139_g2012_054
crossref_primary_10_1007_s10592_017_1035_6
crossref_primary_10_1111_mec_14997
crossref_primary_10_1186_s12936_016_1217_6
crossref_primary_10_1016_j_scitotenv_2022_160739
crossref_primary_10_1089_zeb_2023_0036
crossref_primary_10_1007_s10750_016_2819_2
crossref_primary_10_1371_journal_pone_0140344
crossref_primary_10_1007_s10592_014_0690_0
crossref_primary_10_1371_journal_pone_0105265
crossref_primary_10_1038_hdy_2014_22
crossref_primary_10_1099_mgen_0_000089
crossref_primary_10_3390_ani13243754
crossref_primary_10_1111_j_1469_8137_2012_04377_x
crossref_primary_10_1007_s40415_019_00567_6
crossref_primary_10_1099_mic_0_063073_0
crossref_primary_10_1111_1755_0998_12387
crossref_primary_10_1111_conl_12621
crossref_primary_10_1111_mec_12459
crossref_primary_10_1111_mec_13788
crossref_primary_10_1134_S1022795419010034
crossref_primary_10_1007_s10592_020_01258_6
crossref_primary_10_1007_s13592_014_0329_7
crossref_primary_10_1111_jbi_13953
crossref_primary_10_1128_aem_01044_22
crossref_primary_10_1371_journal_pone_0190091
crossref_primary_10_1038_hdy_2013_54
crossref_primary_10_1007_s10592_018_1049_8
crossref_primary_10_1016_j_fishres_2021_106127
crossref_primary_10_1038_s41598_022_05162_6
crossref_primary_10_1016_j_fishres_2021_106126
crossref_primary_10_1093_cz_zoz002
crossref_primary_10_1038_s41598_019_49097_x
crossref_primary_10_1007_s10336_021_01948_z
crossref_primary_10_1128_JCM_02453_16
crossref_primary_10_1002_ece3_1681
crossref_primary_10_1007_s00227_016_2939_2
crossref_primary_10_1038_s41437_019_0229_8
crossref_primary_10_1371_journal_pone_0082501
crossref_primary_10_7717_peerj_10782
crossref_primary_10_1111_j_1365_294X_2011_05312_x
crossref_primary_10_1371_journal_pcbi_1011424
crossref_primary_10_1186_s12862_018_1317_8
crossref_primary_10_3389_fgene_2017_00214
crossref_primary_10_1080_17550874_2013_851294
crossref_primary_10_1146_annurev_phyto_072910_095246
crossref_primary_10_3390_horticulturae10030253
crossref_primary_10_1093_jhered_ess025
crossref_primary_10_1093_botlinnean_box062
crossref_primary_10_1093_botlinnean_boae089
crossref_primary_10_1007_s00606_012_0719_0
crossref_primary_10_1007_s10841_019_00202_5
crossref_primary_10_1080_24701394_2021_2024814
crossref_primary_10_1111_bij_12305
crossref_primary_10_1007_s10592_012_0334_1
crossref_primary_10_1016_j_ympev_2018_06_015
crossref_primary_10_1111_mec_12317
crossref_primary_10_1002_ece3_3873
crossref_primary_10_1111_mec_12313
crossref_primary_10_1111_mec_13523
crossref_primary_10_1111_jse_12949
crossref_primary_10_1111_j_1756_1051_2013_00138_x
crossref_primary_10_1007_s10530_012_0356_0
crossref_primary_10_1016_j_resmic_2015_06_008
crossref_primary_10_22201_ib_20078706e_2021_92_3370
crossref_primary_10_1007_s10592_023_01539_w
crossref_primary_10_1371_journal_ppat_1002191
crossref_primary_10_1002_ecs2_4784
crossref_primary_10_2478_contagri_2023_0028
crossref_primary_10_1186_s12862_018_1207_0
crossref_primary_10_1016_j_crvi_2012_10_004
crossref_primary_10_1111_1755_0998_13027
crossref_primary_10_1002_ajb2_1851
crossref_primary_10_1111_jbi_12948
crossref_primary_10_1186_s12862_016_0779_9
crossref_primary_10_1146_annurev_phyto_080614_115936
crossref_primary_10_1007_s10530_019_02138_y
crossref_primary_10_1002_ps_6663
crossref_primary_10_1080_14772000_2015_1117027
crossref_primary_10_1093_isd_ixab032
crossref_primary_10_1371_journal_pone_0110910
crossref_primary_10_3389_fgene_2018_00001
crossref_primary_10_3390_ijms150711614
crossref_primary_10_1007_s10592_020_01290_6
crossref_primary_10_1007_s11634_009_0043_x
crossref_primary_10_1073_pnas_1110020108
crossref_primary_10_1186_1471_2148_11_42
crossref_primary_10_1186_1471_2148_10_71
crossref_primary_10_3354_meps10537
crossref_primary_10_1007_s10530_012_0213_1
crossref_primary_10_1111_jbi_12938
crossref_primary_10_3732_ajb_1700103
crossref_primary_10_1002_ece3_845
crossref_primary_10_1111_mec_13622
crossref_primary_10_1111_j_1365_2052_2011_02309_x
crossref_primary_10_1038_ismej_2012_170
crossref_primary_10_1101_gr_216606_116
crossref_primary_10_1038_s41467_021_24720_6
crossref_primary_10_1038_s41598_021_82183_7
crossref_primary_10_1007_s10530_014_0734_x
crossref_primary_10_1038_hdy_2011_73
crossref_primary_10_1007_s11634_015_0199_5
crossref_primary_10_1071_IS16082
crossref_primary_10_1093_aob_mcw096
crossref_primary_10_1002_tax_12710
crossref_primary_10_1099_mgen_0_000337
crossref_primary_10_1016_j_tplants_2010_09_002
crossref_primary_10_1016_j_gecco_2021_e01928
crossref_primary_10_5897_AJB2018_16467
crossref_primary_10_1186_s12862_015_0389_y
crossref_primary_10_1111_mec_14387
crossref_primary_10_1111_1755_0998_13647
crossref_primary_10_1038_s41598_021_00567_1
crossref_primary_10_1016_j_ympev_2023_107829
crossref_primary_10_1038_hdy_2010_95
crossref_primary_10_1186_s12864_018_4557_5
crossref_primary_10_1111_mec_13170
crossref_primary_10_1038_ng_3145
crossref_primary_10_1128_mSphere_00472_18
crossref_primary_10_1111_boj_12174
crossref_primary_10_1111_j_1365_294X_2011_05273_x
crossref_primary_10_1371_journal_pone_0057337
crossref_primary_10_1642_AUK_13_187_1
crossref_primary_10_3389_fpls_2022_935975
crossref_primary_10_3389_fevo_2024_1436320
crossref_primary_10_1099_mgen_0_000220
crossref_primary_10_1007_s00425_012_1777_9
crossref_primary_10_1007_s11295_012_0509_4
crossref_primary_10_1073_pnas_1108973109
crossref_primary_10_1038_hdy_2010_84
crossref_primary_10_1007_s10336_016_1355_1
crossref_primary_10_1016_j_scitotenv_2016_04_056
crossref_primary_10_1111_eva_12726
crossref_primary_10_1038_hdy_2010_80
crossref_primary_10_1007_s11295_015_0943_1
crossref_primary_10_1007_s10750_017_3399_5
crossref_primary_10_1016_j_ympev_2019_106544
crossref_primary_10_3389_fgene_2018_00295
crossref_primary_10_3390_ani13010090
crossref_primary_10_1093_molbev_msaa323
crossref_primary_10_1002_ece3_6031
crossref_primary_10_1644_11_MAMM_A_326_2
crossref_primary_10_1007_s12526_017_0768_2
crossref_primary_10_1038_s41598_021_03548_6
crossref_primary_10_1038_s41598_018_32369_3
crossref_primary_10_1007_s11295_017_1137_9
crossref_primary_10_1111_j_1095_8312_2010_01583_x
crossref_primary_10_3732_ajb_1400431
crossref_primary_10_3389_fpls_2021_637009
crossref_primary_10_1002_jwmg_21452
crossref_primary_10_1111_jse_12830
crossref_primary_10_1111_jen_12333
crossref_primary_10_1371_journal_pone_0194165
crossref_primary_10_1007_s13364_020_00546_3
crossref_primary_10_1371_journal_pone_0202196
crossref_primary_10_1007_s10641_015_0419_z
crossref_primary_10_1371_journal_pntd_0000889
crossref_primary_10_2903_j_efsa_2019_5898
crossref_primary_10_3389_fmars_2019_00791
crossref_primary_10_1111_jeb_12556
crossref_primary_10_1128_mBio_00151_12
crossref_primary_10_3389_fgene_2018_00047
crossref_primary_10_1016_j_ympev_2023_107723
crossref_primary_10_1111_aab_12113
crossref_primary_10_1007_s10336_018_1538_z
crossref_primary_10_1128_jcm_01725_23
crossref_primary_10_1111_j_1095_8312_2011_01743_x
crossref_primary_10_3389_fpls_2022_826158
crossref_primary_10_1007_s42991_023_00374_3
crossref_primary_10_1007_s10750_019_04033_y
crossref_primary_10_1111_bij_12844
crossref_primary_10_1111_mec_12174
crossref_primary_10_3398_064_073_0413
crossref_primary_10_1093_jac_dkz268
crossref_primary_10_1073_pnas_1014971108
crossref_primary_10_1073_pnas_1416707112
crossref_primary_10_1111_j_1600_0633_2011_00527_x
crossref_primary_10_1128_mBio_00644_19
crossref_primary_10_1007_s41208_024_00689_z
crossref_primary_10_1007_BF03544378
crossref_primary_10_1038_s41598_018_21265_5
crossref_primary_10_1371_journal_ppat_1002013
crossref_primary_10_5358_hsj_37_11
crossref_primary_10_3732_ajb_1100021
crossref_primary_10_1111_j_1469_7998_2010_00767_x
crossref_primary_10_1101_gr_079509_108
crossref_primary_10_3390_ani12111462
crossref_primary_10_1071_ZO13029
crossref_primary_10_1128_JCM_03345_15
crossref_primary_10_1111_j_1600_048X_2009_04681_x
crossref_primary_10_1038_s41598_020_71319_w
crossref_primary_10_1111_jse_12531
crossref_primary_10_1111_maec_12640
crossref_primary_10_1038_s41598_020_67259_0
crossref_primary_10_1099_mgen_0_000659
crossref_primary_10_1111_jzs_12422
crossref_primary_10_1186_1471_2105_10_382
crossref_primary_10_1080_14772000_2022_2084470
crossref_primary_10_1093_botlinnean_box103
crossref_primary_10_1007_s11295_014_0722_4
crossref_primary_10_1128_JCM_01987_17
crossref_primary_10_1038_ncomms12827
crossref_primary_10_1093_gbe_evt038
crossref_primary_10_1007_s10592_015_0696_2
crossref_primary_10_1038_hdy_2009_163
crossref_primary_10_1655_HERPETOLOGICA_D_12_00033R2
crossref_primary_10_7717_peerj_4479
crossref_primary_10_1371_journal_pone_0138989
crossref_primary_10_1111_j_1365_294X_2010_04543_x
crossref_primary_10_14411_eje_2022_032
crossref_primary_10_1111_j_1600_048X_2012_05761_x
crossref_primary_10_1038_s41467_019_12823_0
crossref_primary_10_1007_s11295_020_01429_z
crossref_primary_10_1111_1755_0998_12242
crossref_primary_10_1002_ajb2_1424
crossref_primary_10_1016_j_meegid_2013_06_020
crossref_primary_10_1016_j_yqres_2016_01_002
crossref_primary_10_3390_plants13060885
crossref_primary_10_7717_peerj_1193
crossref_primary_10_1038_s41437_021_00460_7
crossref_primary_10_1007_s10592_016_0905_7
crossref_primary_10_3389_fgene_2020_00410
crossref_primary_10_1111_jbi_14064
crossref_primary_10_1371_journal_pone_0017085
crossref_primary_10_1643_CG_13_040
crossref_primary_10_1371_journal_pone_0099903
crossref_primary_10_1016_j_ympev_2020_106820
crossref_primary_10_1139_gen_2018_0043
crossref_primary_10_1111_mec_12266
crossref_primary_10_1111_mec_13355
crossref_primary_10_3389_fevo_2022_777172
crossref_primary_10_3390_ijms141223454
crossref_primary_10_1111_jzo_12278
crossref_primary_10_1111_j_1365_294X_2009_04237_x
crossref_primary_10_1534_genetics_115_176404
crossref_primary_10_1016_j_ympev_2023_107809
crossref_primary_10_1093_biolinnean_blad145
crossref_primary_10_1007_s00606_020_01695_3
crossref_primary_10_1590_1982_0224_2021_0162
crossref_primary_10_3835_plantgenome2011_08_0022
crossref_primary_10_1007_s10592_018_1130_3
crossref_primary_10_1016_j_ympev_2017_12_003
crossref_primary_10_1111_zsc_12517
crossref_primary_10_1128_JB_00234_10
crossref_primary_10_1093_aobpla_plv142
crossref_primary_10_1007_s00227_012_2006_6
crossref_primary_10_1007_s10709_019_00058_2
crossref_primary_10_1016_j_anres_2018_11_021
crossref_primary_10_1038_hdy_2010_155
crossref_primary_10_1111_j_1095_8312_2010_01597_x
crossref_primary_10_1186_1471_2156_12_56
crossref_primary_10_1007_s10709_014_9777_2
crossref_primary_10_1007_s10530_012_0233_x
crossref_primary_10_1002_ece3_1874
crossref_primary_10_1371_journal_pone_0145165
crossref_primary_10_1016_j_jembe_2013_09_012
crossref_primary_10_1111_j_1600_0633_2011_00529_x
crossref_primary_10_1038_s41598_019_39128_y
crossref_primary_10_1111_zsc_12406
crossref_primary_10_1007_s13595_015_0508_3
crossref_primary_10_1016_j_funeco_2017_01_002
crossref_primary_10_1371_journal_pone_0036242
crossref_primary_10_1002_ece3_11411
crossref_primary_10_1371_journal_pone_0070162
crossref_primary_10_1111_jvec_12208
crossref_primary_10_1093_biolinnean_blaa135
crossref_primary_10_1007_s00203_018_1573_4
crossref_primary_10_7717_peerj_3584
crossref_primary_10_1371_journal_pone_0170685
crossref_primary_10_4236_nr_2017_81003
crossref_primary_10_1080_09064702_2010_538714
crossref_primary_10_1186_s12864_022_08984_w
crossref_primary_10_1007_s10592_014_0676_y
crossref_primary_10_3389_fpls_2020_00688
crossref_primary_10_1016_j_virol_2013_09_002
crossref_primary_10_1111_jbi_14154
crossref_primary_10_1016_j_seares_2013_11_003
crossref_primary_10_1371_journal_pone_0076930
crossref_primary_10_1007_s10592_013_0464_0
crossref_primary_10_1128_mBio_00550_16
crossref_primary_10_3906_bot_1706_11
crossref_primary_10_1093_infdis_jiz098
crossref_primary_10_1186_s13029_019_0072_6
crossref_primary_10_1186_s12864_017_4399_6
crossref_primary_10_1007_s10750_020_04292_0
crossref_primary_10_1016_j_scitotenv_2018_05_003
crossref_primary_10_1080_24701394_2018_1546300
crossref_primary_10_1038_s41437_018_0155_1
crossref_primary_10_1111_jfb_15395
crossref_primary_10_1371_journal_pone_0308066
crossref_primary_10_1002_ece3_3036
crossref_primary_10_1007_s10592_021_01391_w
crossref_primary_10_1371_journal_pone_0123207
crossref_primary_10_1038_nature10392
crossref_primary_10_1016_j_mambio_2016_12_001
crossref_primary_10_1093_jmammal_gyv191
crossref_primary_10_3389_fpls_2022_842842
crossref_primary_10_1007_s10344_013_0731_x
crossref_primary_10_1038_hdy_2013_116
crossref_primary_10_7868_S0016675817010106
crossref_primary_10_1371_journal_pntd_0004732
crossref_primary_10_1093_jhered_esu062
crossref_primary_10_1007_s10530_015_0915_2
crossref_primary_10_1371_journal_pone_0111011
crossref_primary_10_17660_ActaHortic_2022_1352_11
crossref_primary_10_7554_eLife_07335
crossref_primary_10_1007_s00122_014_2423_7
crossref_primary_10_1111_jse_12675
crossref_primary_10_18697_ajfand_83_17155
crossref_primary_10_1111_aen_12665
crossref_primary_10_1007_s10592_013_0466_y
crossref_primary_10_1016_j_jcz_2018_10_004
crossref_primary_10_1016_j_pecon_2020_06_006
crossref_primary_10_1186_s12862_017_1047_3
crossref_primary_10_1111_boj_12110
crossref_primary_10_1186_s12863_020_00845_3
crossref_primary_10_1007_s00035_010_0084_y
crossref_primary_10_1371_journal_pone_0204653
crossref_primary_10_1111_jbi_12195
crossref_primary_10_1016_j_ympev_2019_03_004
crossref_primary_10_1093_bfgp_elp048
crossref_primary_10_1002_ecs2_1844
crossref_primary_10_1038_srep28984
crossref_primary_10_1002_ece3_360
crossref_primary_10_1017_S0007485311000563
crossref_primary_10_1007_s00122_011_1671_z
crossref_primary_10_1099_mgen_0_000528
crossref_primary_10_1007_s13131_023_2265_8
crossref_primary_10_1093_cid_cir1032
crossref_primary_10_1371_journal_pntd_0001448
crossref_primary_10_1371_journal_ppat_1002776
crossref_primary_10_1371_journal_pone_0101467
crossref_primary_10_1186_s12862_015_0517_8
crossref_primary_10_1038_s41598_020_80586_6
crossref_primary_10_1371_journal_pone_0179228
crossref_primary_10_3389_fmars_2023_1050055
crossref_primary_10_1016_j_mambio_2019_11_002
crossref_primary_10_3390_pathogens12070878
crossref_primary_10_1093_jhered_esv046
crossref_primary_10_1093_molbev_mst055
crossref_primary_10_1016_j_fgb_2019_06_002
crossref_primary_10_1071_MF18272
crossref_primary_10_1007_s10709_012_9653_x
crossref_primary_10_1007_s10592_015_0763_8
crossref_primary_10_1007_s10144_013_0373_6
crossref_primary_10_1093_aob_mct119
crossref_primary_10_1111_mec_14069
crossref_primary_10_1111_1755_0998_12512
crossref_primary_10_1093_biolinnean_blab030
crossref_primary_10_1051_alr_2012027
crossref_primary_10_1371_journal_ppat_1000583
crossref_primary_10_1111_boj_12377
crossref_primary_10_1073_pnas_1718712115
crossref_primary_10_1007_s10914_017_9397_6
crossref_primary_10_1093_molbev_mst028
crossref_primary_10_1038_ng_2895
crossref_primary_10_1073_pnas_1602675113
crossref_primary_10_1093_nar_gkr928
crossref_primary_10_1038_srep24041
crossref_primary_10_1371_journal_pone_0097556
crossref_primary_10_1111_jav_00401
crossref_primary_10_1093_jhered_esy013
crossref_primary_10_1007_s10750_013_1748_6
crossref_primary_10_1371_journal_pntd_0001381
crossref_primary_10_1007_s10592_012_0319_0
crossref_primary_10_1038_s41396_018_0211_0
crossref_primary_10_1590_1982_0224_2024_0027
crossref_primary_10_1134_S1022795416040037
crossref_primary_10_1371_journal_pone_0082198
crossref_primary_10_1371_journal_pone_0148967
crossref_primary_10_1515_mammalia_2021_0141
crossref_primary_10_1534_genetics_109_112532
crossref_primary_10_1093_biolinnean_blaa193
crossref_primary_10_1080_00218839_2021_1905373
crossref_primary_10_1007_s10344_012_0631_5
crossref_primary_10_1007_s10811_024_03379_8
crossref_primary_10_1111_1365_2745_12680
crossref_primary_10_1111_boj_12147
crossref_primary_10_1111_j_1439_0469_2010_00572_x
crossref_primary_10_1111_jbi_13011
crossref_primary_10_1111_evo_13244
crossref_primary_10_1111_jbi_12048
crossref_primary_10_1016_j_mambio_2019_03_008
crossref_primary_10_1186_1471_2164_13_580
crossref_primary_10_1214_13_EJS844
crossref_primary_10_1002_aqc_2602
crossref_primary_10_1016_j_ympev_2012_08_010
crossref_primary_10_1002_aqc_3939
crossref_primary_10_1186_s12866_017_1132_1
crossref_primary_10_1111_j_1365_294X_2012_05625_x
crossref_primary_10_1645_18_135
crossref_primary_10_1098_rspb_2020_0712
crossref_primary_10_1080_00028487_2011_567875
crossref_primary_10_1371_journal_pone_0086409
crossref_primary_10_1002_ece3_3087
crossref_primary_10_1007_s10592_012_0362_x
crossref_primary_10_1111_jse_12119
crossref_primary_10_1098_rstb_2018_0346
crossref_primary_10_1093_aob_mcr194
crossref_primary_10_3389_fevo_2022_1081114
crossref_primary_10_1021_jf205109b
crossref_primary_10_1086_683799
crossref_primary_10_3390_foods10102284
crossref_primary_10_1111_plb_12925
crossref_primary_10_1007_s10530_018_1667_6
crossref_primary_10_1139_cjfas_2016_0012
crossref_primary_10_7717_peerj_17700
crossref_primary_10_1038_nmicrobiol_2016_260
crossref_primary_10_1111_jav_02723
crossref_primary_10_1371_journal_pone_0131298
crossref_primary_10_1186_s12862_016_0708_y
crossref_primary_10_1038_nmicrobiol_2016_263
crossref_primary_10_1007_s00300_023_03193_x
crossref_primary_10_1111_mec_14156
crossref_primary_10_1007_s00606_011_0469_4
crossref_primary_10_1139_f2011_098
crossref_primary_10_1590_1982_0224_2024_0040
crossref_primary_10_3168_jds_2019_17334
crossref_primary_10_3161_15081109ACC2021_23_2_003
crossref_primary_10_1186_1471_2180_12_208
crossref_primary_10_1371_journal_pone_0178459
crossref_primary_10_1111_mec_15360
crossref_primary_10_1186_s13595_023_01207_6
crossref_primary_10_1007_s00040_018_0606_y
crossref_primary_10_1186_s12862_014_0274_0
crossref_primary_10_1371_journal_pone_0202281
crossref_primary_10_1016_j_ympev_2013_01_009
crossref_primary_10_1093_molbev_msr199
crossref_primary_10_1007_s00606_020_01665_9
crossref_primary_10_1007_s12224_012_9127_z
crossref_primary_10_1007_s12237_021_01007_z
crossref_primary_10_1093_botlinnean_boaa030
Cites_doi 10.1198/016214505000000664
10.2202/1544-6115.1303
10.1093/genetics/164.4.1567
10.1126/science.1078311
10.1093/bioinformatics/btn136
10.1016/j.mbs.2006.09.015
10.1111/j.1471-8286.2005.01031.x
10.1080/01621459.1995.10476572
10.1017/S001667230100502X
10.1093/bioinformatics/bth250
10.1186/1471-2105-9-421
10.1016/j.tpb.2007.06.004
10.1038/nrg1904
10.1109/TPAMI.2008.53
10.2174/157489306777011932
10.1139/f05-224
10.1093/bioinformatics/btn419
10.1038/nrg1318
10.1007/s10592-005-9098-1
10.1007/s11538-006-9161-1
10.1371/journal.pgen.0030185
10.1128/JCM.43.9.4665-4673.2005
10.1534/genetics.104.033803
10.1534/genetics.106.059923
10.1093/oso/9780198522195.001.0001
10.1111/j.1365-294X.2006.02994.x
10.1093/genetics/163.3.1177
10.1093/genetics/155.2.945
10.1534/genetics.107.072371
10.1093/genetics/163.1.367
10.1007/s00180-007-0072-x
10.1093/genetics/160.3.1217
10.1007/s11222-006-9391-y
10.1534/genetics.106.061317
ContentType Journal Article
Copyright Corander et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Corander et al; licensee BioMed Central Ltd. 2008 Corander et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Corander et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Corander et al; licensee BioMed Central Ltd. 2008 Corander et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-9-539
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 539
ExternalDocumentID oai_doaj_org_article_c014616628e4452ab0527ac53c153287
10.1186/1471-2105-9-539
PMC2629778
A192453972
19087322
10_1186_1471_2105_9_539
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c599t-6d06bf9945c1c8c58dc9341f26bf754b5893a16817f42fe0a7532696b6becfde3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:44:08 EDT 2025
Wed Oct 29 11:50:19 EDT 2025
Thu Aug 21 14:32:41 EDT 2025
Fri Sep 05 06:55:54 EDT 2025
Mon Oct 20 23:09:18 EDT 2025
Mon Oct 20 17:17:22 EDT 2025
Thu Oct 16 15:48:13 EDT 2025
Mon Jul 21 05:58:36 EDT 2025
Wed Oct 01 01:46:31 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Sat Sep 06 07:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Terminal Restriction Fragment Length Polymorphism
Admixture Analysis
Ancestral Origin
Marginal Likelihood
Genetic Structure
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-6d06bf9945c1c8c58dc9341f26bf754b5893a16817f42fe0a7532696b6becfde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c014616628e4452ab0527ac53c153287
PMID 19087322
PQID 66663061
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c014616628e4452ab0527ac53c153287
unpaywall_primary_10_1186_1471_2105_9_539
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2629778
proquest_miscellaneous_66663061
gale_infotracmisc_A192453972
gale_infotracacademiconefile_A192453972
gale_incontextgauss_ISR_A192453972
pubmed_primary_19087322
crossref_citationtrail_10_1186_1471_2105_9_539
crossref_primary_10_1186_1471_2105_9_539
springer_journals_10_1186_1471_2105_9_539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-16
PublicationDateYYYYMMDD 2008-12-16
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-16
  day: 16
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2008
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References J Corander (2524_CR9) 2008; 23
GA Wilson (2524_CR12) 2003; 163
S Wang (2524_CR38) 2007; 3
SL Lauritzen (2524_CR31) 1996
NA Rosenberg (2524_CR36) 2002; 298
J Corander (2524_CR27) 2007; 69
D Gasbarra (2524_CR34) 2007; 72
R Kass (2524_CR30) 1995; 90
J Corander (2524_CR7) 2004; 20
J Corander (2524_CR25) 2006; 1
L Excoffier (2524_CR2) 2006; 7
JK Pritchard (2524_CR22) 2000; 155
A Baldwin (2524_CR37) 2005; 43
SA Sisson (2524_CR28) 2005; 100
J Corander (2524_CR8) 2006; 104
J Corander (2524_CR4) 2006; 15
H Gao (2524_CR18) 2007; 176
MA Beaumont (2524_CR1) 2004; 5
EK Latch (2524_CR3) 2006; 7
JP Huelsenbeck (2524_CR21) 2007; 175
J Tang (2524_CR35) 2007; 6
EC Anderson (2524_CR19) 2002; 160
J Pella (2524_CR10) 2001; 99
CP Robert (2524_CR24) 2005
G Guillot (2524_CR17) 2008; 24
J Pella (2524_CR11) 2006; 63
D Falush (2524_CR23) 2003; 164
J Corander (2524_CR26) 2006; 16
P Marttinen (2524_CR29) 2008; 9
J Corander (2524_CR6) 2003; 163
G Guillot (2524_CR14) 2005; 170
KJ Dawson (2524_CR20) 2001; 78
J Corander (2524_CR5) 2007; 205
G Guillot (2524_CR15) 2005; 5
G Guillot (2524_CR16) 2008; 24
P Marttinen (2524_CR32) 2009; 31
O François (2524_CR13) 2006; 174
J Felsenstein (2524_CR33) 2004
19029547 - IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):74-85
12493913 - Science. 2002 Dec 20;298(5602):2381-5
15131649 - Nat Rev Genet. 2004 Apr;5(4):251-61
12930761 - Genetics. 2003 Aug;164(4):1567-87
16888334 - Genetics. 2006 Oct;174(2):805-16
11556138 - Genet Res. 2001 Aug;78(1):59-77
15520263 - Genetics. 2005 Jul;170(3):1261-80
16924258 - Nat Rev Genet. 2006 Oct;7(10):745-58
17237522 - Genetics. 2007 Apr;175(4):1787-802
18052913 - Stat Appl Genet Mol Biol. 2007;6:Article30
10835412 - Genetics. 2000 Jun;155(2):945-59
18413327 - Bioinformatics. 2008 Jun 1;24(11):1406-7
18840286 - BMC Bioinformatics. 2008;9:421
17681576 - Theor Popul Biol. 2007 Nov;72(3):305-22
12586722 - Genetics. 2003 Jan;163(1):367-74
17087977 - Math Biosci. 2007 Jan;205(1):19-31
15073024 - Bioinformatics. 2004 Oct 12;20(15):2363-9
17483417 - Genetics. 2007 Jul;176(3):1635-51
12663554 - Genetics. 2003 Mar;163(3):1177-91
16911204 - Mol Ecol. 2006 Sep;15(10):2833-43
16145124 - J Clin Microbiol. 2005 Sep;43(9):4665-73
17086368 - Bull Math Biol. 2007 Apr;69(3):797-815
18039031 - PLoS Genet. 2007 Nov;3(11):e185
11901135 - Genetics. 2002 Mar;160(3):1217-29
18710873 - Bioinformatics. 2008 Oct 1;24(19):2222-8
References_xml – volume: 100
  start-page: 1077
  issue: 471
  year: 2005
  ident: 2524_CR28
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000664
– volume: 6
  start-page: Article30
  year: 2007
  ident: 2524_CR35
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1303
– volume: 164
  start-page: 1567
  issue: 4
  year: 2003
  ident: 2524_CR23
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1567
– volume: 298
  start-page: 2381
  issue: 5602
  year: 2002
  ident: 2524_CR36
  publication-title: Science
  doi: 10.1126/science.1078311
– volume: 24
  start-page: 1406
  issue: 11
  year: 2008
  ident: 2524_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn136
– volume: 205
  start-page: 19
  issue: 1
  year: 2007
  ident: 2524_CR5
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2006.09.015
– volume: 5
  start-page: 712
  issue: 3
  year: 2005
  ident: 2524_CR15
  publication-title: Molecular Ecology Notes
  doi: 10.1111/j.1471-8286.2005.01031.x
– volume: 90
  start-page: 773
  year: 1995
  ident: 2524_CR30
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476572
– volume: 78
  start-page: 59
  issue: 1
  year: 2001
  ident: 2524_CR20
  publication-title: Genetical Research
  doi: 10.1017/S001667230100502X
– volume: 20
  start-page: 2363
  issue: 15
  year: 2004
  ident: 2524_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth250
– volume: 9
  start-page: 421
  year: 2008
  ident: 2524_CR29
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-421
– volume: 104
  start-page: 550
  year: 2006
  ident: 2524_CR8
  publication-title: Fishery Bulletin
– volume: 72
  start-page: 305
  issue: 3
  year: 2007
  ident: 2524_CR34
  publication-title: Theoretical Population Biology
  doi: 10.1016/j.tpb.2007.06.004
– volume: 7
  start-page: 745
  issue: 10
  year: 2006
  ident: 2524_CR2
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1904
– volume: 31
  start-page: 1
  year: 2009
  ident: 2524_CR32
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.53
– volume: 1
  start-page: 161
  issue: 2
  year: 2006
  ident: 2524_CR25
  publication-title: Current Bioinformatics
  doi: 10.2174/157489306777011932
– volume: 63
  start-page: 576
  issue: 3
  year: 2006
  ident: 2524_CR11
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f05-224
– volume: 24
  start-page: 2222
  issue: 19
  year: 2008
  ident: 2524_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn419
– volume: 5
  start-page: 251
  issue: 4
  year: 2004
  ident: 2524_CR1
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1318
– volume: 7
  start-page: 295
  issue: 2
  year: 2006
  ident: 2524_CR3
  publication-title: Conservation Genetics
  doi: 10.1007/s10592-005-9098-1
– volume: 69
  start-page: 797
  issue: 3
  year: 2007
  ident: 2524_CR27
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/s11538-006-9161-1
– volume: 3
  start-page: 2045
  issue: 11
  year: 2007
  ident: 2524_CR38
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0030185
– volume: 43
  start-page: 4665
  issue: 9
  year: 2005
  ident: 2524_CR37
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/JCM.43.9.4665-4673.2005
– volume: 170
  start-page: 1261
  issue: 3
  year: 2005
  ident: 2524_CR14
  publication-title: Genetics
  doi: 10.1534/genetics.104.033803
– volume-title: Monte Carlo Statistical Methods
  year: 2005
  ident: 2524_CR24
– volume: 174
  start-page: 805
  issue: 2
  year: 2006
  ident: 2524_CR13
  publication-title: Genetics
  doi: 10.1534/genetics.106.059923
– volume-title: Graphical models
  year: 1996
  ident: 2524_CR31
  doi: 10.1093/oso/9780198522195.001.0001
– volume: 15
  start-page: 2833
  issue: 10
  year: 2006
  ident: 2524_CR4
  publication-title: Molecular Ecology
  doi: 10.1111/j.1365-294X.2006.02994.x
– volume: 99
  start-page: 151
  issue: 1
  year: 2001
  ident: 2524_CR10
  publication-title: Fishery Bulletin
– volume: 163
  start-page: 1177
  issue: 3
  year: 2003
  ident: 2524_CR12
  publication-title: Genetics
  doi: 10.1093/genetics/163.3.1177
– volume: 155
  start-page: 945
  issue: 2
  year: 2000
  ident: 2524_CR22
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– volume: 176
  start-page: 1635
  issue: 3
  year: 2007
  ident: 2524_CR18
  publication-title: Genetics
  doi: 10.1534/genetics.107.072371
– volume: 163
  start-page: 367
  year: 2003
  ident: 2524_CR6
  publication-title: Genetics
  doi: 10.1093/genetics/163.1.367
– volume: 23
  start-page: 111
  issue: 1
  year: 2008
  ident: 2524_CR9
  publication-title: Computational Statistics
  doi: 10.1007/s00180-007-0072-x
– volume: 160
  start-page: 1217
  issue: 3
  year: 2002
  ident: 2524_CR19
  publication-title: Genetics
  doi: 10.1093/genetics/160.3.1217
– volume: 16
  start-page: 355
  issue: 4
  year: 2006
  ident: 2524_CR26
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-006-9391-y
– volume: 175
  start-page: 1787
  issue: 4
  year: 2007
  ident: 2524_CR21
  publication-title: Genetics
  doi: 10.1534/genetics.106.061317
– volume-title: Inferring phylogenies
  year: 2004
  ident: 2524_CR33
– reference: 12493913 - Science. 2002 Dec 20;298(5602):2381-5
– reference: 16911204 - Mol Ecol. 2006 Sep;15(10):2833-43
– reference: 16888334 - Genetics. 2006 Oct;174(2):805-16
– reference: 17681576 - Theor Popul Biol. 2007 Nov;72(3):305-22
– reference: 16924258 - Nat Rev Genet. 2006 Oct;7(10):745-58
– reference: 19029547 - IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):74-85
– reference: 16145124 - J Clin Microbiol. 2005 Sep;43(9):4665-73
– reference: 18039031 - PLoS Genet. 2007 Nov;3(11):e185
– reference: 17483417 - Genetics. 2007 Jul;176(3):1635-51
– reference: 11556138 - Genet Res. 2001 Aug;78(1):59-77
– reference: 15073024 - Bioinformatics. 2004 Oct 12;20(15):2363-9
– reference: 18710873 - Bioinformatics. 2008 Oct 1;24(19):2222-8
– reference: 15131649 - Nat Rev Genet. 2004 Apr;5(4):251-61
– reference: 17087977 - Math Biosci. 2007 Jan;205(1):19-31
– reference: 17086368 - Bull Math Biol. 2007 Apr;69(3):797-815
– reference: 12663554 - Genetics. 2003 Mar;163(3):1177-91
– reference: 12586722 - Genetics. 2003 Jan;163(1):367-74
– reference: 11901135 - Genetics. 2002 Mar;160(3):1217-29
– reference: 10835412 - Genetics. 2000 Jun;155(2):945-59
– reference: 15520263 - Genetics. 2005 Jul;170(3):1261-80
– reference: 18840286 - BMC Bioinformatics. 2008;9:421
– reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87
– reference: 18413327 - Bioinformatics. 2008 Jun 1;24(11):1406-7
– reference: 17237522 - Genetics. 2007 Apr;175(4):1787-802
– reference: 18052913 - Stat Appl Genet Mol Biol. 2007;6:Article30
SSID ssj0017805
Score 2.5095198
Snippet Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying...
During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population...
Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 539
SubjectTerms Algorithms
Alleles
Applications software
Bayes Theorem
Bayesian statistical decision theory
Bioinformatics
Biomedical and Life Sciences
Cluster Analysis
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Genetic
Genetic Linkage
Genetic Structures
Genetics, Population
Humans
Life Sciences
Methodology
Methodology Article
Methods
Microarrays
Models, Genetic
Population - genetics
Sequence Analysis, DNA
Software
Statistical models
Stochastic Processes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEPVB_O62VYMI2oe1m-wmmzzeSUsVFLEWCj6EbDZpC8fe4fYo9987s5tbb5XSF1-THHvJ_DIfZOY3hLx1SoqgqpAGz_O0AAObVkqxlLsyy7ysrMyx3vnLV3l8Wnw-E2cbrb4wJ6ynB-4P7sAhuwmTkitfFILbKhO8tE7kDu4quPuofTOl18FUfD9Apv6urqiEz4ILEUl9mJIHw1iqU4E9wjfsUUfb_69y3rBOf2dODs-nD8i9ZbOwq2s7m21YqKNH5GF0Lemk39Jjcsc3T8jdvtnk6in5edhcdM_9dGpXHmsnadcGB-vR6WVDp5NvJ7QFrXxtf3kKviyNHSXOKYAMax1pTza7hAidzgNdDL2_2mfk9Ojwx8fjNLZWSJ3Q-iqVdSaroHUhHHPKCVU7DfYscBgtRVEJcGMsk4qVoeDBZxaiGi61rCTIPNQ-f062mnnjtwllNS-RFw5CLVXkvFYahA1-mmdYU8tkQj6sD9i4yDuO7S9mpos_lDQoEYMSMdqARBLyfvjBoqfcuHnpFCU2LEOu7G4AEGQigsxtCErIG5S3QTaMBtNtzu2ybc2nk-9mguEpfKfkCXkXF4U5_HtnY_UCnAESaI1W7o1WwnV1o-nXa1gZnMIct8bPl62BQFJCAMcS8qIH2Z_d60yVoHkTUo7gN9r3eKa5vOi4wrnk4OGrhOyvgWqikmpvPtT9Acm3CWDnfwhgl9zvsnAYT5ncI1uAZf8SXL2r6lV3q38DRRFGsg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G311CCC3kPOJm3S5HH3uOMUFPE8OPAhpGl6d7B0F3vLsf-9M222btVDfG0mbZOZzAeT-Q0hb7xWstZlzeogMpaDgWWl1pwJX6RpUKVTGdY7f_qsDo_zjyfyJIIkYS3MZv6ea_Weg_JkEJZIZpjMzHVyAyyU6rKyam9IFyAwf8Tt-cukkcnpkPn_1L8bBuj3y5FDhvQOubVsFm516WazDSN0cI_cjd4jnfTsvk-uheYBudn3k1w9JN_3m7Muo0-nbhWwPJJ2nW6w5JyeN3Q6-XJEW1C8l-5HoOCu0tg04pSCHGE5I-3xZJcQhNN5TRdDe6_2ETk-2P-2d8hi9wTmpTEXTFWpKmtjcum5117qyhswWbWAp4XMSwmeiuNK86LORR1SB4GLUEaVCthaVyF7TLaaeROeEsorUSD0G0RTOs9EpQ3wE1yxwLFslquE7K432PoILY4dLma2CzG0ssgRixyxxgJHEvJumLDoUTWuJp0ixwYyhMPuHoCU2Hi6rEcIHK6U0CHPpXBlKkXhvMw8KHSICRPyGvltEfCiwRs1p27ZtvbD0Vc7wQgUvlOIhLyNRPUc_t67WKAAe4AYWSPK7RElnEg_Gn61FiuLQ3iNrQnzZWshVlQQo_GEPOmF7NfqTaoLUK4JKUbiN1r3eKQ5P-vgwIUS4MTrhOysBdVGPdRevak7gyT_iwHP_uO9z8nt7j4NF4yrbbIFIhtegNN2Ub7sDuxPwl81cA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PsjMMBCSLCHdLUTO85jizYNJMbEqDS0BytxnK6iJFXTaip_PefELc1gQki8xhclvvx8H8rd7wBeayl4LtPczw0L_BAdrJ9KSX2mo17PiDQRge13_ngkDofhh1N-ugWfVr0w6XedjktHGmqJirubbeiTpsvBTlEws71pljeHXoo9ikbWx_SF-7HPg_gabAuOwXkHtodHx_2vdY-Rk3AEP3-4q-Wbagr_3w31hqe6XEW5_pV6C24simmyvEgmkw1vdXAHpqt9NkUq37qLedrVPy5RQP5HRdyF2y6yJf0GivdgyxT34Xoz63L5AM72i_O62oAMkqWxrZuknsJj2-HJuCCD_vEJqdApXCQzQ_B9iBtoMSKIcdtqSRqu28XMVKTMyXQ9eqx6CMOD_S_vDn032cHXPI7nvsh6Is3jOOSaaqm5zHSM7jRneDXiYcoxikqokDTKQ5abXoJJFROxSAVCLs9M8Ag6RVmYJ0BoxiJLS4eZngwDlskYsYZhoqG2pZcKD7qrb6q0oz230zcmqk5_pFBWY8pqTMUKNebB2_UN04bx42rRgQXJWsxSddcXytlIuZOvtKXnoUIwacKQsyTtcRYlmgcanQ3mqx68shBTloyjsNU-o2RRVer9yWfVt9kxPidiHrxxQnmJb68T1zyBOrD8XS3JnZYkWgvdWn65QrKyS7bErjDlolKYxwrMH6kHjxtc_9p93JMRGn4PohbiW_turxTj85qqnAmGCYb0YHd1NpSzkdXVSt1dH56_fYCn_yD7DG7WtT6U-VTsQAcha55jQDlPXzgj8RMiFW0Y
  priority: 102
  providerName: Unpaywall
Title Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations
URI https://link.springer.com/article/10.1186/1471-2105-9-539
https://www.ncbi.nlm.nih.gov/pubmed/19087322
https://www.proquest.com/docview/66663061
https://pubmed.ncbi.nlm.nih.gov/PMC2629778
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-9-539
https://doaj.org/article/c014616628e4452ab0527ac53c153287
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJgQ8IL4XGMVCSLAHj9iJHfsBobTaNCptmiiVhvZgOa7TTarSrlk1-t9zTtN2gU3wGl8_ch---yW-3yH0wUrBc5nlJHcsIjEkWJJJSQmzSRg6kRkR-X7no2Nx2I-7p_x0PQ6oVmB5K7Tz86T609Her8v5Vwj4L1XAS_GZwgZLALpwogiP1AbagjSl_ByHo3j9SsGT91etRrVwzfNzyxc0UlTF5P_3fn0jYf15mHL1RvURejArJmZ-bUajG0nr4Al6XFebOF24x1N0zxXP0P3F_Mn5c3S2X5xXJwBw28ydb6fE1WQc36KOLwrcTk96uISN-tpMHYbyFtdDJoYY_M63P-IF_-wMQDse53iyGgdWvkD9g_0fnUNST1sglit1RcQgFFmuVMwttdJyObAKUlzO4GrC44xDZWOokDTJY5a70ADQYUKJTIAb5AMXvUSbxbhw2wjTAUs8VRygLxlHbCAV2B9KN0d9my0VAdpbKljbmorcT8QY6QqSSKG9RbS3iFYaLBKgT6sPTBYsHHeLtr3FVmKePru6MJ4OdR2N2nrKHCoEky6OOTNZyFliLI8sJADAkAF67-2tPUFG4U_gDM2sLPW33nedesQKv5OwAH2shfIx_Htr6oYG0IHn1GpI7jQkIYJtY_nd0q20X_LH3go3npUasKUATEcD9GrhZOu7V6FMYDMOUNJwv8Z9N1eKi_OKPpwJBkW_DNDu0lH1MuzuVuruypP_ZYDX_6O7N-hhdfCGMkLFDtoEX3Vvobq7ylpoK027vW4LbXREp1U9I2lVkQwr_eOT9Odvzy1JgA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTWjwgPgmMJiFkGAPHrETO_ZjizZtZZsQ3aRJPFiO63STqrRaVk397zmnaViACfEaX7583_Ld7wA-OCVFofKCFp4nNEUHS3OlGOUui2MvcyuT0O98fCIPztLBuThfA7bqhamr3VdHkrWlrtVayc8MzSjFBEVQTUWi78FGqLBCXdzo9QbDQXt0EED6Gwyfv9zWcT81Sv-ftviWM_q9ULI9LX0Im_NyZhc3djK55ZD2H8OjJpIkvSXrn8CaL5_C_eVsycUz-LFXXtSn-6RvFz60SpJ66k1oPyeXJen3vg1JhUb4xl55gqEraQZIjAnKVGhtJEts2Tkm5GRakFk76qt6Dmf7e6dfDmgzSYE6ofU1laNY5oXWqXDMKSfUyGl0XwXHq5lIc4FRi2VSsaxIeeFji0kMl1rmEllcjHzyAtbLaelfAWEjngUYOMysVJrwkdLIWwzLPAsttExGsLvaYOMamPEw7WJi6nRDSRM4YgJHjDbIkQg-tTfMlggbd5P2A8dasgCNXV-YXo1No2nGBTgcJiVXPk0Ft3kseGadSBwad8wPI3gf-G0C-EUZqmvGdl5V5nD43fRCNorvyXgEHxuiYopf72zTrIB7EPCyOpRbHUrUTtdZ3l6JlQlLoaSt9NN5ZTBvlJivsQheLoXs19_rWGVoaCPIOuLX-e_uSnl5UUODc8kxoFcR7KwE1TQ2qbp7U3daSf4XA17_x3O3YfPg9PjIHB2efH0DD-o6G8Ypk1uwjuLr32Iwd52_a9T3J0YVPck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxDeBwSyEBHswi53YsR_bsmrjY5oYkybtwXIcu5tUpdXSaup_zzlJwwJMiNf4nMS-833Id79D6J2VgnuZe-IdS0gKBpbkUlLCbBbHTuRGJKHe-duB2DtOP5_wkzY3p1pnu6-vJJuahoDSVC525oVvjrgUOxRUKoFghRNFeKJuolspmLbQwGAkRt0lQoDrb9F8_jKpZ4hqvP4_tfIVs_R7ymR3b3of3V2Wc7O6NNPpFdM0fogetD4lHjRC8AjdcOVjdLvpMrl6gk53y7P6nh8PzcqFoklc978Jhej4vMTDweERrkAdX5oLh8GJxW0riQkG6QpFjrhBmV1CaI5nHs-7pl_VU3Q83v0x2iNtTwViuVILIopY5F6plFtqpeWysAoMmWfwNONpzsF_MVRImvmUeRcbCGeYUCIXwGxfuOQZ2ihnpXuBMC1YFgDhIMaSacIKqYDL4KA5GoppqYjQx_UGa9sCjoe-F1NdBx5S6MARHTiilQaOROhDN2HeYG1cTzoMHOvIAkh2_WB2MdHtmdM2AONQIZh0acqZyWPOMmN5YkHNQ6QYobeB3zrAYJQhz2ZillWl94--60GIS-E7GYvQ-5bIz-DvrWnLFmAPAnJWj3KzRwnn1PaGt9ZipcNQSG4r3WxZaYggBURuNELPGyH7tXoVywxUboSynvj11t0fKc_PapBwJhi49jJC22tB1a12qq7f1O1Okv_FgJf_8d4tdOfw01h_3T_48grdqxNuKCNUbKINkF73Gry6Rf6mPrs_AbzbQKY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PsjMMBCSLCHdLUTO85jizYNJMbEqDS0BytxnK6iJFXTaip_PefELc1gQki8xhclvvx8H8rd7wBeayl4LtPczw0L_BAdrJ9KSX2mo17PiDQRge13_ngkDofhh1N-ugWfVr0w6XedjktHGmqJirubbeiTpsvBTlEws71pljeHXoo9ikbWx_SF-7HPg_gabAuOwXkHtodHx_2vdY-Rk3AEP3-4q-Wbagr_3w31hqe6XEW5_pV6C24simmyvEgmkw1vdXAHpqt9NkUq37qLedrVPy5RQP5HRdyF2y6yJf0GivdgyxT34Xoz63L5AM72i_O62oAMkqWxrZuknsJj2-HJuCCD_vEJqdApXCQzQ_B9iBtoMSKIcdtqSRqu28XMVKTMyXQ9eqx6CMOD_S_vDn032cHXPI7nvsh6Is3jOOSaaqm5zHSM7jRneDXiYcoxikqokDTKQ5abXoJJFROxSAVCLs9M8Ag6RVmYJ0BoxiJLS4eZngwDlskYsYZhoqG2pZcKD7qrb6q0oz230zcmqk5_pFBWY8pqTMUKNebB2_UN04bx42rRgQXJWsxSddcXytlIuZOvtKXnoUIwacKQsyTtcRYlmgcanQ3mqx68shBTloyjsNU-o2RRVer9yWfVt9kxPidiHrxxQnmJb68T1zyBOrD8XS3JnZYkWgvdWn65QrKyS7bErjDlolKYxwrMH6kHjxtc_9p93JMRGn4PohbiW_turxTj85qqnAmGCYb0YHd1NpSzkdXVSt1dH56_fYCn_yD7DG7WtT6U-VTsQAcha55jQDlPXzgj8RMiFW0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Bayesian+modelling+in+BAPS+software+for+learning+genetic+structures+of+populations&rft.jtitle=BMC+bioinformatics&rft.au=Corander%2C+Jukka&rft.au=Marttinen%2C+Pekka&rft.au=Siren%2C+Jukka&rft.au=Tang%2C+Jing&rft.date=2008-12-16&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=9&rft.spage=539&rft_id=info:doi/10.1186%2F1471-2105-9-539&rft.externalDBID=ISR&rft.externalDocID=A192453972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon