Aptamer Blocking Strategy Inhibits SARS‐CoV‐2 Virus Infection

The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 18; pp. 10266 - 10272
Main Authors Sun, Miao, Liu, Siwen, Wei, Xinyu, Wan, Shuang, Huang, Mengjiao, Song, Ting, Lu, Yao, Weng, Xiaonan, Lin, Zhu, Chen, Honglin, Song, Yanling, Yang, Chaoyong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.04.2021
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202100225

Cover

Abstract The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM. We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19.
AbstractList The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (S ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on S that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against S and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S . CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to S with high affinity (K =0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC of 0.42 nM.
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM. We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19.
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on S RBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against S RBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S RBD . CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to S RBD with high affinity ( K d =0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC 50 of 0.42 nM.
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM.
The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD . CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to SRBD with high affinity (Kd =0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC50 of 0.42 nM.The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD . CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to SRBD with high affinity (Kd =0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC50 of 0.42 nM.
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on S RBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against S RBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S RBD . CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to S RBD with high affinity ( K d =0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC 50 of 0.42 nM. We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19.
Author Weng, Xiaonan
Wan, Shuang
Lu, Yao
Liu, Siwen
Sun, Miao
Song, Ting
Lin, Zhu
Wei, Xinyu
Song, Yanling
Huang, Mengjiao
Chen, Honglin
Yang, Chaoyong
AuthorAffiliation 1 The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
3 State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China
2 Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
AuthorAffiliation_xml – name: 3 State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China
– name: 1 The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
– name: 2 Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
Author_xml – sequence: 1
  givenname: Miao
  surname: Sun
  fullname: Sun, Miao
  organization: Xiamen University
– sequence: 2
  givenname: Siwen
  surname: Liu
  fullname: Liu, Siwen
  organization: the University of Hong Kong
– sequence: 3
  givenname: Xinyu
  surname: Wei
  fullname: Wei, Xinyu
  organization: Xiamen University
– sequence: 4
  givenname: Shuang
  surname: Wan
  fullname: Wan, Shuang
  organization: Xiamen University
– sequence: 5
  givenname: Mengjiao
  surname: Huang
  fullname: Huang, Mengjiao
  organization: Xiamen University
– sequence: 6
  givenname: Ting
  surname: Song
  fullname: Song, Ting
  organization: Xiamen University
– sequence: 7
  givenname: Yao
  surname: Lu
  fullname: Lu, Yao
  organization: Xiamen University
– sequence: 8
  givenname: Xiaonan
  surname: Weng
  fullname: Weng, Xiaonan
  organization: Xiamen University
– sequence: 9
  givenname: Zhu
  surname: Lin
  fullname: Lin, Zhu
  organization: Xiamen University
– sequence: 10
  givenname: Honglin
  surname: Chen
  fullname: Chen, Honglin
  email: hlchen@hku.hk
  organization: the University of Hong Kong
– sequence: 11
  givenname: Yanling
  orcidid: 0000-0002-6793-6685
  surname: Song
  fullname: Song, Yanling
  email: ylsong@xmu.edu.cn
  organization: Xiamen University
– sequence: 12
  givenname: Chaoyong
  orcidid: 0000-0002-2374-5342
  surname: Yang
  fullname: Yang, Chaoyong
  email: cyyang@xmu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33561300$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtLHDEYhkNR6qHe9rIM9MabWXOYZJKbwnTxsCAWuuptyGQya-xssk1mlL3zJ_gb_SVmWV1boZRADnzP--Y77IEt550B4DOCIwQhPlLOmhGGePXA9APYRRSjnJQl2Ur3gpC85BTtgL0YbxPCOWQfwQ4hlCEC4S6oqkWv5iZk3zuvf1k3y6Z9UL2ZLbOJu7G17WM2rX5Onx4ex_467Ti7tmGIKdoa3VvvPoHtVnXRHLyc--Dq5PhyfJaf_zidjKvzXFMhaI6LUrBSCV1rA1nTQCpqDmFLCDGKcc1QwwusRNnWRGhEmSka0bRC1K2osYBkH3xb-y6Gem4abVxKtJOLYOcqLKVXVv4dcfZGzvyd5BAVGBbJ4PDFIPjfg4m9nNuoTdcpZ_wQJS44R1ykldCv79BbPwSXypOYIsaZoIwk6sufGW1See1uAkZrQAcfYzDtBkFQriYmV-OTm_ElQfFOoG2vVl1OFdnu3zKxlt3bziz_84msLibHb9pnV2KvoA
CitedBy_id crossref_primary_10_1021_acsnano_2c06803
crossref_primary_10_1038_s41598_024_58315_0
crossref_primary_10_1016_j_aca_2023_341531
crossref_primary_10_1016_j_bios_2024_116642
crossref_primary_10_1021_jacs_1c11554
crossref_primary_10_1016_j_cossms_2021_100966
crossref_primary_10_1016_j_bbrc_2022_04_071
crossref_primary_10_1063_5_0130011
crossref_primary_10_1038_s41392_023_01472_x
crossref_primary_10_1186_s43088_021_00152_5
crossref_primary_10_1021_acs_analchem_2c02670
crossref_primary_10_1016_j_cclet_2022_01_081
crossref_primary_10_1002_bmm2_12024
crossref_primary_10_1186_s12985_022_01943_7
crossref_primary_10_3390_v13101983
crossref_primary_10_1073_pnas_2112942118
crossref_primary_10_1016_j_heliyon_2023_e16458
crossref_primary_10_1016_j_snb_2024_136378
crossref_primary_10_1021_acs_biochem_3c00596
crossref_primary_10_1039_D4OB00645C
crossref_primary_10_1134_S000629792309002X
crossref_primary_10_1016_j_aca_2023_341302
crossref_primary_10_1016_j_ijbiomac_2023_128677
crossref_primary_10_3390_biologics3020007
crossref_primary_10_1002_agt2_620
crossref_primary_10_3390_ijms241310799
crossref_primary_10_3390_v14112346
crossref_primary_10_3390_ijms23010557
crossref_primary_10_1021_acsami_2c02405
crossref_primary_10_1021_acs_jmedchem_1c01567
crossref_primary_10_3390_pharmaceutics15010151
crossref_primary_10_1016_j_ccr_2024_216101
crossref_primary_10_1002_anie_202212496
crossref_primary_10_1002_anie_202107730
crossref_primary_10_1016_j_snb_2021_130561
crossref_primary_10_1016_j_bios_2021_113595
crossref_primary_10_1021_jacs_1c12593
crossref_primary_10_1016_j_xcrp_2022_101048
crossref_primary_10_1016_j_ab_2023_115223
crossref_primary_10_1126_sciadv_abh2848
crossref_primary_10_3390_biotech14010020
crossref_primary_10_1002_advs_202300656
crossref_primary_10_3390_ijms241411780
crossref_primary_10_1016_j_coviro_2021_09_005
crossref_primary_10_1155_2023_9224815
crossref_primary_10_1039_D2CC01598F
crossref_primary_10_1016_j_xcrp_2023_101249
crossref_primary_10_3390_molecules27185818
crossref_primary_10_1002_ange_202212496
crossref_primary_10_1007_s00604_023_05747_6
crossref_primary_10_1002_ange_202315185
crossref_primary_10_3389_fbioe_2022_866368
crossref_primary_10_2174_1389557522666220112094951
crossref_primary_10_3389_fmicb_2021_767104
crossref_primary_10_1002_sstr_202300089
crossref_primary_10_1021_acsami_5c00016
crossref_primary_10_3390_ijms23031412
crossref_primary_10_3390_biomedicines10123274
crossref_primary_10_1021_acs_jmedchem_3c01607
crossref_primary_10_1016_j_tibtech_2022_07_012
crossref_primary_10_1002_ange_202110819
crossref_primary_10_1016_j_chempr_2024_10_021
crossref_primary_10_1021_acscentsci_2c01263
crossref_primary_10_1016_j_omtn_2021_06_014
crossref_primary_10_1007_s00604_022_05242_4
crossref_primary_10_1016_j_drudis_2023_103663
crossref_primary_10_1002_anie_202212879
crossref_primary_10_1093_nar_gkab574
crossref_primary_10_1039_D3CS00774J
crossref_primary_10_1021_acsinfecdis_1c00546
crossref_primary_10_1021_jacs_2c02764
crossref_primary_10_1016_j_asems_2024_100125
crossref_primary_10_3390_ijms25094642
crossref_primary_10_1002_INMD_20230041
crossref_primary_10_1021_acsnano_2c03219
crossref_primary_10_1021_acsptsci_3c00258
crossref_primary_10_1038_s41392_024_01748_w
crossref_primary_10_1039_D4NR02535K
crossref_primary_10_1016_j_ab_2022_114633
crossref_primary_10_1021_acs_analchem_2c03437
crossref_primary_10_1016_j_cej_2023_143844
crossref_primary_10_1021_jacs_1c08226
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1093_jaoacint_qsae004
crossref_primary_10_1016_j_trac_2022_116767
crossref_primary_10_1039_D4AN00812J
crossref_primary_10_1002_ange_202113795
crossref_primary_10_1016_j_jgeb_2024_100400
crossref_primary_10_1021_acs_nanolett_3c04510
crossref_primary_10_3390_pharmaceutics17030394
crossref_primary_10_1016_j_cossms_2024_101212
crossref_primary_10_1002_ange_202212879
crossref_primary_10_1021_jacs_1c02929
crossref_primary_10_1002_adhm_202200031
crossref_primary_10_1039_D3CC02102E
crossref_primary_10_1002_anie_202415226
crossref_primary_10_1080_17460441_2023_2264187
crossref_primary_10_3390_ijms24054401
crossref_primary_10_1016_j_bios_2023_115400
crossref_primary_10_3390_molecules28124645
crossref_primary_10_1021_jacs_3c11760
crossref_primary_10_1039_D4TB01946F
crossref_primary_10_1016_j_biotechadv_2021_107902
crossref_primary_10_1002_anie_202315185
crossref_primary_10_1016_j_memsci_2022_121198
crossref_primary_10_2174_1568026623666230623145802
crossref_primary_10_1002_anie_202110819
crossref_primary_10_1002_anse_202300001
crossref_primary_10_3390_ijms24043525
crossref_primary_10_1038_s41598_023_41885_w
crossref_primary_10_3390_bios14030146
crossref_primary_10_1016_j_cej_2023_145450
crossref_primary_10_1021_acsami_2c13768
crossref_primary_10_1021_acsptsci_2c00156
crossref_primary_10_1080_15257770_2022_2109170
crossref_primary_10_1126_sciadv_abn9665
crossref_primary_10_3389_fmicb_2021_758948
crossref_primary_10_3390_ph14070622
crossref_primary_10_1126_sciadv_abq6207
crossref_primary_10_1002_anie_202113795
crossref_primary_10_1016_j_hlife_2024_07_007
crossref_primary_10_1016_j_jhazmat_2024_135452
crossref_primary_10_2174_1568009622666220214101059
crossref_primary_10_1002_ange_202107730
crossref_primary_10_1073_pnas_2303292120
crossref_primary_10_3389_fmolb_2023_1288686
crossref_primary_10_1016_j_bios_2021_113944
crossref_primary_10_3389_fcimb_2024_1415885
crossref_primary_10_3390_molecules27030850
crossref_primary_10_1016_j_cej_2025_161497
crossref_primary_10_31857_S0320972523090026
crossref_primary_10_1002_cmdc_202200166
crossref_primary_10_1021_acs_analchem_4c04609
crossref_primary_10_1002_anse_202200012
crossref_primary_10_1186_s12931_023_02590_4
crossref_primary_10_1002_smtd_202300327
crossref_primary_10_1016_j_aca_2024_343004
crossref_primary_10_1021_jacs_2c09870
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1002_anie_202407049
crossref_primary_10_3390_v15112195
crossref_primary_10_1080_10717544_2022_2079768
crossref_primary_10_1002_ange_202407049
crossref_primary_10_1002_anbr_202200067
crossref_primary_10_1002_cnma_202300069
crossref_primary_10_1002_ange_202415226
crossref_primary_10_4103_JAPTR_JAPTR_117_23
crossref_primary_10_1021_acs_analchem_4c01607
Cites_doi 10.1155/2014/157895
10.1126/science.abb2762
10.1016/S0140-6736(20)30185-9
10.1002/anie.201901192
10.1021/jacs.8b08047
10.1002/ange.201916039
10.1021/jacs.7b04547
10.1056/NEJMoa2001017
10.1021/acs.analchem.0c01394
10.1021/jacs.9b11490
10.1016/j.cell.2020.02.052
10.1021/jacs.9b12409
10.1002/ange.201901192
10.1038/s41564-020-00789-5
10.1016/j.cell.2020.05.025
10.1002/anie.201916039
10.1021/acs.analchem.0c00051
10.1038/s41467-020-15297-7
10.1002/anie.202004805
10.1002/anie.201809753
10.1093/nar/gkaa800
10.1016/j.cell.2020.04.031
10.1016/j.cell.2020.05.042
10.1021/acsnano.9b09884
10.1038/nm.3443
10.1038/s41586-020-2599-8
10.1038/s41557-020-0426-3
10.1038/s41586-020-2381-y
10.1038/s41586-020-2349-y
10.1039/C7SC05141G
10.1038/s41586-020-2012-7
10.1002/ange.201809753
10.1002/advs.201900143
10.1038/s41586-020-2180-5
10.1038/s41586-020-2380-z
10.1126/science.abb9983
10.1101/2020.03.28.013276
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202100225
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Public Health
EISSN 1521-3773
Edition International ed. in English
EndPage 10272
ExternalDocumentID PMC8014204
33561300
10_1002_anie_202100225
ANIE202100225
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22022409; 21735004; 21874089; 21705024
– fundername: National Natural Science Foundation of China
  grantid: 21874089
– fundername: National Natural Science Foundation of China
  grantid: 22022409
– fundername: National Natural Science Foundation of China
  grantid: 21705024
– fundername: National Natural Science Foundation of China
  grantid: 21735004
– fundername: ;
  grantid: 22022409; 21735004; 21874089; 21705024
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5995-247967a9cbce06dd059b800f333ea68c61d842a97fb39c156e4d9df99bf9b2903
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:45:35 EDT 2025
Fri Jul 11 00:35:06 EDT 2025
Sun Jul 13 04:17:46 EDT 2025
Wed Feb 19 02:28:18 EST 2025
Tue Jul 01 01:17:56 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Jan 22 16:29:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords neutralization therapy
SARS-CoV-2
viral infections
aptamers
Language English
License 2021 Wiley-VCH GmbH.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5995-247967a9cbce06dd059b800f333ea68c61d842a97fb39c156e4d9df99bf9b2903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6793-6685
0000-0002-2374-5342
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8014204
PMID 33561300
PQID 2516869563
PQPubID 946352
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8014204
proquest_miscellaneous_2488189898
proquest_journals_2516869563
pubmed_primary_33561300
crossref_primary_10_1002_anie_202100225
crossref_citationtrail_10_1002_anie_202100225
wiley_primary_10_1002_anie_202100225_ANIE202100225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 26, 2021
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 04
  year: 2021
  text: April 26, 2021
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2019; 6
2018; 140
2020; 581
2020; 382
2020; 583
2020; 142
2020; 181
2020; 182
2020 2020; 59 132
2020; 369
2020; 59
2020; 14
2020; 584
2014; 2014
2020; 12
2020; 11
2020; 367
2020; 586
2019 2019; 58 131
2017; 139
2014; 20
2018; 9
2020; 5
2020; 395
2018 2018; 57 130
2020; 92
2020; 48
2020; 579
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_3
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_47_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 58 131
  start-page: 8013 8097
  year: 2019 2019
  end-page: 8017 8101
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 9128
  year: 2017
  end-page: 9131
  publication-title: J. Am. Chem. Soc.
– volume: 2014
  year: 2014
  publication-title: Adv. Biol.
– volume: 369
  start-page: 330
  year: 2020
  end-page: 333
  publication-title: Science
– volume: 20
  start-page: 143
  year: 2014
  end-page: 151
  publication-title: Nat. Med.
– volume: 59
  start-page: 17540
  year: 2020
  end-page: 17700
  publication-title: Angew. Chem. Int. Ed.
– volume: 395
  start-page: 470
  year: 2020
  end-page: 473
  publication-title: Lancet
– volume: 11
  start-page: 1518
  year: 2020
  publication-title: Nat. Commun.
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  publication-title: Nature
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  publication-title: N. Engl. J. Med.
– volume: 48
  start-page: 10680
  year: 2020
  end-page: 10690
  publication-title: Nucleic Acids Res.
– volume: 584
  start-page: 120
  year: 2020
  end-page: 124
  publication-title: Nature
– volume: 59 132
  start-page: 4800 4830
  year: 2020 2020
  end-page: 4805 4835
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 181
  start-page: 1004
  year: 2020
  end-page: 1015
  publication-title: Cell
– volume: 182
  start-page: 429
  year: 2020
  end-page: 446
  publication-title: Cell
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  publication-title: Science
– volume: 57 130
  start-page: 17048 17294
  year: 2018 2018
  end-page: 17052 17298
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  publication-title: Nature
– volume: 140
  start-page: 13335
  year: 2018
  end-page: 13339
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 5370
  year: 2020
  end-page: 5378
  publication-title: Anal. Chem.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  publication-title: Nature
– volume: 182
  start-page: 73
  year: 2020
  end-page: 84
  publication-title: Cell
– volume: 142
  start-page: 2532
  year: 2020
  end-page: 2540
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 381
  year: 2020
  end-page: 390
  publication-title: Nat. Chem.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 142
  start-page: 3862
  year: 2020
  end-page: 3872
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3050
  year: 2018
  end-page: 3055
  publication-title: Chem. Sci.
– volume: 92
  start-page: 9895
  year: 2020
  end-page: 9900
  publication-title: Anal. Chem.
– volume: 586
  start-page: 572
  year: 2020
  end-page: 577
  publication-title: Nature
– volume: 5
  start-page: 1185
  year: 2020
  end-page: 1191
  publication-title: Nat. Microbiol.
– volume: 584
  start-page: 115
  year: 2020
  end-page: 119
  publication-title: Nature
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  publication-title: Cell
– volume: 14
  start-page: 9562
  year: 2020
  end-page: 9571
  publication-title: ACS Nano
– ident: e_1_2_6_23_1
– ident: e_1_2_6_15_2
  doi: 10.1155/2014/157895
– ident: e_1_2_6_33_1
  doi: 10.1126/science.abb2762
– ident: e_1_2_6_2_2
  doi: 10.1016/S0140-6736(20)30185-9
– ident: e_1_2_6_37_1
– ident: e_1_2_6_39_2
  doi: 10.1002/anie.201901192
– ident: e_1_2_6_21_2
  doi: 10.1021/jacs.8b08047
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.201916039
– ident: e_1_2_6_43_2
  doi: 10.1021/jacs.7b04547
– ident: e_1_2_6_4_2
  doi: 10.1056/NEJMoa2001017
– ident: e_1_2_6_36_2
  doi: 10.1021/acs.analchem.0c01394
– ident: e_1_2_6_44_2
  doi: 10.1021/jacs.9b11490
– ident: e_1_2_6_32_2
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_2_6_20_2
  doi: 10.1021/jacs.9b12409
– ident: e_1_2_6_11_2
– ident: e_1_2_6_39_3
  doi: 10.1002/ange.201901192
– ident: e_1_2_6_47_1
  doi: 10.1038/s41564-020-00789-5
– ident: e_1_2_6_8_2
  doi: 10.1016/j.cell.2020.05.025
– ident: e_1_2_6_6_1
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.201916039
– ident: e_1_2_6_22_2
  doi: 10.1021/acs.analchem.0c00051
– ident: e_1_2_6_25_2
  doi: 10.1038/s41467-020-15297-7
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.202004805
– ident: e_1_2_6_34_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201809753
– ident: e_1_2_6_38_2
  doi: 10.1093/nar/gkaa800
– ident: e_1_2_6_45_1
  doi: 10.1016/j.cell.2020.04.031
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cell.2020.05.042
– ident: e_1_2_6_40_2
  doi: 10.1021/acsnano.9b09884
– ident: e_1_2_6_14_2
  doi: 10.1038/nm.3443
– ident: e_1_2_6_42_1
– ident: e_1_2_6_46_1
  doi: 10.1038/s41586-020-2599-8
– ident: e_1_2_6_24_2
  doi: 10.1038/s41557-020-0426-3
– ident: e_1_2_6_12_2
  doi: 10.1038/s41586-020-2381-y
– ident: e_1_2_6_9_2
  doi: 10.1038/s41586-020-2349-y
– ident: e_1_2_6_35_2
  doi: 10.1039/C7SC05141G
– ident: e_1_2_6_3_2
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_2_6_19_1
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201809753
– ident: e_1_2_6_17_2
  doi: 10.1002/advs.201900143
– ident: e_1_2_6_30_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_31_2
  doi: 10.1038/s41586-020-2180-5
– ident: e_1_2_6_27_1
– ident: e_1_2_6_13_1
– ident: e_1_2_6_16_1
– ident: e_1_2_6_7_2
  doi: 10.1038/s41586-020-2380-z
– ident: e_1_2_6_28_2
  doi: 10.1126/science.abb9983
– ident: e_1_2_6_29_2
  doi: 10.1101/2020.03.28.013276
SSID ssj0028806
Score 2.6774492
Snippet The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and...
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD )...
The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (S ) and...
The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD )...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10266
SubjectTerms ACE2
Affinity
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - metabolism
Antibodies
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Aptamers
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - pharmacology
Binding
Blocking
COVID-19
COVID-19 - drug therapy
COVID-19 - metabolism
Drug Discovery
Global health
HEK293 Cells
Humans
Molecular docking
Molecular Docking Simulation
neutralization therapy
Pandemics
Protein Binding - drug effects
Protein Interaction Domains and Motifs - drug effects
Public health
Receptors
Room temperature
SARS-CoV-2
SARS-CoV-2 - chemistry
SARS-CoV-2 - drug effects
SARS-CoV-2 - physiology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - metabolism
Strategy
Viral diseases
viral infections
Viruses
Title Aptamer Blocking Strategy Inhibits SARS‐CoV‐2 Virus Infection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100225
https://www.ncbi.nlm.nih.gov/pubmed/33561300
https://www.proquest.com/docview/2516869563
https://www.proquest.com/docview/2488189898
https://pubmed.ncbi.nlm.nih.gov/PMC8014204
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXODSF32khSqVKvVkyNqOEx_DCgRI5QAFcYtsxxErIIt2s4f21J_Ab-SXdCYvWFBVqb1EsTxWYntsf2N7vgH4UsQlwlRTsBJnYCad1MyoVDKnpE-jxCmRkL_ztyO1fyoPz-PzB178LT_EsOFGI6OZr2mAGzvfvicNJQ9stO84JTl5mY9E3JzTHg_8URyVs3UvEoJRFPqetTHi28vFl1elJ1Dz6Y3Jh0i2WYr2XoDpK9HeQLncWtR2y_18xO_4P7V8Cc87nBpmrWK9gme-eg2r4z483Dpk2U1trv0s3MHlkPbbw47o9kd4UF1M7KSehyfZ8cndr9vx9AyfPDybzBZzzG2vf1Vv4HRv9_t4n3XxGJgjWjLGZaJVYrSzzkeqKBCZWcSbpRDCYwc7NSpSyY1OSiu0Q8PQy0IXpda21JbrSLyFlWpa-fcQutj6WFk0XmMjS-_RyHHkFWsii4hKyABY3x-568jKKWbGVd7SLPOcGiYfGiaAr4P8TUvT8UfJjb578264znMEeSpVaCqKAD4P2digdHpiKj9doAxOdSMKtpkG8K7VhuFTQjR2WBRAsqQngwCReC_nVJOLhsyb2Ht4hBXmjRr85e_z7Ohgd0h9-JdCH2GN3ulEjKsNWKlnC7-JwKq2n5rB8xsL1xs1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0qghVSqxMltajtOfAzbVrvQ7qEvcYtix1FXLdlqN3uAEz-B38gvYSavdqkQElwiObaV2J6xv7E93wBs5WGBMDXLWYEzMJNWapapWDKrpIuDyCoRkb_z0VgNz-THz2F3m5B8YRp-iH7DjTSjnq9JwWlDeueGNZRcsNHA45Tk4X14QId0pJt7xz2DFEfxbByMhGAUh77jbQz4znL95XXpDti8e2fyNpatF6ODx2C6ZjR3UC63F5XZtt9-Y3j8r3Y-gUctVPWTRraewj1XPoPVQRch7jkkyXWVfXEz_wOuiLTl7rdct1_9UXkxMZNq7p8kxyc_v_8YTM_xyf3zyWwxx9zmBlj5As4O9k8HQ9aGZGCWmMkYl5FWUaatsS5QeY7gzCDkLIQQDsfYqt08ljzTUWGEtmgbOpnrvNDaFNpwHYiXsFJOS_cKfBsaFyqD9muYycI5tHMsOcZmgUFQJaQHrBuQ1LZ85RQ24yptmJZ5Sh2T9h3jwfu-_HXD1PHHkuvd-Katxs5TxHkqVmgtCg82-2zsUDpAyUo3XWAZnO12Kd5m7MFaIw79p4SoTbHAg2hJUPoCxOO9nFNOLmo-byLw4QE2mNdy8Je_T5PxaL9Pvf6XSu9gdXh6dJgejsaf3sBDek8HZFytw0o1W7gNxFmVeVtr0i-zwx9R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLeRYCBYKExMltajtOfAxLV10eK9TSqrcodhx11ZJd7WYP5cRP4Df2l3QmL7pUCAkukRyPldge29_Ynm8A3uRhgTA1y1mBMzCTVmqWqVgyq6SLg8gqEZG_8-ex2juUH47D4yte_A0_RL_hRiOjnq9pgM_yYvsXaSh5YKN9xynJw5twSyo0sQgW7fcEUhy1s_EvEoJRGPqOtjHg26vlV5ela1jz-pXJq1C2XouG9yDratFcQTndWlZmy37_jeDxf6p5H9ZboOonjWY9gBuufAh3Bl18uEeQJLMq--bm_jtcD2nD3W-Zbs_9UXkyMZNq4R8k-wcXP34Opkf45P7RZL5cYG5z_6t8DIfD3a-DPdYGZGCWeMkYl5FWUaatsS5QeY7QzCDgLIQQDnvYqp08ljzTUWGEtmgZOpnrvNDaFNpwHYgNWCunpXsKvg2NC5VB6zXMZOEcWjmW3GKzwCCkEtID1vVHalu2cgqacZY2PMs8pYZJ-4bx4G0vP2t4Ov4oudl1b9qO10WKKE_FCm1F4cHrPhsblI5PstJNlyiDc90ORduMPXjSaEP_KSFqQyzwIFrRk16AWLxXc8rJSc3mTfQ9PMAK81oN_vL3aTIe7fapZ_9S6BXc_vJ-mH4ajT8-h7v0mk7HuNqEtWq-dC8QZFXmZT2OLgE6jh4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aptamer+Blocking+Strategy+Inhibits+SARS%E2%80%90CoV%E2%80%902+Virus+Infection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Miao&rft.au=Liu%2C+Siwen&rft.au=Wei%2C+Xinyu&rft.au=Wan%2C+Shuang&rft.date=2021-04-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=10266&rft.epage=10272&rft_id=info:doi/10.1002%2Fanie.202100225&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon