A Segmentation/Clustering Model for the Analysis of Array CGH Data
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Se...
        Saved in:
      
    
          | Published in | Biometrics Vol. 63; no. 3; pp. 758 - 766 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Malden, USA
          Blackwell Publishing Inc
    
        01.09.2007
     International Biometric Society Blackwell Publishing Ltd Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-341X 1541-0420 1541-0420  | 
| DOI | 10.1111/j.1541-0420.2006.00729.x | 
Cover
| Abstract | Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. | 
    
|---|---|
| AbstractList | Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. [PUBLICATION ABSTRACT] Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming–expectation maximization (DP–EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. SummaryMicroarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation-clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation-clustering model is a promising alternative that can be applied in the more general context of signal processing. Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming–expectation maximization (DP–EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.  | 
    
| Author | Lebarbier, E. Robin, S. Daudin, J.-J. Picard, F.  | 
    
| Author_xml | – sequence: 1 givenname: F. surname: Picard fullname: Picard, F. email: picard@inapg.fr organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France – sequence: 2 givenname: S. surname: Robin fullname: Robin, S. organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France – sequence: 3 givenname: E. surname: Lebarbier fullname: Lebarbier, E. organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France – sequence: 4 givenname: J.-J. surname: Daudin fullname: Daudin, J.-J. organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17825008$$D View this record in MEDLINE/PubMed https://hal.science/hal-00434826$$DView record in HAL  | 
    
| BookMark | eNqVkl1v0zAUhi00xLrBP0Ao4gKJi3T-SmJfgJR2o53omCrGx53lJs6WzI2LnbDm3-MsVSftZsM3ts953mOf1z4CB7WpFQABgmPkx0k1RhFFIaQYjjGE8RjCBPPx9gUY7RMHYAR9KiQU_T4ER85VfssjiF-BQ5QwHEHIRmCSBt_V9VrVjWxKU59MdesaZcv6OrgwudJBYWzQ3KggraXuXOkCUwSptbILprN5cCob-Rq8LKR26s1uPgY_vpxdTefh4nJ2Pk0XYRZxzkOWJ1hlSRxnseISQSWxogz7cJYXCvMVzGKGKJYrmBOW45xmBWOURxljK8oJOQZ8qNvWG9ndSa3FxpZraTuBoOh9EZXo2xd9-6L3Rdz7IrZe-3HQ3sgHlZGlmKcL0ccgpMTfJv6LPPthYDfW_GmVa8S6dJnSWtbKtE7E3jvMEvgkSBNKEGTsSRDDKGKIYw--fwRWprXeec8gwkgU096HdzuoXa1V_mDC7lE9wAYgs8Y5q4r_8enzI2lWDj-jsbLUzynwaShwV2rVPftgMTm_vPArr3876CvXGLvXU6-i962FQ7r0v3S7T0t7K-KEJJH49W0mrn4uk8kSfRVL8g-xcfA9 | 
    
| CODEN | BIOMA5 | 
    
| CitedBy_id | crossref_primary_10_1080_03610918_2020_1775850 crossref_primary_10_1007_s00357_016_9212_8 crossref_primary_10_1111_j_1541_0420_2009_01337_x crossref_primary_10_1186_1471_2164_13_50 crossref_primary_10_1016_j_neucom_2009_11_022 crossref_primary_10_1371_journal_pcbi_1000473 crossref_primary_10_1093_nargab_lqad098 crossref_primary_10_1007_s12559_015_9349_5 crossref_primary_10_1101_gr_090605_108 crossref_primary_10_1093_biostatistics_kxq076 crossref_primary_10_1089_cmb_2010_0267 crossref_primary_10_1111_1365_2656_13105 crossref_primary_10_1016_j_neucom_2009_12_023 crossref_primary_10_1371_journal_pone_0019754 crossref_primary_10_1109_TASE_2013_2256349 crossref_primary_10_1371_journal_pone_0086272 crossref_primary_10_1371_journal_pone_0203007 crossref_primary_10_1093_bioinformatics_bts448 crossref_primary_10_1186_s12859_018_2140_3 crossref_primary_10_1080_02664763_2012_759192 crossref_primary_10_1089_cmb_2009_0019 crossref_primary_10_1214_13_AOAS705 crossref_primary_10_5351_KJAS_2009_22_1_001 crossref_primary_10_1093_bib_bbq004 crossref_primary_10_1186_1471_2105_12_428 crossref_primary_10_1007_s11222_010_9196_x crossref_primary_10_1109_TIT_2015_2448087 crossref_primary_10_1002_sim_5996 crossref_primary_10_1007_s11222_017_9788_9 crossref_primary_10_1186_s40462_014_0019_0 crossref_primary_10_1093_bioinformatics_btp022 crossref_primary_10_1214_09_EJS430 crossref_primary_10_1186_s12864_019_6136_9 crossref_primary_10_1111_1365_2656_13116 crossref_primary_10_1186_1471_2105_10_172 crossref_primary_10_3389_fevo_2019_00004 crossref_primary_10_1145_1963190_2063517 crossref_primary_10_1016_j_fishres_2024_107033 crossref_primary_10_1093_bioinformatics_btn321 crossref_primary_10_1038_nature10532 crossref_primary_10_1016_j_sigpro_2013_11_029 crossref_primary_10_3758_s13428_023_02166_6 crossref_primary_10_1186_1471_2105_13_330 crossref_primary_10_5351_KJAS_2009_22_1_115  | 
    
| Cites_doi | 10.1038/ng771 10.1007/BF02458835 10.1007/s10577-005-2168-x 10.1186/1471-2105-6-27 10.1093/biostatistics/kxh017 10.1093/biostatistics/kxh008 10.1016/j.jmva.2004.02.008 10.1016/j.sigpro.2005.01.012 10.1158/0008-5472.CAN-04-4229 10.1093/bioinformatics/btl289 10.1093/bioinformatics/bth418 10.1093/bioinformatics/bti611 10.1111/j.2517-6161.1977.tb01600.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright 2007 The International Biometric Society 2006, The International Biometric Society Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: Copyright 2007 The International Biometric Society – notice: 2006, The International Biometric Society – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7QO 8FD FR3 P64 7S9 L.6 7X8 1XC ADTOC UNPAY  | 
    
| DOI | 10.1111/j.1541-0420.2006.00729.x | 
    
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection MEDLINE MEDLINE - Academic CrossRef Engineering Research Database AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1541-0420 | 
    
| EndPage | 766 | 
    
| ExternalDocumentID | oai:HAL:hal-01197574v1 oai:HAL:hal-00434826v1 1330025221 17825008 10_1111_j_1541_0420_2006_00729_x BIOM729 4541408 ark_67375_WNG_TVQ7BQ1K_Q  | 
    
| Genre | article Evaluation Studies Journal Article Feature  | 
    
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGQPQ AGTJU AGXDD AHGBF AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJBYB AJNCP AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AGORE ALIPV 3V. AAHHS ABTAH ACCFJ ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFPWT AIBGX AIWBW AJBDE JSODD VQA WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7QO 8FD FR3 P64 7S9 L.6 7X8 1XC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5999-8d72ec766c6e9a10ea2e4828d7cdfe29b0c68142ab0d38d2d4cf88495c88b4933 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0006-341X 1541-0420  | 
    
| IngestDate | Sun Oct 26 04:38:40 EDT 2025 Tue Oct 14 20:43:30 EDT 2025 Thu Oct 02 20:23:48 EDT 2025 Sat Sep 27 20:44:40 EDT 2025 Tue Oct 07 09:42:16 EDT 2025 Fri Jul 25 19:38:53 EDT 2025 Mon Jul 21 06:05:21 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Wed Oct 01 01:41:21 EDT 2025 Wed Jan 22 16:21:01 EST 2025 Thu Jul 03 21:22:36 EDT 2025 Sun Sep 21 06:19:46 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5999-8d72ec766c6e9a10ea2e4828d7cdfe29b0c68142ab0d38d2d4cf88495c88b4933 | 
    
| Notes | ark:/67375/WNG-TVQ7BQ1K-Q istex:F62C7EAA0EEC5CFDD937CB06A9349C860F16ED1A ArticleID:BIOM729 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3  | 
    
| ORCID | 0000-0002-9170-5836 0000-0001-8084-5481 0000-0003-1045-069X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01197574 | 
    
| PMID | 17825008 | 
    
| PQID | 213835643 | 
    
| PQPubID | 35366 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_j_1541_0420_2006_00729_x hal_primary_oai_HAL_hal_00434826v1 proquest_miscellaneous_68252870 proquest_miscellaneous_47431088 proquest_miscellaneous_20558192 proquest_journals_213835643 pubmed_primary_17825008 crossref_primary_10_1111_j_1541_0420_2006_00729_x crossref_citationtrail_10_1111_j_1541_0420_2006_00729_x wiley_primary_10_1111_j_1541_0420_2006_00729_x_BIOM729 jstor_primary_4541408 istex_primary_ark_67375_WNG_TVQ7BQ1K_Q  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2007 | 
    
| PublicationDateYYYYMMDD | 2007-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2007 text: September 2007  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Malden, USA | 
    
| PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington  | 
    
| PublicationTitle | Biometrics | 
    
| PublicationTitleAlternate | Biometrics | 
    
| PublicationYear | 2007 | 
    
| Publisher | Blackwell Publishing Inc International Biometric Society Blackwell Publishing Ltd Wiley  | 
    
| Publisher_xml | – name: Blackwell Publishing Inc – name: International Biometric Society – name: Blackwell Publishing Ltd – name: Wiley  | 
    
| References | Bredel, M., Bredel, C., Juric, D., Harsh, G., Vogel, H., Recht, L., and Sikic, B. (2005). High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Research 65, 4088-4096. Olshen, A., Venkatraman, E., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557-572. Hodgson, G., Hager, J., Volik, S., Hariono, S., Wermick, M., Moore, D., Nowak, N., Albertson, D., Pinkel, D., Collins, C., Hanahan, D., and Gray, J. (2001). Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas. Nature Genetics 29, 459-464. Hupe, P., Stransky, N., Thiery, J., Radvanyi, F., and Barillot, E. (2004). Analysis of array CGH data: From signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413-3422. Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., and Jain, A. (2004). Hidden markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90, 132-153. Huber, W., Toedling, J., and Steinmetz, L. (2006). Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22, 1963-1973. Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical approach for CGH microarray data analysis. BMC Bioinformatics 6, 27. Auger, I. and Lawrence, C. (1989). Algorithms for the optimal identification of segments neighborhoods. Bulletin of Mathematical Biology 51, 39-54. Lavielle, M. (2005). Using penalized contrasts for the change-point problem. Signal Processing 85, 1501-1510. Davies, J., Wilson, I. M., and Lam, W. (2005). Array CGH technologies and their applications to cancer genomics. Chromosome Research 13, 237-248. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1-38. Lai, W., Johnson, M., Kucherlapati, R., and Park, P. J. (2005). Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763-3770. Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005). A method for calling gains and losses in array CGH data. Biostatistics 6, 45-58. 1989; 51 2005; 85 2005; 65 2004; 20 2005; 21 2004; 5 2005; 6 2001; 29 2004; 90 1977; 39 2006; 22 2005; 13 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 Dempster A. P. (e_1_2_8_5_1) 1977; 39 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1  | 
    
| References_xml | – reference: Olshen, A., Venkatraman, E., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557-572. – reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1-38. – reference: Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., and Jain, A. (2004). Hidden markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90, 132-153. – reference: Huber, W., Toedling, J., and Steinmetz, L. (2006). Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22, 1963-1973. – reference: Lai, W., Johnson, M., Kucherlapati, R., and Park, P. J. (2005). Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763-3770. – reference: Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical approach for CGH microarray data analysis. BMC Bioinformatics 6, 27. – reference: Bredel, M., Bredel, C., Juric, D., Harsh, G., Vogel, H., Recht, L., and Sikic, B. (2005). High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Research 65, 4088-4096. – reference: Hodgson, G., Hager, J., Volik, S., Hariono, S., Wermick, M., Moore, D., Nowak, N., Albertson, D., Pinkel, D., Collins, C., Hanahan, D., and Gray, J. (2001). Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas. Nature Genetics 29, 459-464. – reference: Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005). A method for calling gains and losses in array CGH data. Biostatistics 6, 45-58. – reference: Davies, J., Wilson, I. M., and Lam, W. (2005). Array CGH technologies and their applications to cancer genomics. Chromosome Research 13, 237-248. – reference: Auger, I. and Lawrence, C. (1989). Algorithms for the optimal identification of segments neighborhoods. Bulletin of Mathematical Biology 51, 39-54. – reference: Hupe, P., Stransky, N., Thiery, J., Radvanyi, F., and Barillot, E. (2004). Analysis of array CGH data: From signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413-3422. – reference: Lavielle, M. (2005). Using penalized contrasts for the change-point problem. Signal Processing 85, 1501-1510. – volume: 51 start-page: 39 year: 1989 end-page: 54 article-title: Algorithms for the optimal identification of segments neighborhoods publication-title: Bulletin of Mathematical Biology – volume: 90 start-page: 132 year: 2004 end-page: 153 article-title: Hidden markov models approach to the analysis of array CGH data publication-title: Journal of Multivariate Analysis – volume: 65 start-page: 4088 year: 2005 end-page: 4096 article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors publication-title: Cancer Research – volume: 85 start-page: 1501 year: 2005 end-page: 1510 article-title: Using penalized contrasts for the change‐point problem publication-title: Signal Processing – volume: 13 start-page: 237 year: 2005 end-page: 248 article-title: Array CGH technologies and their applications to cancer genomics publication-title: Chromosome Research – volume: 21 start-page: 3763 year: 2005 end-page: 3770 article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data publication-title: Bioinformatics – volume: 6 start-page: 45 year: 2005 end-page: 58 article-title: A method for calling gains and losses in array CGH data publication-title: Biostatistics – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society Series B – volume: 6 start-page: 27 year: 2005 article-title: A statistical approach for CGH microarray data analysis publication-title: BMC Bioinformatics – volume: 29 start-page: 459 year: 2001 end-page: 464 article-title: Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas publication-title: Nature Genetics – volume: 20 start-page: 3413 year: 2004 end-page: 3422 article-title: Analysis of array CGH data: From signal ratio to gain and loss of DNA regions publication-title: Bioinformatics – volume: 22 start-page: 1963 year: 2006 end-page: 1973 article-title: Transcript mapping with high‐density oligonucleotide tiling arrays publication-title: Bioinformatics – volume: 5 start-page: 557 year: 2004 end-page: 572 article-title: Circular binary segmentation for the analysis of array‐based DNA copy number data publication-title: Biostatistics – ident: e_1_2_8_7_1 doi: 10.1038/ng771 – ident: e_1_2_8_2_1 doi: 10.1007/BF02458835 – ident: e_1_2_8_4_1 doi: 10.1007/s10577-005-2168-x – ident: e_1_2_8_13_1 doi: 10.1186/1471-2105-6-27 – ident: e_1_2_8_14_1 doi: 10.1093/biostatistics/kxh017 – ident: e_1_2_8_12_1 doi: 10.1093/biostatistics/kxh008 – ident: e_1_2_8_6_1 doi: 10.1016/j.jmva.2004.02.008 – ident: e_1_2_8_11_1 doi: 10.1016/j.sigpro.2005.01.012 – ident: e_1_2_8_3_1 doi: 10.1158/0008-5472.CAN-04-4229 – ident: e_1_2_8_8_1 doi: 10.1093/bioinformatics/btl289 – ident: e_1_2_8_9_1 doi: 10.1093/bioinformatics/bth418 – ident: e_1_2_8_10_1 doi: 10.1093/bioinformatics/bti611 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_8_5_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1977.tb01600.x  | 
    
| SSID | ssj0009502 | 
    
| Score | 2.0944743 | 
    
| Snippet | Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession... Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a... Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a... SummaryMicroarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a...  | 
    
| SourceID | unpaywall hal proquest pubmed crossref wiley jstor istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 758 | 
    
| SubjectTerms | Algorithms Array CGH Artificial Intelligence Biomedical research Biometrics biometry chromosome mapping Chromosome Mapping - methods Cluster Analysis Comparative genomic hybridization Computer Simulation Coordinate systems data collection Data Interpretation, Statistical Databases, Genetic Datasets Dynamic programming EM algorithm Gene Dosage Gene Dosage - genetics genetics genome Genomes Genomics Heuristics Information Storage and Retrieval Information Storage and Retrieval - methods Life Sciences Markov chain methods Mixture models Modeling Models, Genetic Models, Statistical Oligonucleotide Array Sequence Analysis Oligonucleotide Array Sequence Analysis - methods Other Parametric models Pattern Recognition, Automated Pattern Recognition, Automated - methods Research methodology Segmentation Sequence Alignment Sequence Alignment - methods Sequence Analysis, DNA Sequence Analysis, DNA - methods Statistical analysis Supernova remnants  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWiG2By5lQBiXCCHeMhLXsd3HtrCVSwsVG5SnyE4cJq2kUy-w8us5JzcYYmjwZjnHcmwf29-xj78D8MQmxpfWp3ONlKGBYpVneKg9o02seco6UtPb4eFIDI74q0k42QC3egtzjIizXPsp7eVxsULJN6EpQkTbDWgejd51PxWoVni4CE9ySlSOVjFn_nlnnSq3unRAJFlxHJU70OYx-T82qUvPKpfEP4HNbbi6yk71-pueTs_j2Hwj2r9eOEQucv5C8j852VstzV78_Td2x7-18QZcK1Go2y3U5iZs2KwFV4q4lOsWbA9rMtdFC7YIkBZ8zreg13Xf289fyhdL2bP-dEVUC7gBuhRWbeoiCHaxsFuxnbizFOuZ67XbPxi4z_VS78DR_ovD_sAr4zB4cUgkBSqRzMZSiFjYjg58q5nlaKklMk5SyzrGj4UKONPGT9oqYQmPU6XQ8oqVMrzTbt-GRjbL7F1wjdCMBWnSiZXkRkuEC0nKtM9SYQ1XwgFZjU0UlyTlFCtjGv1irOCoRjSqFEKTnPJwVKMzB4K65GlB1HGJMo-x_2txYtoedN9ElEc3pNhG8TVw4GmuHbWYnp-QN5wMo4-jg-jww1j2xsHraOzATq4-tSCnEOu-cmC3UqeoXCAWEQvaiH0RDjrwqP6KM5uua3RmZysU8cOQ6OouluAE_3CbuFhCKBbSVbYDdwo9_tk3CA1Dn_6O1Yr9Dx0n8hlw6QJR7-XbIabu_U9tu7BVnKiTZ999aCznK_sAoeDSPCxXgx96UEyl priority: 102 providerName: Unpaywall  | 
    
| Title | A Segmentation/Clustering Model for the Analysis of Array CGH Data | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-TVQ7BQ1K-Q/fulltext.pdf https://www.jstor.org/stable/4541408 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2006.00729.x https://www.ncbi.nlm.nih.gov/pubmed/17825008 https://www.proquest.com/docview/213835643 https://www.proquest.com/docview/20558192 https://www.proquest.com/docview/47431088 https://www.proquest.com/docview/68252870 https://hal.science/hal-00434826 https://hal.science/hal-01197574  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 63 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJsT2wEcZEAYjQoi3lsR1HPex6ejKRwuFFcpTZCcOSC3p1A9Y-eu5yxcr2qSBeEvTu7S-nO3f2effATw1sXZ849C6RsIwQDGyrrmn6lrpSPGEtXxFZ4f7A9Eb8Vdjb1zkP9FZmJwfolpwo56RjdfUwZVebHZyj2MozJlT7ikgUGwQnnSbIouu3rMz_LtOThxOqV7cHW8m9Zz7oI2Z6upXypPcJtOflqmL54HSXbi-Sk_U-oeaTjfxbjZhdW_CpGxqnqcyaayWuhH9_IMF8v_Y4hbcKHCt3c4d8TZcMWkNruWVLtc12O1X9LCLGuwQxM0Zou9A0LY_mC_fijNQ6fPOdEXkDTil2lSobWojrLZR2S75U-xZgr8zV2u7c9SzD9VS7cGo--K406sXlR3qkUe0BzL2mYl8ISJhWsp1jGKGY-wX-1GcGNbSTiSky5nSTtyUMYt5lEiJsVwkpeatZvMubKWz1NwHWwvFmJvErUj6XCsfAUicMOWwRBjNpbDAL99iGBW051R9YxqeCX_QeCEZj4pyUpofGi88tcCtNE9y6o9L6DxBR6nEibu7134T0j3ac8U2iu-uBc8yP6rE1HxC-XW-F34aHIXHH4d-MHRfh0ML9jJHqwQ5FW13pAX7peOFxZCzCJnbRDSNANOCx9W3OFbQBpBKzWyFIo7nEQHexRKcACVOPBdLCMk82hy34F7u8b9tg2DTc-jfsaoL_IXhRObgl1YIg5dv-3j14F8V92EnX6enfMGHsLWcr8wjBJhLfQDb7eAw6B5kQwh-Gg3etT__Aj9ZZ3o | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJrTtgY8yIAxYhBBvLYnrOO5jW9g61hYVutE3y04ckBbSqWth46_nLmnCijZpIN6i5C4fl7P9O_v8O4BXNjZeaD2a10gYBihW1g0PdN1oE2mesFaoae_wYCh6R_z9JJgsywHRXpiCH6KacKOWkffX1MBpQnq1lQccY2HOvHJRAZFiAwHlOhcYthBC-sguMfB6BXU4JXtxf7Ka1nPlnVbGqttfKVNynYx_XiYvXgVLt2BjkZ3qix86TVcRbz5k7d2DtPzYIlPlpLGYm0b08w8eyP9kjftwdwlt3Xbhiw_gls1qcKcodnlRg61BxRB7VoNNQrkFSfRD6LTdT_bLt-U2qOxNN10QfwOOqi7VaktdRNYuKrslhYo7TfA5M33hdvd77ls919twtPdu3O3Vl8Ud6lFAzAcyDpmNQiEiYVva96xmlmP4F4dRnFjWMl4kpM-ZNl7clDGLeZRIieFcJKXhrWbzEaxl08w-AdcIzZifxK1IhtzoEDFInDDtsURYw6VwICx_o4qWzOdUgCNVlyIgNJ4i41FdTsr0Q-Opcwf8SvO0YP-4gc5L9JRKnOi7e-2-onO07IrfKL77DrzOHakS07MTSrELA_V5uK_Gx6OwM_IP1ciB7dzTKkFOdds96cBO6Xlq2eucKeY3EVAjxnRgt7qK3QWtAenMThco4gUBceBdL8EJU-LYc72EkCyg9XEHHhcu_9s2iDcDj96OVW3gLwwncg-_sYLqHHwY4NHTf1XchY3eeNBX_YPh4Q5sFtP2lD74DNbms4V9jnhzbl7k_cgvPa1oeQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJmB74GMMCAMWIcRbS-I6ifvYD7qOrYXCNvpm2YkD0kJadS2s_PXc5YsVbdJAvEXJXT4uZ_t39vl3AK9MpJ3AODSvETMMUIyoae6pmlY6VDxmzUDR3uHB0O8f83djb1yUA6K9MDk_RDXhRi0j66-pgZtpFK-2co9jLMyZUy4qIFKsI6Bc515TUH5f9yO7wMDr5NThlOzF3fFqWs-ld1oZq25-pUzJdTL-eZm8eBks3YQ7i3Sqlj9Ukqwi3mzI6t2DpPzYPFPltL6Y63r48w8eyP9kjftwt4C2div3xQdww6RbcCsvdrncgs1BxRB7tgUbhHJzkuiH0G7Zn8yXb8U2qPRNJ1kQfwOOqjbVaktsRNY2KtslhYo9ifE5M7W0O3t9u6vmahuOe2-POv1aUdyhFnrEfCCigJkw8P3QN03lOkYxwzH8i4Iwig1raif0hcuZ0k7UEBGLeBgLgeFcKITmzUbjEaylk9Q8AVv7ijE3jpqhCLhWAWKQKGbKYbFvNBe-BUH5G2VYMJ9TAY5EXoiA0HiSjEd1OSnTD40nzy1wK81pzv5xDZ2X6CmVONF391uHks7Rsit-o__dteB15kiVmJqdUopd4MnPwz15dDIK2iP3QI4s2M48rRLkVLfdERbslJ4ni17nTDK3gYAaMaYFu9VV7C5oDUilZrJAEcfziAPvaglOmBLHnqslfME8Wh-34HHu8r9tg3jTc-jtWNUG_sJwfubh11aQ7f33Azx6-q-Ku3D7Q7cnD_eHBzuwkc_aU_bgM1ibzxbmOcLNuX6RdSO_AFQeZ_0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWiG2By5lQBiXCCHeMhLXsd3HtrCVSwsVG5SnyE4cJq2kUy-w8us5JzcYYmjwZjnHcmwf29-xj78D8MQmxpfWp3ONlKGBYpVneKg9o02seco6UtPb4eFIDI74q0k42QC3egtzjIizXPsp7eVxsULJN6EpQkTbDWgejd51PxWoVni4CE9ySlSOVjFn_nlnnSq3unRAJFlxHJU70OYx-T82qUvPKpfEP4HNbbi6yk71-pueTs_j2Hwj2r9eOEQucv5C8j852VstzV78_Td2x7-18QZcK1Go2y3U5iZs2KwFV4q4lOsWbA9rMtdFC7YIkBZ8zreg13Xf289fyhdL2bP-dEVUC7gBuhRWbeoiCHaxsFuxnbizFOuZ67XbPxi4z_VS78DR_ovD_sAr4zB4cUgkBSqRzMZSiFjYjg58q5nlaKklMk5SyzrGj4UKONPGT9oqYQmPU6XQ8oqVMrzTbt-GRjbL7F1wjdCMBWnSiZXkRkuEC0nKtM9SYQ1XwgFZjU0UlyTlFCtjGv1irOCoRjSqFEKTnPJwVKMzB4K65GlB1HGJMo-x_2txYtoedN9ElEc3pNhG8TVw4GmuHbWYnp-QN5wMo4-jg-jww1j2xsHraOzATq4-tSCnEOu-cmC3UqeoXCAWEQvaiH0RDjrwqP6KM5uua3RmZysU8cOQ6OouluAE_3CbuFhCKBbSVbYDdwo9_tk3CA1Dn_6O1Yr9Dx0n8hlw6QJR7-XbIabu_U9tu7BVnKiTZ999aCznK_sAoeDSPCxXgx96UEyl | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Segmentation%2FClustering+Model+for+the+Analysis+of+Array+CGH+Data&rft.jtitle=Biometrics&rft.au=Picard%2C+F.&rft.au=Robin%2C+S.&rft.au=Lebarbier%2C+E.&rft.au=Daudin%2C+J.%E2%80%90J.&rft.date=2007-09-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=63&rft.issue=3&rft.spage=758&rft.epage=766&rft_id=info:doi/10.1111%2Fj.1541-0420.2006.00729.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2006_00729_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |