A Segmentation/Clustering Model for the Analysis of Array CGH Data

Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Se...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 63; no. 3; pp. 758 - 766
Main Authors Picard, F., Robin, S., Lebarbier, E., Daudin, J.-J.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2007
International Biometric Society
Blackwell Publishing Ltd
Wiley
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2006.00729.x

Cover

Abstract Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
AbstractList Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing. [PUBLICATION ABSTRACT]
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming–expectation maximization (DP–EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
SummaryMicroarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation-clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation-clustering model is a promising alternative that can be applied in the more general context of signal processing.
Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming–expectation maximization (DP–EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
Author Lebarbier, E.
Robin, S.
Daudin, J.-J.
Picard, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Picard
  fullname: Picard, F.
  email: picard@inapg.fr
  organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France
– sequence: 2
  givenname: S.
  surname: Robin
  fullname: Robin, S.
  organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France
– sequence: 3
  givenname: E.
  surname: Lebarbier
  fullname: Lebarbier, E.
  organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France
– sequence: 4
  givenname: J.-J.
  surname: Daudin
  fullname: Daudin, J.-J.
  organization: UMR INA P-G/ENGREF/INRA MIA 518, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17825008$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00434826$$DView record in HAL
BookMark eNqVkl1v0zAUhi00xLrBP0Ao4gKJi3T-SmJfgJR2o53omCrGx53lJs6WzI2LnbDm3-MsVSftZsM3ts953mOf1z4CB7WpFQABgmPkx0k1RhFFIaQYjjGE8RjCBPPx9gUY7RMHYAR9KiQU_T4ER85VfssjiF-BQ5QwHEHIRmCSBt_V9VrVjWxKU59MdesaZcv6OrgwudJBYWzQ3KggraXuXOkCUwSptbILprN5cCob-Rq8LKR26s1uPgY_vpxdTefh4nJ2Pk0XYRZxzkOWJ1hlSRxnseISQSWxogz7cJYXCvMVzGKGKJYrmBOW45xmBWOURxljK8oJOQZ8qNvWG9ndSa3FxpZraTuBoOh9EZXo2xd9-6L3Rdz7IrZe-3HQ3sgHlZGlmKcL0ccgpMTfJv6LPPthYDfW_GmVa8S6dJnSWtbKtE7E3jvMEvgkSBNKEGTsSRDDKGKIYw--fwRWprXeec8gwkgU096HdzuoXa1V_mDC7lE9wAYgs8Y5q4r_8enzI2lWDj-jsbLUzynwaShwV2rVPftgMTm_vPArr3876CvXGLvXU6-i962FQ7r0v3S7T0t7K-KEJJH49W0mrn4uk8kSfRVL8g-xcfA9
CODEN BIOMA5
CitedBy_id crossref_primary_10_1080_03610918_2020_1775850
crossref_primary_10_1007_s00357_016_9212_8
crossref_primary_10_1111_j_1541_0420_2009_01337_x
crossref_primary_10_1186_1471_2164_13_50
crossref_primary_10_1016_j_neucom_2009_11_022
crossref_primary_10_1371_journal_pcbi_1000473
crossref_primary_10_1093_nargab_lqad098
crossref_primary_10_1007_s12559_015_9349_5
crossref_primary_10_1101_gr_090605_108
crossref_primary_10_1093_biostatistics_kxq076
crossref_primary_10_1089_cmb_2010_0267
crossref_primary_10_1111_1365_2656_13105
crossref_primary_10_1016_j_neucom_2009_12_023
crossref_primary_10_1371_journal_pone_0019754
crossref_primary_10_1109_TASE_2013_2256349
crossref_primary_10_1371_journal_pone_0086272
crossref_primary_10_1371_journal_pone_0203007
crossref_primary_10_1093_bioinformatics_bts448
crossref_primary_10_1186_s12859_018_2140_3
crossref_primary_10_1080_02664763_2012_759192
crossref_primary_10_1089_cmb_2009_0019
crossref_primary_10_1214_13_AOAS705
crossref_primary_10_5351_KJAS_2009_22_1_001
crossref_primary_10_1093_bib_bbq004
crossref_primary_10_1186_1471_2105_12_428
crossref_primary_10_1007_s11222_010_9196_x
crossref_primary_10_1109_TIT_2015_2448087
crossref_primary_10_1002_sim_5996
crossref_primary_10_1007_s11222_017_9788_9
crossref_primary_10_1186_s40462_014_0019_0
crossref_primary_10_1093_bioinformatics_btp022
crossref_primary_10_1214_09_EJS430
crossref_primary_10_1186_s12864_019_6136_9
crossref_primary_10_1111_1365_2656_13116
crossref_primary_10_1186_1471_2105_10_172
crossref_primary_10_3389_fevo_2019_00004
crossref_primary_10_1145_1963190_2063517
crossref_primary_10_1016_j_fishres_2024_107033
crossref_primary_10_1093_bioinformatics_btn321
crossref_primary_10_1038_nature10532
crossref_primary_10_1016_j_sigpro_2013_11_029
crossref_primary_10_3758_s13428_023_02166_6
crossref_primary_10_1186_1471_2105_13_330
crossref_primary_10_5351_KJAS_2009_22_1_115
Cites_doi 10.1038/ng771
10.1007/BF02458835
10.1007/s10577-005-2168-x
10.1186/1471-2105-6-27
10.1093/biostatistics/kxh017
10.1093/biostatistics/kxh008
10.1016/j.jmva.2004.02.008
10.1016/j.sigpro.2005.01.012
10.1158/0008-5472.CAN-04-4229
10.1093/bioinformatics/btl289
10.1093/bioinformatics/bth418
10.1093/bioinformatics/bti611
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright Copyright 2007 The International Biometric Society
2006, The International Biometric Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright 2007 The International Biometric Society
– notice: 2006, The International Biometric Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7QO
8FD
FR3
P64
7S9
L.6
7X8
1XC
ADTOC
UNPAY
DOI 10.1111/j.1541-0420.2006.00729.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection
MEDLINE
MEDLINE - Academic

CrossRef
Engineering Research Database
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 766
ExternalDocumentID oai:HAL:hal-01197574v1
oai:HAL:hal-00434826v1
1330025221
17825008
10_1111_j_1541_0420_2006_00729_x
BIOM729
4541408
ark_67375_WNG_TVQ7BQ1K_Q
Genre article
Evaluation Studies
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
3V.
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFPWT
AIBGX
AIWBW
AJBDE
JSODD
VQA
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7QO
8FD
FR3
P64
7S9
L.6
7X8
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c5999-8d72ec766c6e9a10ea2e4828d7cdfe29b0c68142ab0d38d2d4cf88495c88b4933
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Sun Oct 26 04:38:40 EDT 2025
Tue Oct 14 20:43:30 EDT 2025
Thu Oct 02 20:23:48 EDT 2025
Sat Sep 27 20:44:40 EDT 2025
Tue Oct 07 09:42:16 EDT 2025
Fri Jul 25 19:38:53 EDT 2025
Mon Jul 21 06:05:21 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Wed Oct 01 01:41:21 EDT 2025
Wed Jan 22 16:21:01 EST 2025
Thu Jul 03 21:22:36 EDT 2025
Sun Sep 21 06:19:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5999-8d72ec766c6e9a10ea2e4828d7cdfe29b0c68142ab0d38d2d4cf88495c88b4933
Notes ark:/67375/WNG-TVQ7BQ1K-Q
istex:F62C7EAA0EEC5CFDD937CB06A9349C860F16ED1A
ArticleID:BIOM729
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
ORCID 0000-0002-9170-5836
0000-0001-8084-5481
0000-0003-1045-069X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01197574
PMID 17825008
PQID 213835643
PQPubID 35366
PageCount 9
ParticipantIDs unpaywall_primary_10_1111_j_1541_0420_2006_00729_x
hal_primary_oai_HAL_hal_00434826v1
proquest_miscellaneous_68252870
proquest_miscellaneous_47431088
proquest_miscellaneous_20558192
proquest_journals_213835643
pubmed_primary_17825008
crossref_primary_10_1111_j_1541_0420_2006_00729_x
crossref_citationtrail_10_1111_j_1541_0420_2006_00729_x
wiley_primary_10_1111_j_1541_0420_2006_00729_x_BIOM729
jstor_primary_4541408
istex_primary_ark_67375_WNG_TVQ7BQ1K_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2007
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: September 2007
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2007
Publisher Blackwell Publishing Inc
International Biometric Society
Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Inc
– name: International Biometric Society
– name: Blackwell Publishing Ltd
– name: Wiley
References Bredel, M., Bredel, C., Juric, D., Harsh, G., Vogel, H., Recht, L., and Sikic, B. (2005). High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Research 65, 4088-4096.
Olshen, A., Venkatraman, E., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557-572.
Hodgson, G., Hager, J., Volik, S., Hariono, S., Wermick, M., Moore, D., Nowak, N., Albertson, D., Pinkel, D., Collins, C., Hanahan, D., and Gray, J. (2001). Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas. Nature Genetics 29, 459-464.
Hupe, P., Stransky, N., Thiery, J., Radvanyi, F., and Barillot, E. (2004). Analysis of array CGH data: From signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413-3422.
Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., and Jain, A. (2004). Hidden markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90, 132-153.
Huber, W., Toedling, J., and Steinmetz, L. (2006). Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22, 1963-1973.
Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical approach for CGH microarray data analysis. BMC Bioinformatics 6, 27.
Auger, I. and Lawrence, C. (1989). Algorithms for the optimal identification of segments neighborhoods. Bulletin of Mathematical Biology 51, 39-54.
Lavielle, M. (2005). Using penalized contrasts for the change-point problem. Signal Processing 85, 1501-1510.
Davies, J., Wilson, I. M., and Lam, W. (2005). Array CGH technologies and their applications to cancer genomics. Chromosome Research 13, 237-248.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1-38.
Lai, W., Johnson, M., Kucherlapati, R., and Park, P. J. (2005). Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763-3770.
Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005). A method for calling gains and losses in array CGH data. Biostatistics 6, 45-58.
1989; 51
2005; 85
2005; 65
2004; 20
2005; 21
2004; 5
2005; 6
2001; 29
2004; 90
1977; 39
2006; 22
2005; 13
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
Dempster A. P. (e_1_2_8_5_1) 1977; 39
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: Olshen, A., Venkatraman, E., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557-572.
– reference: Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1-38.
– reference: Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., and Jain, A. (2004). Hidden markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90, 132-153.
– reference: Huber, W., Toedling, J., and Steinmetz, L. (2006). Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22, 1963-1973.
– reference: Lai, W., Johnson, M., Kucherlapati, R., and Park, P. J. (2005). Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763-3770.
– reference: Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical approach for CGH microarray data analysis. BMC Bioinformatics 6, 27.
– reference: Bredel, M., Bredel, C., Juric, D., Harsh, G., Vogel, H., Recht, L., and Sikic, B. (2005). High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Research 65, 4088-4096.
– reference: Hodgson, G., Hager, J., Volik, S., Hariono, S., Wermick, M., Moore, D., Nowak, N., Albertson, D., Pinkel, D., Collins, C., Hanahan, D., and Gray, J. (2001). Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas. Nature Genetics 29, 459-464.
– reference: Wang, P., Kim, Y., Pollack, J., Narasimhan, B., and Tibshirani, R. (2005). A method for calling gains and losses in array CGH data. Biostatistics 6, 45-58.
– reference: Davies, J., Wilson, I. M., and Lam, W. (2005). Array CGH technologies and their applications to cancer genomics. Chromosome Research 13, 237-248.
– reference: Auger, I. and Lawrence, C. (1989). Algorithms for the optimal identification of segments neighborhoods. Bulletin of Mathematical Biology 51, 39-54.
– reference: Hupe, P., Stransky, N., Thiery, J., Radvanyi, F., and Barillot, E. (2004). Analysis of array CGH data: From signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413-3422.
– reference: Lavielle, M. (2005). Using penalized contrasts for the change-point problem. Signal Processing 85, 1501-1510.
– volume: 51
  start-page: 39
  year: 1989
  end-page: 54
  article-title: Algorithms for the optimal identification of segments neighborhoods
  publication-title: Bulletin of Mathematical Biology
– volume: 90
  start-page: 132
  year: 2004
  end-page: 153
  article-title: Hidden markov models approach to the analysis of array CGH data
  publication-title: Journal of Multivariate Analysis
– volume: 65
  start-page: 4088
  year: 2005
  end-page: 4096
  article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors
  publication-title: Cancer Research
– volume: 85
  start-page: 1501
  year: 2005
  end-page: 1510
  article-title: Using penalized contrasts for the change‐point problem
  publication-title: Signal Processing
– volume: 13
  start-page: 237
  year: 2005
  end-page: 248
  article-title: Array CGH technologies and their applications to cancer genomics
  publication-title: Chromosome Research
– volume: 21
  start-page: 3763
  year: 2005
  end-page: 3770
  article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data
  publication-title: Bioinformatics
– volume: 6
  start-page: 45
  year: 2005
  end-page: 58
  article-title: A method for calling gains and losses in array CGH data
  publication-title: Biostatistics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 6
  start-page: 27
  year: 2005
  article-title: A statistical approach for CGH microarray data analysis
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 459
  year: 2001
  end-page: 464
  article-title: Genome scanning with array cgh delineates regional alterations in mouse islet carcinomas
  publication-title: Nature Genetics
– volume: 20
  start-page: 3413
  year: 2004
  end-page: 3422
  article-title: Analysis of array CGH data: From signal ratio to gain and loss of DNA regions
  publication-title: Bioinformatics
– volume: 22
  start-page: 1963
  year: 2006
  end-page: 1973
  article-title: Transcript mapping with high‐density oligonucleotide tiling arrays
  publication-title: Bioinformatics
– volume: 5
  start-page: 557
  year: 2004
  end-page: 572
  article-title: Circular binary segmentation for the analysis of array‐based DNA copy number data
  publication-title: Biostatistics
– ident: e_1_2_8_7_1
  doi: 10.1038/ng771
– ident: e_1_2_8_2_1
  doi: 10.1007/BF02458835
– ident: e_1_2_8_4_1
  doi: 10.1007/s10577-005-2168-x
– ident: e_1_2_8_13_1
  doi: 10.1186/1471-2105-6-27
– ident: e_1_2_8_14_1
  doi: 10.1093/biostatistics/kxh017
– ident: e_1_2_8_12_1
  doi: 10.1093/biostatistics/kxh008
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jmva.2004.02.008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.sigpro.2005.01.012
– ident: e_1_2_8_3_1
  doi: 10.1158/0008-5472.CAN-04-4229
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/btl289
– ident: e_1_2_8_9_1
  doi: 10.1093/bioinformatics/bth418
– ident: e_1_2_8_10_1
  doi: 10.1093/bioinformatics/bti611
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_8_5_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
SSID ssj0009502
Score 2.0944743
Snippet Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession...
Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a...
Summary Microarray‐CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a...
SummaryMicroarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a...
SourceID unpaywall
hal
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 758
SubjectTerms Algorithms
Array CGH
Artificial Intelligence
Biomedical research
Biometrics
biometry
chromosome mapping
Chromosome Mapping - methods
Cluster Analysis
Comparative genomic hybridization
Computer Simulation
Coordinate systems
data collection
Data Interpretation, Statistical
Databases, Genetic
Datasets
Dynamic programming
EM algorithm
Gene Dosage
Gene Dosage - genetics
genetics
genome
Genomes
Genomics
Heuristics
Information Storage and Retrieval
Information Storage and Retrieval - methods
Life Sciences
Markov chain
methods
Mixture models
Modeling
Models, Genetic
Models, Statistical
Oligonucleotide Array Sequence Analysis
Oligonucleotide Array Sequence Analysis - methods
Other
Parametric models
Pattern Recognition, Automated
Pattern Recognition, Automated - methods
Research methodology
Segmentation
Sequence Alignment
Sequence Alignment - methods
Sequence Analysis, DNA
Sequence Analysis, DNA - methods
Statistical analysis
Supernova remnants
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWiG2By5lQBiXCCHeMhLXsd3HtrCVSwsVG5SnyE4cJq2kUy-w8us5JzcYYmjwZjnHcmwf29-xj78D8MQmxpfWp3ONlKGBYpVneKg9o02seco6UtPb4eFIDI74q0k42QC3egtzjIizXPsp7eVxsULJN6EpQkTbDWgejd51PxWoVni4CE9ySlSOVjFn_nlnnSq3unRAJFlxHJU70OYx-T82qUvPKpfEP4HNbbi6yk71-pueTs_j2Hwj2r9eOEQucv5C8j852VstzV78_Td2x7-18QZcK1Go2y3U5iZs2KwFV4q4lOsWbA9rMtdFC7YIkBZ8zreg13Xf289fyhdL2bP-dEVUC7gBuhRWbeoiCHaxsFuxnbizFOuZ67XbPxi4z_VS78DR_ovD_sAr4zB4cUgkBSqRzMZSiFjYjg58q5nlaKklMk5SyzrGj4UKONPGT9oqYQmPU6XQ8oqVMrzTbt-GRjbL7F1wjdCMBWnSiZXkRkuEC0nKtM9SYQ1XwgFZjU0UlyTlFCtjGv1irOCoRjSqFEKTnPJwVKMzB4K65GlB1HGJMo-x_2txYtoedN9ElEc3pNhG8TVw4GmuHbWYnp-QN5wMo4-jg-jww1j2xsHraOzATq4-tSCnEOu-cmC3UqeoXCAWEQvaiH0RDjrwqP6KM5uua3RmZysU8cOQ6OouluAE_3CbuFhCKBbSVbYDdwo9_tk3CA1Dn_6O1Yr9Dx0n8hlw6QJR7-XbIabu_U9tu7BVnKiTZ999aCznK_sAoeDSPCxXgx96UEyl
  priority: 102
  providerName: Unpaywall
Title A Segmentation/Clustering Model for the Analysis of Array CGH Data
URI https://api.istex.fr/ark:/67375/WNG-TVQ7BQ1K-Q/fulltext.pdf
https://www.jstor.org/stable/4541408
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2006.00729.x
https://www.ncbi.nlm.nih.gov/pubmed/17825008
https://www.proquest.com/docview/213835643
https://www.proquest.com/docview/20558192
https://www.proquest.com/docview/47431088
https://www.proquest.com/docview/68252870
https://hal.science/hal-00434826
https://hal.science/hal-01197574
UnpaywallVersion submittedVersion
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJsT2wEcZEAYjQoi3lsR1HPex6ejKRwuFFcpTZCcOSC3p1A9Y-eu5yxcr2qSBeEvTu7S-nO3f2effATw1sXZ849C6RsIwQDGyrrmn6lrpSPGEtXxFZ4f7A9Eb8Vdjb1zkP9FZmJwfolpwo56RjdfUwZVebHZyj2MozJlT7ikgUGwQnnSbIouu3rMz_LtOThxOqV7cHW8m9Zz7oI2Z6upXypPcJtOflqmL54HSXbi-Sk_U-oeaTjfxbjZhdW_CpGxqnqcyaayWuhH9_IMF8v_Y4hbcKHCt3c4d8TZcMWkNruWVLtc12O1X9LCLGuwQxM0Zou9A0LY_mC_fijNQ6fPOdEXkDTil2lSobWojrLZR2S75U-xZgr8zV2u7c9SzD9VS7cGo--K406sXlR3qkUe0BzL2mYl8ISJhWsp1jGKGY-wX-1GcGNbSTiSky5nSTtyUMYt5lEiJsVwkpeatZvMubKWz1NwHWwvFmJvErUj6XCsfAUicMOWwRBjNpbDAL99iGBW051R9YxqeCX_QeCEZj4pyUpofGi88tcCtNE9y6o9L6DxBR6nEibu7134T0j3ac8U2iu-uBc8yP6rE1HxC-XW-F34aHIXHH4d-MHRfh0ML9jJHqwQ5FW13pAX7peOFxZCzCJnbRDSNANOCx9W3OFbQBpBKzWyFIo7nEQHexRKcACVOPBdLCMk82hy34F7u8b9tg2DTc-jfsaoL_IXhRObgl1YIg5dv-3j14F8V92EnX6enfMGHsLWcr8wjBJhLfQDb7eAw6B5kQwh-Gg3etT__Aj9ZZ3o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJrTtgY8yIAxYhBBvLYnrOO5jW9g61hYVutE3y04ckBbSqWth46_nLmnCijZpIN6i5C4fl7P9O_v8O4BXNjZeaD2a10gYBihW1g0PdN1oE2mesFaoae_wYCh6R_z9JJgsywHRXpiCH6KacKOWkffX1MBpQnq1lQccY2HOvHJRAZFiAwHlOhcYthBC-sguMfB6BXU4JXtxf7Ka1nPlnVbGqttfKVNynYx_XiYvXgVLt2BjkZ3qix86TVcRbz5k7d2DtPzYIlPlpLGYm0b08w8eyP9kjftwdwlt3Xbhiw_gls1qcKcodnlRg61BxRB7VoNNQrkFSfRD6LTdT_bLt-U2qOxNN10QfwOOqi7VaktdRNYuKrslhYo7TfA5M33hdvd77ls919twtPdu3O3Vl8Ud6lFAzAcyDpmNQiEiYVva96xmlmP4F4dRnFjWMl4kpM-ZNl7clDGLeZRIieFcJKXhrWbzEaxl08w-AdcIzZifxK1IhtzoEDFInDDtsURYw6VwICx_o4qWzOdUgCNVlyIgNJ4i41FdTsr0Q-Opcwf8SvO0YP-4gc5L9JRKnOi7e-2-onO07IrfKL77DrzOHakS07MTSrELA_V5uK_Gx6OwM_IP1ciB7dzTKkFOdds96cBO6Xlq2eucKeY3EVAjxnRgt7qK3QWtAenMThco4gUBceBdL8EJU-LYc72EkCyg9XEHHhcu_9s2iDcDj96OVW3gLwwncg-_sYLqHHwY4NHTf1XchY3eeNBX_YPh4Q5sFtP2lD74DNbms4V9jnhzbl7k_cgvPa1oeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BJmB74GMMCAMWIcRbS-I6ifvYD7qOrYXCNvpm2YkD0kJadS2s_PXc5YsVbdJAvEXJXT4uZ_t39vl3AK9MpJ3AODSvETMMUIyoae6pmlY6VDxmzUDR3uHB0O8f83djb1yUA6K9MDk_RDXhRi0j66-pgZtpFK-2co9jLMyZUy4qIFKsI6Bc515TUH5f9yO7wMDr5NThlOzF3fFqWs-ld1oZq25-pUzJdTL-eZm8eBks3YQ7i3Sqlj9Ukqwi3mzI6t2DpPzYPFPltL6Y63r48w8eyP9kjftwt4C2div3xQdww6RbcCsvdrncgs1BxRB7tgUbhHJzkuiH0G7Zn8yXb8U2qPRNJ1kQfwOOqjbVaktsRNY2KtslhYo9ifE5M7W0O3t9u6vmahuOe2-POv1aUdyhFnrEfCCigJkw8P3QN03lOkYxwzH8i4Iwig1raif0hcuZ0k7UEBGLeBgLgeFcKITmzUbjEaylk9Q8AVv7ijE3jpqhCLhWAWKQKGbKYbFvNBe-BUH5G2VYMJ9TAY5EXoiA0HiSjEd1OSnTD40nzy1wK81pzv5xDZ2X6CmVONF391uHks7Rsit-o__dteB15kiVmJqdUopd4MnPwz15dDIK2iP3QI4s2M48rRLkVLfdERbslJ4ni17nTDK3gYAaMaYFu9VV7C5oDUilZrJAEcfziAPvaglOmBLHnqslfME8Wh-34HHu8r9tg3jTc-jtWNUG_sJwfubh11aQ7f33Azx6-q-Ku3D7Q7cnD_eHBzuwkc_aU_bgM1ibzxbmOcLNuX6RdSO_AFQeZ_0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWiG2By5lQBiXCCHeMhLXsd3HtrCVSwsVG5SnyE4cJq2kUy-w8us5JzcYYmjwZjnHcmwf29-xj78D8MQmxpfWp3ONlKGBYpVneKg9o02seco6UtPb4eFIDI74q0k42QC3egtzjIizXPsp7eVxsULJN6EpQkTbDWgejd51PxWoVni4CE9ySlSOVjFn_nlnnSq3unRAJFlxHJU70OYx-T82qUvPKpfEP4HNbbi6yk71-pueTs_j2Hwj2r9eOEQucv5C8j852VstzV78_Td2x7-18QZcK1Go2y3U5iZs2KwFV4q4lOsWbA9rMtdFC7YIkBZ8zreg13Xf289fyhdL2bP-dEVUC7gBuhRWbeoiCHaxsFuxnbizFOuZ67XbPxi4z_VS78DR_ovD_sAr4zB4cUgkBSqRzMZSiFjYjg58q5nlaKklMk5SyzrGj4UKONPGT9oqYQmPU6XQ8oqVMrzTbt-GRjbL7F1wjdCMBWnSiZXkRkuEC0nKtM9SYQ1XwgFZjU0UlyTlFCtjGv1irOCoRjSqFEKTnPJwVKMzB4K65GlB1HGJMo-x_2txYtoedN9ElEc3pNhG8TVw4GmuHbWYnp-QN5wMo4-jg-jww1j2xsHraOzATq4-tSCnEOu-cmC3UqeoXCAWEQvaiH0RDjrwqP6KM5uua3RmZysU8cOQ6OouluAE_3CbuFhCKBbSVbYDdwo9_tk3CA1Dn_6O1Yr9Dx0n8hlw6QJR7-XbIabu_U9tu7BVnKiTZ999aCznK_sAoeDSPCxXgx96UEyl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Segmentation%2FClustering+Model+for+the+Analysis+of+Array+CGH+Data&rft.jtitle=Biometrics&rft.au=Picard%2C+F.&rft.au=Robin%2C+S.&rft.au=Lebarbier%2C+E.&rft.au=Daudin%2C+J.%E2%80%90J.&rft.date=2007-09-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=63&rft.issue=3&rft.spage=758&rft.epage=766&rft_id=info:doi/10.1111%2Fj.1541-0420.2006.00729.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2006_00729_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon