A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma

Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do n...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 18; no. 1; p. 127
Main Authors Way, Gregory P., Allaway, Robert J., Bouley, Stephanie J., Fadul, Camilo E., Sanchez, Yolanda, Greene, Casey S.
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.02.2017
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-017-3519-7

Cover

Abstract Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
AbstractList We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine. Keywords: Neurofibromatosis Type I, Glioblastoma, Machine Learning, Cancer, NF1 Inactivation, Classifier
Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 – 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 – 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier’s NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.BACKGROUNDWe have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules.We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples.RESULTSWe developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples.We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.CONCLUSIONSWe demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
ArticleNumber 127
Audience Academic
Author Greene, Casey S.
Sanchez, Yolanda
Fadul, Camilo E.
Bouley, Stephanie J.
Allaway, Robert J.
Way, Gregory P.
Author_xml – sequence: 1
  givenname: Gregory P.
  surname: Way
  fullname: Way, Gregory P.
  organization: Genomics and Computational Biology Graduate Program, University of Pennsylvania, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
– sequence: 2
  givenname: Robert J.
  surname: Allaway
  fullname: Allaway, Robert J.
  organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College
– sequence: 3
  givenname: Stephanie J.
  surname: Bouley
  fullname: Bouley, Stephanie J.
  organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College
– sequence: 4
  givenname: Camilo E.
  surname: Fadul
  fullname: Fadul, Camilo E.
  organization: Department of Neurology, University of Virginia
– sequence: 5
  givenname: Yolanda
  surname: Sanchez
  fullname: Sanchez, Yolanda
  email: Yolanda.Sanchez@dartmouth.edu
  organization: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center
– sequence: 6
  givenname: Casey S.
  surname: Greene
  fullname: Greene, Casey S.
  email: csgreene@mail.med.upenn.edu, csgreene@upenn.edu
  organization: Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28166733$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gB3BBkbiUQ0rsxLFzQVpVFCpVIPFxtlx7nLpynMV2Cv33zLIL3a2gQj7YmnneGfv1HBZ7YQpQFM9JfUKI6F4nQkXXVjXhVcNIX_FHxQFpOako6dq9rfN-cZjSdY2goOxJsU8F6TreNAdFWJSj0lcuQOlBxeDCUGqvUnLWQSxzVJgy5RRKrYJeR0LS0S3zNEIqDWTQOZUfzkjpgtLZ3ajsEE9uCMpjrBy8my6xJArU0-KxVT7Bs81-VHw9e_vl9H118fHd-eniotKs73NFoKf60nArAJ_YG2G4aIEwJgy0vep5YxttamWpAGaF1dYYqGutMIoS0xwVdF13Dkt1-115L5fRjSreSlLLlXlybZ5ET-TKPMlR9GYtWs6XIxgNAR97J5yUk7uZ4K7kMN1IRnvKe4IFjjcF4vRthpTl6JIG71WAaU4S2zJBSc0ooi_vodfTHNGxJGnTCspbxpqHKCJ40xJa0-6OGpQH6YKd8HZ61VouWlEzRhlddTz5C4XLwOg0DpZ1GN8RvNoRIJPhRx7UnJI8__xpl32xbd0fz34PGgJkDeg4pRTB_td_8Hsa7fKv6VqNpX9Qufn-hF3CAHHLt3-KfgLAIAYI
CitedBy_id crossref_primary_10_3390_app11072897
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1002_cnr2_1220
crossref_primary_10_1016_j_isatra_2019_08_016
crossref_primary_10_1016_j_celrep_2018_03_046
crossref_primary_10_1007_s12253_017_0311_6
crossref_primary_10_1016_j_wneu_2019_01_046
crossref_primary_10_1186_s12859_021_04147_y
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1038_s41598_022_18874_6
crossref_primary_10_1186_s41824_020_00094_8
crossref_primary_10_1038_s41416_018_0073_2
crossref_primary_10_1093_bib_bbaa258
crossref_primary_10_3390_ijms24032794
crossref_primary_10_1016_j_celrep_2019_09_071
crossref_primary_10_1016_j_biosx_2022_100188
crossref_primary_10_1093_neuonc_noaa036
crossref_primary_10_3390_cancers13112671
crossref_primary_10_1212_CPJ_0000000000001089
crossref_primary_10_3389_fphy_2018_00051
Cites_doi 10.1158/1078-0432.CCR-13-1943
10.1016/j.ccr.2008.01.003
10.1038/srep24968
10.4103/2229-5178.115515
10.1093/nar/24.3.478
10.1093/nar/gks1055
10.1136/jmg.39.5.311
10.7717/peerj.1621
10.1158/2159-8290.CD-13-0146
10.1093/nar/gkv177
10.18632/oncotarget.7718
10.1093/nar/gku1179
10.1158/0008-5472.CAN-12-3848
10.1371/journal.pcbi.1004890
10.1186/1471-2105-12-322
10.1093/nar/gng015
10.1038/nrc3911
10.1111/j.1471-4159.2008.05749.x
10.1145/2723872.2723882
10.1016/j.ccr.2009.05.009
10.1038/353864a0
10.1128/mSystems.00025-15
10.1371/journal.pgen.1001093
10.1016/j.celrep.2015.07.012
10.1038/75556
10.1093/bioinformatics/btt480
10.1016/S0092-8674(01)00245-8
10.1016/j.semcdb.2016.02.007
10.3150/13-BEJSP14
10.1523/JNEUROSCI.22-21-09194.2002
10.1016/j.jaad.2008.12.051
10.1158/1535-7163.MCT-11-0309
10.1016/0092-8674(90)90150-D
10.1016/j.ccr.2009.12.020
10.1371/journal.pone.0082144
10.1186/1471-2164-9-S1-S13
10.1002/path.2633
10.1016/0092-8674(90)90024-9
10.3892/or.2014.3469
10.1038/cdd.2014.12
10.1371/journal.pcbi.1004790
10.1371/journal.pone.0049570
10.1126/scitranslmed.aaf6853
10.1093/hmg/ddm059
10.1210/jc.2007-1253
10.1016/j.cell.2013.09.034
10.3389/fgene.2014.00115
10.1093/nar/gkn698
10.1038/nm.2158
10.1101/gad.862101
10.1093/bioinformatics/btq431
10.18632/oncotarget.2900
10.1158/0008-5472.CAN-08-2590
10.1186/1471-2105-14-198
10.1158/0008-5472.CAN-05-1553
10.1186/gb-2006-7-s1-s12
10.1038/ng.2252
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12864-017-3519-7
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID 10.1186/s12864-017-3519-7
PMC5292791
4317919301
A480552522
28166733
10_1186_s12864_017_3519_7
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  grantid: NS095411; NS095411
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: National Center for Advancing Translational Sciences
  grantid: TR001086; TR001086
  funderid: http://dx.doi.org/10.13039/100006108
– fundername: Genomics and Computational Biology PhD Program at the University of Pennsylvania
– fundername: National Cancer Institute
  grantid: CA023108
  funderid: http://dx.doi.org/http://dx.doi.org/10.13039/100000054
– fundername: Gordon and Betty Moore Foundation
  grantid: GBMF 4552
  funderid: http://dx.doi.org/10.13039/100000936
– fundername: Norris Cotton Cancer Center
  grantid: Prouty Pilot Grant
  funderid: http://dx.doi.org/10.13039/100009230
– fundername: Albert J. Ryan Foundation
  funderid: http://dx.doi.org/10.13039/100003334
– fundername: Nancy P. Shea Trust
– fundername: Children's Tumor Foundation (US)
  grantid: Young Investigator Award 2014-01-12
– fundername: NCI NIH HHS
  grantid: P30 CA023108
– fundername: NHGRI NIH HHS
  grantid: T32 HG000046
– fundername: NCATS NIH HHS
  grantid: UL1 TR001086
– fundername: NINDS NIH HHS
  grantid: R01 NS095411
– fundername: ;
– fundername: ;
  grantid: NS095411; NS095411
– fundername: ;
  grantid: Young Investigator Award 2014-01-12
– fundername: ;
  grantid: Prouty Pilot Grant
– fundername: ;
  grantid: TR001086; TR001086
– fundername: ;
  grantid: GBMF 4552
– fundername: ;
  grantid: CA023108
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
4.4
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c599t-1e92cbd7f8e1289d8d784e1558de49a973f3cd0af28e5f8fcfdde00ca3cd8e1d3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Oct 29 12:06:46 EDT 2025
Tue Sep 30 16:43:27 EDT 2025
Thu Sep 04 18:09:00 EDT 2025
Tue Oct 07 06:11:52 EDT 2025
Mon Oct 06 18:26:58 EDT 2025
Mon Oct 20 21:52:48 EDT 2025
Mon Oct 20 16:33:16 EDT 2025
Thu Oct 16 14:11:27 EDT 2025
Mon Jul 21 05:35:54 EDT 2025
Wed Oct 01 03:03:34 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Sat Sep 06 07:21:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classifier
Machine Learning
NF1 Inactivation
Glioblastoma
Neurofibromatosis Type I
Cancer
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-1e92cbd7f8e1289d8d784e1558de49a973f3cd0af28e5f8fcfdde00ca3cd8e1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1873412026?pq-origsite=%requestingapplication%&accountid=15518
PMID 28166733
PQID 1873412026
PQPubID 44682
ParticipantIDs unpaywall_primary_10_1186_s12864_017_3519_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5292791
proquest_miscellaneous_1865821052
proquest_journals_2348274553
proquest_journals_1873412026
gale_infotracmisc_A480552522
gale_infotracacademiconefile_A480552522
gale_incontextgauss_ISR_A480552522
pubmed_primary_28166733
crossref_primary_10_1186_s12864_017_3519_7
crossref_citationtrail_10_1186_s12864_017_3519_7
springer_journals_10_1186_s12864_017_3519_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-06
PublicationDateYYYYMMDD 2017-02-06
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References PE Hollstein (3519_CR25) 2013; 3
J Cohen (3519_CR22) 1969
C-M Li (3519_CR54) 2006; 66
A Sokolov (3519_CR20) 2016; 12
GR Skuse (3519_CR13) 1996; 24
Y Liang (3519_CR19) 2013; 14
S Akamatsu (3519_CR55) 2015; 12
CW Brennan (3519_CR16) 2013; 155
E Thouënnon (3519_CR50) 2007; 92
J Guinney (3519_CR18) 2014; 20
3519_CR15
J Bageritz (3519_CR52) 2014; 21
G Xu (3519_CR2) 1990; 62
C Boettiger (3519_CR32) 2015; 49
SE Reese (3519_CR29) 2013; 29
The Gene Ontology Consortium (3519_CR36) 2015; 43
M Allen (3519_CR23) 2016; 8
J Tan (3519_CR41) 2016; 1
M Molla (3519_CR37) 2004; 25
Y Zhu (3519_CR58) 2001; 15
B Yu (3519_CR43) 2013; 19
M Wood (3519_CR8) 2011; 10
BS Carvalho (3519_CR27) 2010; 26
JL-Y Chen (3519_CR44) 2010; 6
M de Boeck (3519_CR61) 2016; 6
A Kamburov (3519_CR33) 2009; 37
LT McGillicuddy (3519_CR10) 2009; 16
NM Joseph (3519_CR59) 2008; 13
S Subramanian (3519_CR11) 2010; 220
N Almog (3519_CR47) 2009; 69
3519_CR48
RGW Verhaak (3519_CR63) 2010; 17
Y Xu (3519_CR49) 2002; 22
K Cichowski (3519_CR14) 2001; 104
RA Irizarry (3519_CR28) 2003; 31
DGR Evans (3519_CR5) 2002; 39
M Bastani (3519_CR38) 2013; 8
MR Wallace (3519_CR12) 1991; 353
3519_CR31
X Tan (3519_CR26) 2012; 7
JA Thompson (3519_CR17) 2016; 4
Z Sheng (3519_CR56) 2010; 16
A Morishita (3519_CR60) 2013; 73
RJ Allaway (3519_CR9) 2016; 7
N Ratner (3519_CR7) 2015; 15
M Ashburner (3519_CR35) 2000; 25
JA Miller (3519_CR30) 2011; 12
X Deng (3519_CR53) 2014; 32
T Willer (3519_CR45) 2012; 44
DP Noren (3519_CR42) 2016; 12
M Pirooznia (3519_CR39) 2008; 9
GC Daginakatte (3519_CR24) 2007; 16
W-C Chou (3519_CR40) 2015; 43
3519_CR62
KP Boyd (3519_CR3) 2009; 61
3519_CR21
LA Greene (3519_CR57) 2009; 108
E Rad (3519_CR6) 2016; 52
A Kamburov (3519_CR34) 2013; 41
GA Martin (3519_CR1) 1990; 63
Q Cheng (3519_CR51) 2015; 6
D Thierry-Mieg (3519_CR46) 2006; 7
B Dogra (3519_CR4) 2013; 4
References_xml – volume: 20
  start-page: 265
  year: 2014
  ident: 3519_CR18
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-1943
– volume: 13
  start-page: 129
  year: 2008
  ident: 3519_CR59
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.01.003
– volume: 6
  start-page: 24968
  year: 2016
  ident: 3519_CR61
  publication-title: Sci Rep
  doi: 10.1038/srep24968
– volume: 4
  start-page: 195
  year: 2013
  ident: 3519_CR4
  publication-title: Indian Dermatol Online J
  doi: 10.4103/2229-5178.115515
– volume: 24
  start-page: 478
  year: 1996
  ident: 3519_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/24.3.478
– volume: 41
  start-page: D793
  year: 2013
  ident: 3519_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1055
– volume: 39
  start-page: 311
  year: 2002
  ident: 3519_CR5
  publication-title: J Med Genet
  doi: 10.1136/jmg.39.5.311
– volume: 4
  start-page: e1621
  year: 2016
  ident: 3519_CR17
  publication-title: Peer J
  doi: 10.7717/peerj.1621
– volume: 3
  start-page: 880
  year: 2013
  ident: 3519_CR25
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0146
– volume: 43
  start-page: e67
  year: 2015
  ident: 3519_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv177
– volume: 7
  start-page: 17087
  year: 2016
  ident: 3519_CR9
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7718
– volume: 43
  start-page: D1049
  year: 2015
  ident: 3519_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1179
– volume: 25
  start-page: 23
  year: 2004
  ident: 3519_CR37
  publication-title: AI Mag
– ident: 3519_CR15
– volume: 73
  start-page: 4289
  year: 2013
  ident: 3519_CR60
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-3848
– volume: 12
  start-page: e1004890
  year: 2016
  ident: 3519_CR42
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004890
– volume: 12
  start-page: 322
  year: 2011
  ident: 3519_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-322
– volume: 31
  start-page: e15
  year: 2003
  ident: 3519_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 15
  start-page: 290
  year: 2015
  ident: 3519_CR7
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3911
– ident: 3519_CR31
– volume: 108
  start-page: 11
  year: 2009
  ident: 3519_CR57
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2008.05749.x
– volume: 49
  start-page: 71
  year: 2015
  ident: 3519_CR32
  publication-title: Oper Syst Rev
  doi: 10.1145/2723872.2723882
– volume: 16
  start-page: 44
  year: 2009
  ident: 3519_CR10
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.05.009
– volume: 353
  start-page: 864
  year: 1991
  ident: 3519_CR12
  publication-title: Nature
  doi: 10.1038/353864a0
– ident: 3519_CR62
– volume: 1
  start-page: e00025
  year: 2016
  ident: 3519_CR41
  publication-title: mSystems
  doi: 10.1128/mSystems.00025-15
– volume: 6
  start-page: e1001093
  year: 2010
  ident: 3519_CR44
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001093
– volume: 12
  start-page: 922
  year: 2015
  ident: 3519_CR55
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.07.012
– ident: 3519_CR21
– volume: 25
  start-page: 25
  year: 2000
  ident: 3519_CR35
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 29
  start-page: 2877
  year: 2013
  ident: 3519_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt480
– volume: 104
  start-page: 593
  year: 2001
  ident: 3519_CR14
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00245-8
– volume: 52
  start-page: 39
  year: 2016
  ident: 3519_CR6
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2016.02.007
– volume: 19
  start-page: 1484
  year: 2013
  ident: 3519_CR43
  publication-title: Bernoulli
  doi: 10.3150/13-BEJSP14
– volume: 22
  start-page: 9194
  year: 2002
  ident: 3519_CR49
  publication-title: J Neurosci Off J Soc Neurosci
  doi: 10.1523/JNEUROSCI.22-21-09194.2002
– volume: 61
  start-page: 1
  year: 2009
  ident: 3519_CR3
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2008.12.051
– volume: 10
  start-page: 1740
  year: 2011
  ident: 3519_CR8
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0309
– volume: 63
  start-page: 843
  year: 1990
  ident: 3519_CR1
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90150-D
– volume: 17
  start-page: 98
  year: 2010
  ident: 3519_CR63
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.12.020
– volume: 8
  start-page: e82144
  year: 2013
  ident: 3519_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082144
– volume: 9
  start-page: S13
  year: 2008
  ident: 3519_CR39
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-S1-S13
– volume: 220
  start-page: 58
  year: 2010
  ident: 3519_CR11
  publication-title: J Pathol
  doi: 10.1002/path.2633
– volume: 62
  start-page: 599
  year: 1990
  ident: 3519_CR2
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90024-9
– volume: 32
  start-page: 2159
  year: 2014
  ident: 3519_CR53
  publication-title: Oncol Rep
  doi: 10.3892/or.2014.3469
– volume: 21
  start-page: 929
  year: 2014
  ident: 3519_CR52
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.12
– volume: 12
  start-page: e1004790
  year: 2016
  ident: 3519_CR20
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004790
– volume: 7
  start-page: e49570
  year: 2012
  ident: 3519_CR26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049570
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1969
  ident: 3519_CR22
– volume: 8
  start-page: 354re3
  year: 2016
  ident: 3519_CR23
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf6853
– volume: 16
  start-page: 1098
  year: 2007
  ident: 3519_CR24
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddm059
– volume: 92
  start-page: 4865
  year: 2007
  ident: 3519_CR50
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2007-1253
– volume: 155
  start-page: 462
  year: 2013
  ident: 3519_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– ident: 3519_CR48
  doi: 10.3389/fgene.2014.00115
– volume: 37
  start-page: D623
  year: 2009
  ident: 3519_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn698
– volume: 16
  start-page: 671
  year: 2010
  ident: 3519_CR56
  publication-title: Nat Med
  doi: 10.1038/nm.2158
– volume: 15
  start-page: 859
  year: 2001
  ident: 3519_CR58
  publication-title: Genes Dev
  doi: 10.1101/gad.862101
– volume: 26
  start-page: 2363
  year: 2010
  ident: 3519_CR27
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/btq431
– volume: 6
  start-page: 4733
  year: 2015
  ident: 3519_CR51
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2900
– volume: 69
  start-page: 836
  year: 2009
  ident: 3519_CR47
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2590
– volume: 14
  start-page: 198
  year: 2013
  ident: 3519_CR19
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-198
– volume: 66
  start-page: 665
  year: 2006
  ident: 3519_CR54
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1553
– volume: 7
  start-page: S12.1
  issue: Suppl 1
  year: 2006
  ident: 3519_CR46
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-s1-s12
– volume: 44
  start-page: 575
  year: 2012
  ident: 3519_CR45
  publication-title: Nat Genet
  doi: 10.1038/ng.2252
SSID ssj0017825
Score 2.364163
Snippet Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 ( NF1 ) tumor suppressor gene. However,...
We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing...
Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However,...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Analysis
Animal Genetics and Genomics
Biomedical and Life Sciences
Brain cancer
Brain tumors
Cancer
Cell Line, Tumor
Classifiers
Computational Biology - methods
Deactivation
Deoxyribonucleic acid
DNA
DNA microarrays
Gene expression
Gene mutation
Gene Silencing
Genetic disorders
Genomes
Genomics
Glioblastoma
Glioblastoma - pathology
Glioma
Glioma cells
Health aspects
Human and rodent genomics
Humans
Inactivation
Kinases
Learning algorithms
Lethality
Life Sciences
Machine Learning
Microarrays
Microbial Genetics and Genomics
Mutation
Neurofibroma
Neurofibromin 1
Neurofibromin 1 - genetics
Neurological disorders
Phosphorylation
Plant Genetics and Genomics
Precision medicine
Proteins
Proteomics
Research Article
Ribonucleic acid
RNA
Transcription
Transcription factors
Transcriptome
Tumor suppressor genes
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1raxQxMNQron4Q3z2tEkUQLEv3lU3yQeSUHlXwkGqh30I2yZ4H1-zVvUP6753Zl7dF69fNJNnMTGaSzIuQ1yFzrHAixFgnFqTS2UDmnAcsyizIwlhGGh_0v8yy49P08xk72yGzLhYG3So7mVgLalsafCM_jAQHgQtX9ez96iLAqlFoXe1KaOi2tIJ9V6cYu0F2Y8yMNSK7H45mX096uwLoQ9baNiORHVYgnTP0wuDo0S4DPtBOV2X0lpK66kDZW1HvkFsbv9KXv_RyuaWopvfI3faESScNS9wnO84_IDebmpOXD4mf0PPagdLRtmLEnBo8Qi8K0JC0LhnhLC09NcgQ9RffyJby3FXUOjQ7VHQ2jejCY1hE86hL0RME5l14Ol8uyhyGhA76ETmdHn3_eBy0RRcCw6RcB5GTscktL4QD5EgrLBepA6wK61KpJU-KxNhQF7EAKovCFCAgw9Bo-ApdbPKYjHzp3R6GgzuXpIyZ0OlUWJ2HxokkyyU3cI-JkjEJO2Qr02Ykx1UuVX0zEZlq6KOAPgrpo_iYvO27rJp0HNcBv0IKKkxz4dGPZq43VaU-fTtRk1SEjMVw-ByTNy1QUcLkRrdhCbAEzIw1gNwfQMI-NMPmjlFUKwcq9Ydr_9ocY2ohDigCXLzsm3FgdH3zrtzgEBkGM4cMZnjSsF2_9BitvjyB3nzAkD0AJg8ftvjFjzqJOItlzGU0Jgcd62799b8xetBz9__x__R6jDwjt2PceegCn-2T0frnxj2HE946f9Fu2984nU4V
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMOiJqA_it6unRBEEj2KaNk3yuIjLKXgP6sK9hTRJ14W99LC7yP17Z_rF9jgVX5tJ0sxMZiaZjxDyhokgqqAY5jqJJNfBJ7qUMhFp4UEWcp1avND_clIcL_PPp-K0z-Nuhmj3wSXZSup2W6vifQOStMCICYnR5zqR18kNgdW8gImXfD66DkDlid59eWW3iQK6LIb39NDlGMnRUXqH3NrFc3vxy242e7pocY_c7Y1IOu-ofp9cC_EBudk9K3nxkMQ5PWtjJAPtH4VYUYdW8roCJUjbVyGCp3WkDmnefomd-KjPQkN9QM9CQ08WKV1HzHzo7m0pBnvAvOtIV5t1XcKQ0ME-IsvFx-8fjpP-XYXECa23SRo0d6WXlQqAHO2VlyoPYFgoH3JttcyqzHlmK66AkKpyFchAxpyFr9DFZ4_JQaxjeIoZ3yFkuRCOBZsrb0vmgsqKUksHR5U0mxE2INu4vug4rnJj2sOHKkxHHwP0MUgfI2fk3djlvKu48Tfg10hBg5UsIobKrOyuacynb1_NPFdMCA725Yy87YGqGiZ3ts88gCVg8asJ5OEEEraamzYPjGL6rd6YVEmwBDicZa9s5lg9SAKKABevxmYcGKPbYqh3OESB-cpMwAxPOrYbl87RsSsz6C0nDDkCYH3waUtc_2jrhAuuudTpjBwNrLv313_G6NHI3f_G_7P_Gvs5uc1xI2LQe3FIDrY_d-EF2HTb8mW7h38Dz4FESQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6h6gPfn-snhJFEDy61680yeMiLqfgIurC-RTaJF3r7aaL3UXOv96Ztlu2y6kIvpVmknamM5NJM_MLIS98ZlluhY-1TsyLpTWezDj3WJAY8IWhDFL8of9-mpzM4nen7LSFFMJamGypEZx0WehqtFuAvqi9Nlzos-OVyRtjF8lxBf41wTwKjjnp0uOXyUHCICwfkIPZ9MP4S11dxAMvhHVBu6t5Yb_evLTvnXemp_3UyW7_9Dq5unGr9PxHuljsTFGTm-TblrkmM-VstFlnI_1zD_fxv3B_i9xoA1k6bjTvNrlk3R1ypTna8vwucWO6rPM0LW0PpphTjZF6kcNETOuTKayhpaMa9a6-4xoXBi9UUWNxd6Oi00lAC4fVF82_Y4oJJ_DcwtH5oigzGBI6pPfIbPLm8-sTrz3bwdNMyrUXWBnqzPBcWOBBGmG4iC0EN8LYWKaSR3mkjZ_moQBlErnOwQ_7vk7hLnQx0X0ycKWzD7Hq3NooZkz7No2FSTNfWxElmeQalktBNCT-9ssq3QKfI5cLVS-ARKIaMSoQo0IxKj4kr7ouqwb140_Ez1FdFKJpOEzXmaebqlJvP31U41j4jIUQ4w7Jy5YoL_E7pm31A7CAAFw9ysMeJZi77jdvtVK17qZSgeAQjYSwnr6wOUQEIw4iAlk865pxYMywc7bc4BAJ1kz7DJ7woNHxjvUQN5d5BL15T_s7AsQo77e44muNVc5CGXIZDMnR1k523vr3Ej3qTOnv8n_0T9SPybUQ7QUT75NDMlh_39gnEFeus6etx_gFyGlxjg
  priority: 102
  providerName: Unpaywall
Title A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma
URI https://link.springer.com/article/10.1186/s12864-017-3519-7
https://www.ncbi.nlm.nih.gov/pubmed/28166733
https://www.proquest.com/docview/1873412026
https://www.proquest.com/docview/2348274553
https://www.proquest.com/docview/1865821052
https://pubmed.ncbi.nlm.nih.gov/PMC5292791
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3519-7
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw0NpWIeAB8b3CqAxCQmLKSJw4th8QKtWqgbRqGlQqT1HiOF2lzhlLK-i_5y5JQzOV8RI18dmuz3e-s30fhLx1ueGZkS76OnEnUCZ1VCKEw70whbWQKS_GA_3TUXgyDr5O-GSHrNNb1Qgstm7tMJ_U-Hp-9Pvn6hMw_MeS4WX4oYA1NkRbCoF26coRu6QDgkphJofT4O-lAghDXjobCc9hsE2oLzm3NtESUzcX6w1pddOSsrlOvU_uLu1VvPoVz-cbEmv4kDyoVU3ar2jjEdkx9jG5UyWfXD0htk8vS0tKQ-vUEVOqUZeeZSAqaZk7wqQ0t1QjZZRfbLXI5JemoKnB-4eCjoYenVn0j6hOdymahEC_M0un81meQJNQIX5KxsPj74MTp86-4Giu1MLxjGI6SUUmDSBHpTIVMjCgfsjUBCpWws98nbpxxiRMt8x0Biul6-oYvkKV1H9G9mxuzT76hRvjB5xr18SBTOPE1Ub6YaKEhg2N53eJu0Z2pOvQ5DjKeVRuUWQYVfMTwfxEOD-R6JL3TZWrKi7HbcBvcAYjjHdh0aBmGi-LIvry7TzqB9LlnIEW2iXvaqAsh851XPsnwBAwRFYL8qAFCQyp28VrQonW9Bx5UoC-wGDHu7WYYYwhASgCXLxuirFhtIGzJl9iEyF6NbscenhekV0zdIbXv8KH2qJFkA0ARhFvl9jZRRlNnDPFhPK65HBNuhv_-t8YPWyo-__4f3E7wl6Seww5D23hwwOyt7hemleg6i2SHtkVE9Ejnc_Ho7NzeBuEg155bNIrWRueYwa_O-PRWf_HHwkpUxM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqb0OAB8U1hgEEgpE3R8uXYfphQgVUt2yo0NmlvwbGdUqlLCmk19c_x27hL0tBMMJ72Gp_P8fl8Z_u-CHnjMstSK1yMdWJOKK1xZMK5w7zIgCz0pafwQf9oGPVPw89n7GyN_FrGwqBb5VImloLa5BrfyHc9wUHgwlU9ej_94WDVKLSuLktoqLq0gtkrU4zVgR0HdnEBV7hib_AJ1vut7_f2Tz72nbrKgKOZlDPHs9LXieGpsCCrpRGGi9ACGmFsKJXkQRpo46rUFzAtkeoUJILragVfoYsJAO8NshEGoYTL38aH_eGX48aOAfqX1bZUT0S7BYwQodcHRw966fCWNrysE1aU4mWHzcZqe5tszrOpWlyoyWRFMfbukjv1iZZ2Kxa8R9Zsdp_crGpcLh6QrEvPS4dNS-sKFSOq8cg-TkEj07JEhTU0z6hGBiy_ZJUsy89tQY1FM0dBhz2PjjMMw6gekSl6nsC444yOJuM8AZTQQT0kp9dC_kdkPcsz-wTDz60NQsa0a1UojEpcbUUQJZJruDd5QYe4S2LHus6AjrOcxOVNSERxtT4xrE-M6xPzDtluukyr9B9XAb_GFYwxrUaGfjsjNS-KePD1OO6GwmXMh8Nuh7yrgdIcBteqDoOAKWAmrhbkVgsS9r1uNy8ZJa7lThH_2SV_bfYxlREHEgEtXjXNiBhd7TKbzxFFhMHTLoMRHlds10zdRyszD6A3bzFkA4DJytst2fh7mbSc-dLn0uuQnSXrrvz1vym603D3_-n_9GqKvCSb_ZOjw_hwMDx4Rm75uAvR_T7aIuuzn3P7HE6Xs-RFvYUp-XbdUuM3dNaNww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1rb9Mw0IIhXh8Qz1EYYBAS0qZoeTm2P1aFauNRIWDSvlmO7ZRInVMtrdD-PXdJGjXTAPE19tnx3dl39r0IeRsyxwonQox1YkEqnQ1kznnAoszCWRjLSOOD_pdZdnSSfjxlp12d03rj7b4xSbYxDZilya8Ol7Zot7jIDms4VTP0nuDoiS4Dfp3cSEG4YQmDSTbpzQgg_lhnyrwSbCCMLh_JWzLpsr9kbzS9S26v_VJf_NKLxZZcmt4n9zqFko5bDnhArjn_kNxsS0xePCJ-TM8af0lHuwIRc2pQYy4LEIi0qRDhLK08NUj_5otvj5LqzNXUOrQy1HQ2jWjpMQqifcOl6PgB85aezhdllcOQAKAfk5Pphx-To6CrsRAYJuUqiJyMTW55IRwgR1phuUgdKBnCulRqyZMiMTbURSyAqKIwBZyHYWg0fAUQmzwhO77y7ilGfzuXpIyZ0OlUWJ2HxokkyyU3cG2JkhEJN8hWpktAjqtcqOYiIjLV0kcBfRTSR_ER2e9Blm32jb91foMUVJjVwqPbzFyv61odf_-mxqkIGYtB1xyRd12nooLJje6iEGAJmAhr0HNv0BO2nRk2bxhFddu-VpHgoBXEcK-9sjnGTEIcUAS4eN0348Do6eZdtcYhMoxdDhnMsNuyXb_0GI28PAFoPmDIvgPmCh-2-PJnkzOcxTLmMhqRgw3rbv31nzF60HP3v_H_7L_GfkVufX0_VZ-PZ5-ekzsx7kn0hc_2yM7qfO1egKq3yl822_k3Ej9LWw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6h6gPfn-snhJFEDy61680yeMiLqfgIurC-RTaJF3r7aaL3UXOv96Ztlu2y6kIvpVmknamM5NJM_MLIS98ZlluhY-1TsyLpTWezDj3WJAY8IWhDFL8of9-mpzM4nen7LSFFMJamGypEZx0WehqtFuAvqi9Nlzos-OVyRtjF8lxBf41wTwKjjnp0uOXyUHCICwfkIPZ9MP4S11dxAMvhHVBu6t5Yb_evLTvnXemp_3UyW7_9Dq5unGr9PxHuljsTFGTm-TblrkmM-VstFlnI_1zD_fxv3B_i9xoA1k6bjTvNrlk3R1ypTna8vwucWO6rPM0LW0PpphTjZF6kcNETOuTKayhpaMa9a6-4xoXBi9UUWNxd6Oi00lAC4fVF82_Y4oJJ_DcwtH5oigzGBI6pPfIbPLm8-sTrz3bwdNMyrUXWBnqzPBcWOBBGmG4iC0EN8LYWKaSR3mkjZ_moQBlErnOwQ_7vk7hLnQx0X0ycKWzD7Hq3NooZkz7No2FSTNfWxElmeQalktBNCT-9ssq3QKfI5cLVS-ARKIaMSoQo0IxKj4kr7ouqwb140_Ez1FdFKJpOEzXmaebqlJvP31U41j4jIUQ4w7Jy5YoL_E7pm31A7CAAFw9ysMeJZi77jdvtVK17qZSgeAQjYSwnr6wOUQEIw4iAlk865pxYMywc7bc4BAJ1kz7DJ7woNHxjvUQN5d5BL15T_s7AsQo77e44muNVc5CGXIZDMnR1k523vr3Ej3qTOnv8n_0T9SPybUQ7QUT75NDMlh_39gnEFeus6etx_gFyGlxjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+classifier+trained+on+cancer+transcriptomes+detects+NF1+inactivation+signal+in+glioblastoma&rft.jtitle=BMC+genomics&rft.au=Way%2C+Gregory+P&rft.au=Allaway%2C+Robert+J&rft.au=Bouley%2C+Stephanie+J&rft.au=Fadul%2C+Camilo+E&rft.date=2017-02-06&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-3519-7&rft.externalDocID=A480552522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon