A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma
Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do n...
Saved in:
| Published in | BMC genomics Vol. 18; no. 1; p. 127 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
06.02.2017
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/s12864-017-3519-7 |
Cover
| Abstract | Background
We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (
NF1
) tumor suppressor gene. However, recognizing tumors that have inactivation of the
NF1
tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of
NF1
mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.
Results
We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected
NF1
mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples.
Conclusions
We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. |
|---|---|
| AbstractList | We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.
We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples.
We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. Keywords: Neurofibromatosis Type I, Glioblastoma, Machine Learning, Cancer, NF1 Inactivation, Classifier Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.BACKGROUNDWe have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples.RESULTSWe developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples.We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.CONCLUSIONSWe demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. |
| ArticleNumber | 127 |
| Audience | Academic |
| Author | Greene, Casey S. Sanchez, Yolanda Fadul, Camilo E. Bouley, Stephanie J. Allaway, Robert J. Way, Gregory P. |
| Author_xml | – sequence: 1 givenname: Gregory P. surname: Way fullname: Way, Gregory P. organization: Genomics and Computational Biology Graduate Program, University of Pennsylvania, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania – sequence: 2 givenname: Robert J. surname: Allaway fullname: Allaway, Robert J. organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College – sequence: 3 givenname: Stephanie J. surname: Bouley fullname: Bouley, Stephanie J. organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College – sequence: 4 givenname: Camilo E. surname: Fadul fullname: Fadul, Camilo E. organization: Department of Neurology, University of Virginia – sequence: 5 givenname: Yolanda surname: Sanchez fullname: Sanchez, Yolanda email: Yolanda.Sanchez@dartmouth.edu organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center – sequence: 6 givenname: Casey S. surname: Greene fullname: Greene, Casey S. email: csgreene@mail.med.upenn.edu, csgreene@upenn.edu organization: Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28166733$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNURD_gB3BBkbiUQ0rsxLFzQVpVFCpVIPFxtlx7nLpynMV2Cv33zLIL3a2gQj7YmnneGfv1HBZ7YQpQFM9JfUKI6F4nQkXXVjXhVcNIX_FHxQFpOako6dq9rfN-cZjSdY2goOxJsU8F6TreNAdFWJSj0lcuQOlBxeDCUGqvUnLWQSxzVJgy5RRKrYJeR0LS0S3zNEIqDWTQOZUfzkjpgtLZ3ajsEE9uCMpjrBy8my6xJArU0-KxVT7Bs81-VHw9e_vl9H118fHd-eniotKs73NFoKf60nArAJ_YG2G4aIEwJgy0vep5YxttamWpAGaF1dYYqGutMIoS0xwVdF13Dkt1-115L5fRjSreSlLLlXlybZ5ET-TKPMlR9GYtWs6XIxgNAR97J5yUk7uZ4K7kMN1IRnvKe4IFjjcF4vRthpTl6JIG71WAaU4S2zJBSc0ooi_vodfTHNGxJGnTCspbxpqHKCJ40xJa0-6OGpQH6YKd8HZ61VouWlEzRhlddTz5C4XLwOg0DpZ1GN8RvNoRIJPhRx7UnJI8__xpl32xbd0fz34PGgJkDeg4pRTB_td_8Hsa7fKv6VqNpX9Qufn-hF3CAHHLt3-KfgLAIAYI |
| CitedBy_id | crossref_primary_10_3390_app11072897 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1002_cnr2_1220 crossref_primary_10_1016_j_isatra_2019_08_016 crossref_primary_10_1016_j_celrep_2018_03_046 crossref_primary_10_1007_s12253_017_0311_6 crossref_primary_10_1016_j_wneu_2019_01_046 crossref_primary_10_1186_s12859_021_04147_y crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_1038_s41598_022_18874_6 crossref_primary_10_1186_s41824_020_00094_8 crossref_primary_10_1038_s41416_018_0073_2 crossref_primary_10_1093_bib_bbaa258 crossref_primary_10_3390_ijms24032794 crossref_primary_10_1016_j_celrep_2019_09_071 crossref_primary_10_1016_j_biosx_2022_100188 crossref_primary_10_1093_neuonc_noaa036 crossref_primary_10_3390_cancers13112671 crossref_primary_10_1212_CPJ_0000000000001089 crossref_primary_10_3389_fphy_2018_00051 |
| Cites_doi | 10.1158/1078-0432.CCR-13-1943 10.1016/j.ccr.2008.01.003 10.1038/srep24968 10.4103/2229-5178.115515 10.1093/nar/24.3.478 10.1093/nar/gks1055 10.1136/jmg.39.5.311 10.7717/peerj.1621 10.1158/2159-8290.CD-13-0146 10.1093/nar/gkv177 10.18632/oncotarget.7718 10.1093/nar/gku1179 10.1158/0008-5472.CAN-12-3848 10.1371/journal.pcbi.1004890 10.1186/1471-2105-12-322 10.1093/nar/gng015 10.1038/nrc3911 10.1111/j.1471-4159.2008.05749.x 10.1145/2723872.2723882 10.1016/j.ccr.2009.05.009 10.1038/353864a0 10.1128/mSystems.00025-15 10.1371/journal.pgen.1001093 10.1016/j.celrep.2015.07.012 10.1038/75556 10.1093/bioinformatics/btt480 10.1016/S0092-8674(01)00245-8 10.1016/j.semcdb.2016.02.007 10.3150/13-BEJSP14 10.1523/JNEUROSCI.22-21-09194.2002 10.1016/j.jaad.2008.12.051 10.1158/1535-7163.MCT-11-0309 10.1016/0092-8674(90)90150-D 10.1016/j.ccr.2009.12.020 10.1371/journal.pone.0082144 10.1186/1471-2164-9-S1-S13 10.1002/path.2633 10.1016/0092-8674(90)90024-9 10.3892/or.2014.3469 10.1038/cdd.2014.12 10.1371/journal.pcbi.1004790 10.1371/journal.pone.0049570 10.1126/scitranslmed.aaf6853 10.1093/hmg/ddm059 10.1210/jc.2007-1253 10.1016/j.cell.2013.09.034 10.3389/fgene.2014.00115 10.1093/nar/gkn698 10.1038/nm.2158 10.1101/gad.862101 10.1093/bioinformatics/btq431 10.18632/oncotarget.2900 10.1158/0008-5472.CAN-08-2590 10.1186/1471-2105-14-198 10.1158/0008-5472.CAN-05-1553 10.1186/gb-2006-7-s1-s12 10.1038/ng.2252 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12864-017-3519-7 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| ExternalDocumentID | 10.1186/s12864-017-3519-7 PMC5292791 4317919301 A480552522 28166733 10_1186_s12864_017_3519_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke grantid: NS095411; NS095411 funderid: http://dx.doi.org/10.13039/100000065 – fundername: National Center for Advancing Translational Sciences grantid: TR001086; TR001086 funderid: http://dx.doi.org/10.13039/100006108 – fundername: Genomics and Computational Biology PhD Program at the University of Pennsylvania – fundername: National Cancer Institute grantid: CA023108 funderid: http://dx.doi.org/http://dx.doi.org/10.13039/100000054 – fundername: Gordon and Betty Moore Foundation grantid: GBMF 4552 funderid: http://dx.doi.org/10.13039/100000936 – fundername: Norris Cotton Cancer Center grantid: Prouty Pilot Grant funderid: http://dx.doi.org/10.13039/100009230 – fundername: Albert J. Ryan Foundation funderid: http://dx.doi.org/10.13039/100003334 – fundername: Nancy P. Shea Trust – fundername: Children's Tumor Foundation (US) grantid: Young Investigator Award 2014-01-12 – fundername: NCI NIH HHS grantid: P30 CA023108 – fundername: NHGRI NIH HHS grantid: T32 HG000046 – fundername: NCATS NIH HHS grantid: UL1 TR001086 – fundername: NINDS NIH HHS grantid: R01 NS095411 – fundername: ; – fundername: ; grantid: NS095411; NS095411 – fundername: ; grantid: Young Investigator Award 2014-01-12 – fundername: ; grantid: Prouty Pilot Grant – fundername: ; grantid: TR001086; TR001086 – fundername: ; grantid: GBMF 4552 – fundername: ; grantid: CA023108 |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ 4.4 ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c599t-1e92cbd7f8e1289d8d784e1558de49a973f3cd0af28e5f8fcfdde00ca3cd8e1d3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Wed Oct 29 12:06:46 EDT 2025 Tue Sep 30 16:43:27 EDT 2025 Thu Sep 04 18:09:00 EDT 2025 Tue Oct 07 06:11:52 EDT 2025 Mon Oct 06 18:26:58 EDT 2025 Mon Oct 20 21:52:48 EDT 2025 Mon Oct 20 16:33:16 EDT 2025 Thu Oct 16 14:11:27 EDT 2025 Mon Jul 21 05:35:54 EDT 2025 Wed Oct 01 03:03:34 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Sat Sep 06 07:21:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Classifier Machine Learning NF1 Inactivation Glioblastoma Neurofibromatosis Type I Cancer |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c599t-1e92cbd7f8e1289d8d784e1558de49a973f3cd0af28e5f8fcfdde00ca3cd8e1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1873412026?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 28166733 |
| PQID | 1873412026 |
| PQPubID | 44682 |
| ParticipantIDs | unpaywall_primary_10_1186_s12864_017_3519_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5292791 proquest_miscellaneous_1865821052 proquest_journals_2348274553 proquest_journals_1873412026 gale_infotracmisc_A480552522 gale_infotracacademiconefile_A480552522 gale_incontextgauss_ISR_A480552522 pubmed_primary_28166733 crossref_primary_10_1186_s12864_017_3519_7 crossref_citationtrail_10_1186_s12864_017_3519_7 springer_journals_10_1186_s12864_017_3519_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-06 |
| PublicationDateYYYYMMDD | 2017-02-06 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | PE Hollstein (3519_CR25) 2013; 3 J Cohen (3519_CR22) 1969 C-M Li (3519_CR54) 2006; 66 A Sokolov (3519_CR20) 2016; 12 GR Skuse (3519_CR13) 1996; 24 Y Liang (3519_CR19) 2013; 14 S Akamatsu (3519_CR55) 2015; 12 CW Brennan (3519_CR16) 2013; 155 E Thouënnon (3519_CR50) 2007; 92 J Guinney (3519_CR18) 2014; 20 3519_CR15 J Bageritz (3519_CR52) 2014; 21 G Xu (3519_CR2) 1990; 62 C Boettiger (3519_CR32) 2015; 49 SE Reese (3519_CR29) 2013; 29 The Gene Ontology Consortium (3519_CR36) 2015; 43 M Allen (3519_CR23) 2016; 8 J Tan (3519_CR41) 2016; 1 M Molla (3519_CR37) 2004; 25 Y Zhu (3519_CR58) 2001; 15 B Yu (3519_CR43) 2013; 19 M Wood (3519_CR8) 2011; 10 BS Carvalho (3519_CR27) 2010; 26 JL-Y Chen (3519_CR44) 2010; 6 M de Boeck (3519_CR61) 2016; 6 A Kamburov (3519_CR33) 2009; 37 LT McGillicuddy (3519_CR10) 2009; 16 NM Joseph (3519_CR59) 2008; 13 S Subramanian (3519_CR11) 2010; 220 N Almog (3519_CR47) 2009; 69 3519_CR48 RGW Verhaak (3519_CR63) 2010; 17 Y Xu (3519_CR49) 2002; 22 K Cichowski (3519_CR14) 2001; 104 RA Irizarry (3519_CR28) 2003; 31 DGR Evans (3519_CR5) 2002; 39 M Bastani (3519_CR38) 2013; 8 MR Wallace (3519_CR12) 1991; 353 3519_CR31 X Tan (3519_CR26) 2012; 7 JA Thompson (3519_CR17) 2016; 4 Z Sheng (3519_CR56) 2010; 16 A Morishita (3519_CR60) 2013; 73 RJ Allaway (3519_CR9) 2016; 7 N Ratner (3519_CR7) 2015; 15 M Ashburner (3519_CR35) 2000; 25 JA Miller (3519_CR30) 2011; 12 X Deng (3519_CR53) 2014; 32 T Willer (3519_CR45) 2012; 44 DP Noren (3519_CR42) 2016; 12 M Pirooznia (3519_CR39) 2008; 9 GC Daginakatte (3519_CR24) 2007; 16 W-C Chou (3519_CR40) 2015; 43 3519_CR62 KP Boyd (3519_CR3) 2009; 61 3519_CR21 LA Greene (3519_CR57) 2009; 108 E Rad (3519_CR6) 2016; 52 A Kamburov (3519_CR34) 2013; 41 GA Martin (3519_CR1) 1990; 63 Q Cheng (3519_CR51) 2015; 6 D Thierry-Mieg (3519_CR46) 2006; 7 B Dogra (3519_CR4) 2013; 4 |
| References_xml | – volume: 20 start-page: 265 year: 2014 ident: 3519_CR18 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-1943 – volume: 13 start-page: 129 year: 2008 ident: 3519_CR59 publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.01.003 – volume: 6 start-page: 24968 year: 2016 ident: 3519_CR61 publication-title: Sci Rep doi: 10.1038/srep24968 – volume: 4 start-page: 195 year: 2013 ident: 3519_CR4 publication-title: Indian Dermatol Online J doi: 10.4103/2229-5178.115515 – volume: 24 start-page: 478 year: 1996 ident: 3519_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/24.3.478 – volume: 41 start-page: D793 year: 2013 ident: 3519_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1055 – volume: 39 start-page: 311 year: 2002 ident: 3519_CR5 publication-title: J Med Genet doi: 10.1136/jmg.39.5.311 – volume: 4 start-page: e1621 year: 2016 ident: 3519_CR17 publication-title: Peer J doi: 10.7717/peerj.1621 – volume: 3 start-page: 880 year: 2013 ident: 3519_CR25 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0146 – volume: 43 start-page: e67 year: 2015 ident: 3519_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv177 – volume: 7 start-page: 17087 year: 2016 ident: 3519_CR9 publication-title: Oncotarget doi: 10.18632/oncotarget.7718 – volume: 43 start-page: D1049 year: 2015 ident: 3519_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1179 – volume: 25 start-page: 23 year: 2004 ident: 3519_CR37 publication-title: AI Mag – ident: 3519_CR15 – volume: 73 start-page: 4289 year: 2013 ident: 3519_CR60 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3848 – volume: 12 start-page: e1004890 year: 2016 ident: 3519_CR42 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004890 – volume: 12 start-page: 322 year: 2011 ident: 3519_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-322 – volume: 31 start-page: e15 year: 2003 ident: 3519_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 15 start-page: 290 year: 2015 ident: 3519_CR7 publication-title: Nat Rev Cancer doi: 10.1038/nrc3911 – ident: 3519_CR31 – volume: 108 start-page: 11 year: 2009 ident: 3519_CR57 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2008.05749.x – volume: 49 start-page: 71 year: 2015 ident: 3519_CR32 publication-title: Oper Syst Rev doi: 10.1145/2723872.2723882 – volume: 16 start-page: 44 year: 2009 ident: 3519_CR10 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.05.009 – volume: 353 start-page: 864 year: 1991 ident: 3519_CR12 publication-title: Nature doi: 10.1038/353864a0 – ident: 3519_CR62 – volume: 1 start-page: e00025 year: 2016 ident: 3519_CR41 publication-title: mSystems doi: 10.1128/mSystems.00025-15 – volume: 6 start-page: e1001093 year: 2010 ident: 3519_CR44 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001093 – volume: 12 start-page: 922 year: 2015 ident: 3519_CR55 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.07.012 – ident: 3519_CR21 – volume: 25 start-page: 25 year: 2000 ident: 3519_CR35 publication-title: Nat Genet doi: 10.1038/75556 – volume: 29 start-page: 2877 year: 2013 ident: 3519_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt480 – volume: 104 start-page: 593 year: 2001 ident: 3519_CR14 publication-title: Cell doi: 10.1016/S0092-8674(01)00245-8 – volume: 52 start-page: 39 year: 2016 ident: 3519_CR6 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2016.02.007 – volume: 19 start-page: 1484 year: 2013 ident: 3519_CR43 publication-title: Bernoulli doi: 10.3150/13-BEJSP14 – volume: 22 start-page: 9194 year: 2002 ident: 3519_CR49 publication-title: J Neurosci Off J Soc Neurosci doi: 10.1523/JNEUROSCI.22-21-09194.2002 – volume: 61 start-page: 1 year: 2009 ident: 3519_CR3 publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2008.12.051 – volume: 10 start-page: 1740 year: 2011 ident: 3519_CR8 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-11-0309 – volume: 63 start-page: 843 year: 1990 ident: 3519_CR1 publication-title: Cell doi: 10.1016/0092-8674(90)90150-D – volume: 17 start-page: 98 year: 2010 ident: 3519_CR63 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 8 start-page: e82144 year: 2013 ident: 3519_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0082144 – volume: 9 start-page: S13 year: 2008 ident: 3519_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-S1-S13 – volume: 220 start-page: 58 year: 2010 ident: 3519_CR11 publication-title: J Pathol doi: 10.1002/path.2633 – volume: 62 start-page: 599 year: 1990 ident: 3519_CR2 publication-title: Cell doi: 10.1016/0092-8674(90)90024-9 – volume: 32 start-page: 2159 year: 2014 ident: 3519_CR53 publication-title: Oncol Rep doi: 10.3892/or.2014.3469 – volume: 21 start-page: 929 year: 2014 ident: 3519_CR52 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.12 – volume: 12 start-page: e1004790 year: 2016 ident: 3519_CR20 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004790 – volume: 7 start-page: e49570 year: 2012 ident: 3519_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0049570 – volume-title: Statistical power analysis for the behavioral sciences year: 1969 ident: 3519_CR22 – volume: 8 start-page: 354re3 year: 2016 ident: 3519_CR23 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf6853 – volume: 16 start-page: 1098 year: 2007 ident: 3519_CR24 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddm059 – volume: 92 start-page: 4865 year: 2007 ident: 3519_CR50 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2007-1253 – volume: 155 start-page: 462 year: 2013 ident: 3519_CR16 publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – ident: 3519_CR48 doi: 10.3389/fgene.2014.00115 – volume: 37 start-page: D623 year: 2009 ident: 3519_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn698 – volume: 16 start-page: 671 year: 2010 ident: 3519_CR56 publication-title: Nat Med doi: 10.1038/nm.2158 – volume: 15 start-page: 859 year: 2001 ident: 3519_CR58 publication-title: Genes Dev doi: 10.1101/gad.862101 – volume: 26 start-page: 2363 year: 2010 ident: 3519_CR27 publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq431 – volume: 6 start-page: 4733 year: 2015 ident: 3519_CR51 publication-title: Oncotarget doi: 10.18632/oncotarget.2900 – volume: 69 start-page: 836 year: 2009 ident: 3519_CR47 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2590 – volume: 14 start-page: 198 year: 2013 ident: 3519_CR19 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-198 – volume: 66 start-page: 665 year: 2006 ident: 3519_CR54 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1553 – volume: 7 start-page: S12.1 issue: Suppl 1 year: 2006 ident: 3519_CR46 publication-title: Genome Biol doi: 10.1186/gb-2006-7-s1-s12 – volume: 44 start-page: 575 year: 2012 ident: 3519_CR45 publication-title: Nat Genet doi: 10.1038/ng.2252 |
| SSID | ssj0017825 |
| Score | 2.364163 |
| Snippet | Background
We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (
NF1
) tumor suppressor gene. However,... We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing... Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However,... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | Analysis Animal Genetics and Genomics Biomedical and Life Sciences Brain cancer Brain tumors Cancer Cell Line, Tumor Classifiers Computational Biology - methods Deactivation Deoxyribonucleic acid DNA DNA microarrays Gene expression Gene mutation Gene Silencing Genetic disorders Genomes Genomics Glioblastoma Glioblastoma - pathology Glioma Glioma cells Health aspects Human and rodent genomics Humans Inactivation Kinases Learning algorithms Lethality Life Sciences Machine Learning Microarrays Microbial Genetics and Genomics Mutation Neurofibroma Neurofibromin 1 Neurofibromin 1 - genetics Neurological disorders Phosphorylation Plant Genetics and Genomics Precision medicine Proteins Proteomics Research Article Ribonucleic acid RNA Transcription Transcription factors Transcriptome Tumor suppressor genes Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1raxQxMNQron4Q3z2tEkUQLEv3lU3yQeSUHlXwkGqh30I2yZ4H1-zVvUP6753Zl7dF69fNJNnMTGaSzIuQ1yFzrHAixFgnFqTS2UDmnAcsyizIwlhGGh_0v8yy49P08xk72yGzLhYG3So7mVgLalsafCM_jAQHgQtX9ez96iLAqlFoXe1KaOi2tIJ9V6cYu0F2Y8yMNSK7H45mX096uwLoQ9baNiORHVYgnTP0wuDo0S4DPtBOV2X0lpK66kDZW1HvkFsbv9KXv_RyuaWopvfI3faESScNS9wnO84_IDebmpOXD4mf0PPagdLRtmLEnBo8Qi8K0JC0LhnhLC09NcgQ9RffyJby3FXUOjQ7VHQ2jejCY1hE86hL0RME5l14Ol8uyhyGhA76ETmdHn3_eBy0RRcCw6RcB5GTscktL4QD5EgrLBepA6wK61KpJU-KxNhQF7EAKovCFCAgw9Bo-ApdbPKYjHzp3R6GgzuXpIyZ0OlUWJ2HxokkyyU3cI-JkjEJO2Qr02Ykx1UuVX0zEZlq6KOAPgrpo_iYvO27rJp0HNcBv0IKKkxz4dGPZq43VaU-fTtRk1SEjMVw-ByTNy1QUcLkRrdhCbAEzIw1gNwfQMI-NMPmjlFUKwcq9Ydr_9ocY2ohDigCXLzsm3FgdH3zrtzgEBkGM4cMZnjSsF2_9BitvjyB3nzAkD0AJg8ftvjFjzqJOItlzGU0Jgcd62799b8xetBz9__x__R6jDwjt2PceegCn-2T0frnxj2HE946f9Fu2984nU4V priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMOiJqA_it6unRBEEj2KaNk3yuIjLKXgP6sK9hTRJ14W99LC7yP17Z_rF9jgVX5tJ0sxMZiaZjxDyhokgqqAY5jqJJNfBJ7qUMhFp4UEWcp1avND_clIcL_PPp-K0z-Nuhmj3wSXZSup2W6vifQOStMCICYnR5zqR18kNgdW8gImXfD66DkDlid59eWW3iQK6LIb39NDlGMnRUXqH3NrFc3vxy242e7pocY_c7Y1IOu-ofp9cC_EBudk9K3nxkMQ5PWtjJAPtH4VYUYdW8roCJUjbVyGCp3WkDmnefomd-KjPQkN9QM9CQ08WKV1HzHzo7m0pBnvAvOtIV5t1XcKQ0ME-IsvFx-8fjpP-XYXECa23SRo0d6WXlQqAHO2VlyoPYFgoH3JttcyqzHlmK66AkKpyFchAxpyFr9DFZ4_JQaxjeIoZ3yFkuRCOBZsrb0vmgsqKUksHR5U0mxE2INu4vug4rnJj2sOHKkxHHwP0MUgfI2fk3djlvKu48Tfg10hBg5UsIobKrOyuacynb1_NPFdMCA725Yy87YGqGiZ3ts88gCVg8asJ5OEEEraamzYPjGL6rd6YVEmwBDicZa9s5lg9SAKKABevxmYcGKPbYqh3OESB-cpMwAxPOrYbl87RsSsz6C0nDDkCYH3waUtc_2jrhAuuudTpjBwNrLv313_G6NHI3f_G_7P_Gvs5uc1xI2LQe3FIDrY_d-EF2HTb8mW7h38Dz4FESQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6h6gPfn-snhJFEDy61680yeMiLqfgIurC-RTaJF3r7aaL3UXOv96Ztlu2y6kIvpVmknamM5NJM_MLIS98ZlluhY-1TsyLpTWezDj3WJAY8IWhDFL8of9-mpzM4nen7LSFFMJamGypEZx0WehqtFuAvqi9Nlzos-OVyRtjF8lxBf41wTwKjjnp0uOXyUHCICwfkIPZ9MP4S11dxAMvhHVBu6t5Yb_evLTvnXemp_3UyW7_9Dq5unGr9PxHuljsTFGTm-TblrkmM-VstFlnI_1zD_fxv3B_i9xoA1k6bjTvNrlk3R1ypTna8vwucWO6rPM0LW0PpphTjZF6kcNETOuTKayhpaMa9a6-4xoXBi9UUWNxd6Oi00lAC4fVF82_Y4oJJ_DcwtH5oigzGBI6pPfIbPLm8-sTrz3bwdNMyrUXWBnqzPBcWOBBGmG4iC0EN8LYWKaSR3mkjZ_moQBlErnOwQ_7vk7hLnQx0X0ycKWzD7Hq3NooZkz7No2FSTNfWxElmeQalktBNCT-9ssq3QKfI5cLVS-ARKIaMSoQo0IxKj4kr7ouqwb140_Ez1FdFKJpOEzXmaebqlJvP31U41j4jIUQ4w7Jy5YoL_E7pm31A7CAAFw9ysMeJZi77jdvtVK17qZSgeAQjYSwnr6wOUQEIw4iAlk865pxYMywc7bc4BAJ1kz7DJ7woNHxjvUQN5d5BL15T_s7AsQo77e44muNVc5CGXIZDMnR1k523vr3Ej3qTOnv8n_0T9SPybUQ7QUT75NDMlh_39gnEFeus6etx_gFyGlxjg priority: 102 providerName: Unpaywall |
| Title | A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma |
| URI | https://link.springer.com/article/10.1186/s12864-017-3519-7 https://www.ncbi.nlm.nih.gov/pubmed/28166733 https://www.proquest.com/docview/1873412026 https://www.proquest.com/docview/2348274553 https://www.proquest.com/docview/1865821052 https://pubmed.ncbi.nlm.nih.gov/PMC5292791 https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3519-7 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw0NpWIeAB8b3CqAxCQmLKSJw4th8QKtWqgbRqGlQqT1HiOF2lzhlLK-i_5y5JQzOV8RI18dmuz3e-s30fhLx1ueGZkS76OnEnUCZ1VCKEw70whbWQKS_GA_3TUXgyDr5O-GSHrNNb1Qgstm7tMJ_U-Hp-9Pvn6hMw_MeS4WX4oYA1NkRbCoF26coRu6QDgkphJofT4O-lAghDXjobCc9hsE2oLzm3NtESUzcX6w1pddOSsrlOvU_uLu1VvPoVz-cbEmv4kDyoVU3ar2jjEdkx9jG5UyWfXD0htk8vS0tKQ-vUEVOqUZeeZSAqaZk7wqQ0t1QjZZRfbLXI5JemoKnB-4eCjoYenVn0j6hOdymahEC_M0un81meQJNQIX5KxsPj74MTp86-4Giu1MLxjGI6SUUmDSBHpTIVMjCgfsjUBCpWws98nbpxxiRMt8x0Biul6-oYvkKV1H9G9mxuzT76hRvjB5xr18SBTOPE1Ub6YaKEhg2N53eJu0Z2pOvQ5DjKeVRuUWQYVfMTwfxEOD-R6JL3TZWrKi7HbcBvcAYjjHdh0aBmGi-LIvry7TzqB9LlnIEW2iXvaqAsh851XPsnwBAwRFYL8qAFCQyp28VrQonW9Bx5UoC-wGDHu7WYYYwhASgCXLxuirFhtIGzJl9iEyF6NbscenhekV0zdIbXv8KH2qJFkA0ARhFvl9jZRRlNnDPFhPK65HBNuhv_-t8YPWyo-__4f3E7wl6Seww5D23hwwOyt7hemleg6i2SHtkVE9Ejnc_Ho7NzeBuEg155bNIrWRueYwa_O-PRWf_HHwkpUxM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqb0OAB8U1hgEEgpE3R8uXYfphQgVUt2yo0NmlvwbGdUqlLCmk19c_x27hL0tBMMJ72Gp_P8fl8Z_u-CHnjMstSK1yMdWJOKK1xZMK5w7zIgCz0pafwQf9oGPVPw89n7GyN_FrGwqBb5VImloLa5BrfyHc9wUHgwlU9ej_94WDVKLSuLktoqLq0gtkrU4zVgR0HdnEBV7hib_AJ1vut7_f2Tz72nbrKgKOZlDPHs9LXieGpsCCrpRGGi9ACGmFsKJXkQRpo46rUFzAtkeoUJILragVfoYsJAO8NshEGoYTL38aH_eGX48aOAfqX1bZUT0S7BYwQodcHRw966fCWNrysE1aU4mWHzcZqe5tszrOpWlyoyWRFMfbukjv1iZZ2Kxa8R9Zsdp_crGpcLh6QrEvPS4dNS-sKFSOq8cg-TkEj07JEhTU0z6hGBiy_ZJUsy89tQY1FM0dBhz2PjjMMw6gekSl6nsC444yOJuM8AZTQQT0kp9dC_kdkPcsz-wTDz60NQsa0a1UojEpcbUUQJZJruDd5QYe4S2LHus6AjrOcxOVNSERxtT4xrE-M6xPzDtluukyr9B9XAb_GFYwxrUaGfjsjNS-KePD1OO6GwmXMh8Nuh7yrgdIcBteqDoOAKWAmrhbkVgsS9r1uNy8ZJa7lThH_2SV_bfYxlREHEgEtXjXNiBhd7TKbzxFFhMHTLoMRHlds10zdRyszD6A3bzFkA4DJytst2fh7mbSc-dLn0uuQnSXrrvz1vym603D3_-n_9GqKvCSb_ZOjw_hwMDx4Rm75uAvR_T7aIuuzn3P7HE6Xs-RFvYUp-XbdUuM3dNaNww |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1rb9Mw0IIhXh8Qz1EYYBAS0qZoeTm2P1aFauNRIWDSvlmO7ZRInVMtrdD-PXdJGjXTAPE19tnx3dl39r0IeRsyxwonQox1YkEqnQ1kznnAoszCWRjLSOOD_pdZdnSSfjxlp12d03rj7b4xSbYxDZilya8Ol7Zot7jIDms4VTP0nuDoiS4Dfp3cSEG4YQmDSTbpzQgg_lhnyrwSbCCMLh_JWzLpsr9kbzS9S26v_VJf_NKLxZZcmt4n9zqFko5bDnhArjn_kNxsS0xePCJ-TM8af0lHuwIRc2pQYy4LEIi0qRDhLK08NUj_5otvj5LqzNXUOrQy1HQ2jWjpMQqifcOl6PgB85aezhdllcOQAKAfk5Pphx-To6CrsRAYJuUqiJyMTW55IRwgR1phuUgdKBnCulRqyZMiMTbURSyAqKIwBZyHYWg0fAUQmzwhO77y7ilGfzuXpIyZ0OlUWJ2HxokkyyU3cG2JkhEJN8hWpktAjqtcqOYiIjLV0kcBfRTSR_ER2e9Blm32jb91foMUVJjVwqPbzFyv61odf_-mxqkIGYtB1xyRd12nooLJje6iEGAJmAhr0HNv0BO2nRk2bxhFddu-VpHgoBXEcK-9sjnGTEIcUAS4eN0348Do6eZdtcYhMoxdDhnMsNuyXb_0GI28PAFoPmDIvgPmCh-2-PJnkzOcxTLmMhqRgw3rbv31nzF60HP3v_H_7L_GfkVufX0_VZ-PZ5-ekzsx7kn0hc_2yM7qfO1egKq3yl822_k3Ej9LWw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6h6gPfn-snhJFEDy61680yeMiLqfgIurC-RTaJF3r7aaL3UXOv96Ztlu2y6kIvpVmknamM5NJM_MLIS98ZlluhY-1TsyLpTWezDj3WJAY8IWhDFL8of9-mpzM4nen7LSFFMJamGypEZx0WehqtFuAvqi9Nlzos-OVyRtjF8lxBf41wTwKjjnp0uOXyUHCICwfkIPZ9MP4S11dxAMvhHVBu6t5Yb_evLTvnXemp_3UyW7_9Dq5unGr9PxHuljsTFGTm-TblrkmM-VstFlnI_1zD_fxv3B_i9xoA1k6bjTvNrlk3R1ypTna8vwucWO6rPM0LW0PpphTjZF6kcNETOuTKayhpaMa9a6-4xoXBi9UUWNxd6Oi00lAC4fVF82_Y4oJJ_DcwtH5oigzGBI6pPfIbPLm8-sTrz3bwdNMyrUXWBnqzPBcWOBBGmG4iC0EN8LYWKaSR3mkjZ_moQBlErnOwQ_7vk7hLnQx0X0ycKWzD7Hq3NooZkz7No2FSTNfWxElmeQalktBNCT-9ssq3QKfI5cLVS-ARKIaMSoQo0IxKj4kr7ouqwb140_Ez1FdFKJpOEzXmaebqlJvP31U41j4jIUQ4w7Jy5YoL_E7pm31A7CAAFw9ysMeJZi77jdvtVK17qZSgeAQjYSwnr6wOUQEIw4iAlk865pxYMywc7bc4BAJ1kz7DJ7woNHxjvUQN5d5BL15T_s7AsQo77e44muNVc5CGXIZDMnR1k523vr3Ej3qTOnv8n_0T9SPybUQ7QUT75NDMlh_39gnEFeus6etx_gFyGlxjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+classifier+trained+on+cancer+transcriptomes+detects+NF1+inactivation+signal+in+glioblastoma&rft.jtitle=BMC+genomics&rft.au=Way%2C+Gregory+P&rft.au=Allaway%2C+Robert+J&rft.au=Bouley%2C+Stephanie+J&rft.au=Fadul%2C+Camilo+E&rft.date=2017-02-06&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-3519-7&rft.externalDocID=A480552522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |