Aptamer Blocking Strategy Inhibits SARS‐CoV‐2 Virus Infection
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 18; pp. 10266 - 10272 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.04.2021
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202100225 |
Cover
Abstract | The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM.
We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19. |
---|---|
AbstractList | The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (S
) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on S
that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against S
and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S
. CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to S
with high affinity (K
=0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC
of 0.42 nM. The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM. We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19. The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on S RBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against S RBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S RBD . CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to S RBD with high affinity ( K d =0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC 50 of 0.42 nM. The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM. The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD . CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to SRBD with high affinity (Kd =0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC50 of 0.42 nM.The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers' binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS-CoV-2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2-6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD . CoV2-6 was further shortened and engineered as a circular bivalent aptamer CoV2-6C3 (cb-CoV2-6C3) to improve the stability, affinity, and inhibition efficacy. cb-CoV2-6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb-CoV2-6C3 binds to SRBD with high affinity (Kd =0.13 nM) and blocks authentic SARS-CoV-2 virus with an IC50 of 0.42 nM. The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD ) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on S RBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against S RBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to S RBD . CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to S RBD with high affinity ( K d =0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC 50 of 0.42 nM. We propose an aptamer blocking strategy to inhibit SARS‐CoV‐2 infection. With the advantages of small size, rapid kinetics, high stability, sophisticated programmability and high security, our aptamers have great potential as prophylactic and therapeutic agents, which could greatly assist in the intervention of prevailing and emerging infectious diseases other than COVID‐19. |
Author | Weng, Xiaonan Wan, Shuang Lu, Yao Liu, Siwen Sun, Miao Song, Ting Lin, Zhu Wei, Xinyu Song, Yanling Huang, Mengjiao Chen, Honglin Yang, Chaoyong |
AuthorAffiliation | 1 The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China 3 State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China 2 Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200127 China |
AuthorAffiliation_xml | – name: 3 State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China – name: 1 The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China – name: 2 Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200127 China |
Author_xml | – sequence: 1 givenname: Miao surname: Sun fullname: Sun, Miao organization: Xiamen University – sequence: 2 givenname: Siwen surname: Liu fullname: Liu, Siwen organization: the University of Hong Kong – sequence: 3 givenname: Xinyu surname: Wei fullname: Wei, Xinyu organization: Xiamen University – sequence: 4 givenname: Shuang surname: Wan fullname: Wan, Shuang organization: Xiamen University – sequence: 5 givenname: Mengjiao surname: Huang fullname: Huang, Mengjiao organization: Xiamen University – sequence: 6 givenname: Ting surname: Song fullname: Song, Ting organization: Xiamen University – sequence: 7 givenname: Yao surname: Lu fullname: Lu, Yao organization: Xiamen University – sequence: 8 givenname: Xiaonan surname: Weng fullname: Weng, Xiaonan organization: Xiamen University – sequence: 9 givenname: Zhu surname: Lin fullname: Lin, Zhu organization: Xiamen University – sequence: 10 givenname: Honglin surname: Chen fullname: Chen, Honglin email: hlchen@hku.hk organization: the University of Hong Kong – sequence: 11 givenname: Yanling orcidid: 0000-0002-6793-6685 surname: Song fullname: Song, Yanling email: ylsong@xmu.edu.cn organization: Xiamen University – sequence: 12 givenname: Chaoyong orcidid: 0000-0002-2374-5342 surname: Yang fullname: Yang, Chaoyong email: cyyang@xmu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33561300$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtLHDEYhkNR6qHe9rIM9MabWXOYZJKbwnTxsCAWuuptyGQya-xssk1mlL3zJ_gb_SVmWV1boZRADnzP--Y77IEt550B4DOCIwQhPlLOmhGGePXA9APYRRSjnJQl2Ur3gpC85BTtgL0YbxPCOWQfwQ4hlCEC4S6oqkWv5iZk3zuvf1k3y6Z9UL2ZLbOJu7G17WM2rX5Onx4ex_467Ti7tmGIKdoa3VvvPoHtVnXRHLyc--Dq5PhyfJaf_zidjKvzXFMhaI6LUrBSCV1rA1nTQCpqDmFLCDGKcc1QwwusRNnWRGhEmSka0bRC1K2osYBkH3xb-y6Gem4abVxKtJOLYOcqLKVXVv4dcfZGzvyd5BAVGBbJ4PDFIPjfg4m9nNuoTdcpZ_wQJS44R1ykldCv79BbPwSXypOYIsaZoIwk6sufGW1See1uAkZrQAcfYzDtBkFQriYmV-OTm_ElQfFOoG2vVl1OFdnu3zKxlt3bziz_84msLibHb9pnV2KvoA |
CitedBy_id | crossref_primary_10_1021_acsnano_2c06803 crossref_primary_10_1038_s41598_024_58315_0 crossref_primary_10_1016_j_aca_2023_341531 crossref_primary_10_1016_j_bios_2024_116642 crossref_primary_10_1021_jacs_1c11554 crossref_primary_10_1016_j_cossms_2021_100966 crossref_primary_10_1016_j_bbrc_2022_04_071 crossref_primary_10_1063_5_0130011 crossref_primary_10_1038_s41392_023_01472_x crossref_primary_10_1186_s43088_021_00152_5 crossref_primary_10_1021_acs_analchem_2c02670 crossref_primary_10_1016_j_cclet_2022_01_081 crossref_primary_10_1002_bmm2_12024 crossref_primary_10_1186_s12985_022_01943_7 crossref_primary_10_3390_v13101983 crossref_primary_10_1073_pnas_2112942118 crossref_primary_10_1016_j_heliyon_2023_e16458 crossref_primary_10_1016_j_snb_2024_136378 crossref_primary_10_1021_acs_biochem_3c00596 crossref_primary_10_1039_D4OB00645C crossref_primary_10_1134_S000629792309002X crossref_primary_10_1016_j_aca_2023_341302 crossref_primary_10_1016_j_ijbiomac_2023_128677 crossref_primary_10_3390_biologics3020007 crossref_primary_10_1002_agt2_620 crossref_primary_10_3390_ijms241310799 crossref_primary_10_3390_v14112346 crossref_primary_10_3390_ijms23010557 crossref_primary_10_1021_acsami_2c02405 crossref_primary_10_1021_acs_jmedchem_1c01567 crossref_primary_10_3390_pharmaceutics15010151 crossref_primary_10_1016_j_ccr_2024_216101 crossref_primary_10_1002_anie_202212496 crossref_primary_10_1002_anie_202107730 crossref_primary_10_1016_j_snb_2021_130561 crossref_primary_10_1016_j_bios_2021_113595 crossref_primary_10_1021_jacs_1c12593 crossref_primary_10_1016_j_xcrp_2022_101048 crossref_primary_10_1016_j_ab_2023_115223 crossref_primary_10_1126_sciadv_abh2848 crossref_primary_10_3390_biotech14010020 crossref_primary_10_1002_advs_202300656 crossref_primary_10_3390_ijms241411780 crossref_primary_10_1016_j_coviro_2021_09_005 crossref_primary_10_1155_2023_9224815 crossref_primary_10_1039_D2CC01598F crossref_primary_10_1016_j_xcrp_2023_101249 crossref_primary_10_3390_molecules27185818 crossref_primary_10_1002_ange_202212496 crossref_primary_10_1007_s00604_023_05747_6 crossref_primary_10_1002_ange_202315185 crossref_primary_10_3389_fbioe_2022_866368 crossref_primary_10_2174_1389557522666220112094951 crossref_primary_10_3389_fmicb_2021_767104 crossref_primary_10_1002_sstr_202300089 crossref_primary_10_1021_acsami_5c00016 crossref_primary_10_3390_ijms23031412 crossref_primary_10_3390_biomedicines10123274 crossref_primary_10_1021_acs_jmedchem_3c01607 crossref_primary_10_1016_j_tibtech_2022_07_012 crossref_primary_10_1002_ange_202110819 crossref_primary_10_1016_j_chempr_2024_10_021 crossref_primary_10_1021_acscentsci_2c01263 crossref_primary_10_1016_j_omtn_2021_06_014 crossref_primary_10_1007_s00604_022_05242_4 crossref_primary_10_1016_j_drudis_2023_103663 crossref_primary_10_1002_anie_202212879 crossref_primary_10_1093_nar_gkab574 crossref_primary_10_1039_D3CS00774J crossref_primary_10_1021_acsinfecdis_1c00546 crossref_primary_10_1021_jacs_2c02764 crossref_primary_10_1016_j_asems_2024_100125 crossref_primary_10_3390_ijms25094642 crossref_primary_10_1002_INMD_20230041 crossref_primary_10_1021_acsnano_2c03219 crossref_primary_10_1021_acsptsci_3c00258 crossref_primary_10_1038_s41392_024_01748_w crossref_primary_10_1039_D4NR02535K crossref_primary_10_1016_j_ab_2022_114633 crossref_primary_10_1021_acs_analchem_2c03437 crossref_primary_10_1016_j_cej_2023_143844 crossref_primary_10_1021_jacs_1c08226 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1093_jaoacint_qsae004 crossref_primary_10_1016_j_trac_2022_116767 crossref_primary_10_1039_D4AN00812J crossref_primary_10_1002_ange_202113795 crossref_primary_10_1016_j_jgeb_2024_100400 crossref_primary_10_1021_acs_nanolett_3c04510 crossref_primary_10_3390_pharmaceutics17030394 crossref_primary_10_1016_j_cossms_2024_101212 crossref_primary_10_1002_ange_202212879 crossref_primary_10_1021_jacs_1c02929 crossref_primary_10_1002_adhm_202200031 crossref_primary_10_1039_D3CC02102E crossref_primary_10_1002_anie_202415226 crossref_primary_10_1080_17460441_2023_2264187 crossref_primary_10_3390_ijms24054401 crossref_primary_10_1016_j_bios_2023_115400 crossref_primary_10_3390_molecules28124645 crossref_primary_10_1021_jacs_3c11760 crossref_primary_10_1039_D4TB01946F crossref_primary_10_1016_j_biotechadv_2021_107902 crossref_primary_10_1002_anie_202315185 crossref_primary_10_1016_j_memsci_2022_121198 crossref_primary_10_2174_1568026623666230623145802 crossref_primary_10_1002_anie_202110819 crossref_primary_10_1002_anse_202300001 crossref_primary_10_3390_ijms24043525 crossref_primary_10_1038_s41598_023_41885_w crossref_primary_10_3390_bios14030146 crossref_primary_10_1016_j_cej_2023_145450 crossref_primary_10_1021_acsami_2c13768 crossref_primary_10_1021_acsptsci_2c00156 crossref_primary_10_1080_15257770_2022_2109170 crossref_primary_10_1126_sciadv_abn9665 crossref_primary_10_3389_fmicb_2021_758948 crossref_primary_10_3390_ph14070622 crossref_primary_10_1126_sciadv_abq6207 crossref_primary_10_1002_anie_202113795 crossref_primary_10_1016_j_hlife_2024_07_007 crossref_primary_10_1016_j_jhazmat_2024_135452 crossref_primary_10_2174_1568009622666220214101059 crossref_primary_10_1002_ange_202107730 crossref_primary_10_1073_pnas_2303292120 crossref_primary_10_3389_fmolb_2023_1288686 crossref_primary_10_1016_j_bios_2021_113944 crossref_primary_10_3389_fcimb_2024_1415885 crossref_primary_10_3390_molecules27030850 crossref_primary_10_1016_j_cej_2025_161497 crossref_primary_10_31857_S0320972523090026 crossref_primary_10_1002_cmdc_202200166 crossref_primary_10_1021_acs_analchem_4c04609 crossref_primary_10_1002_anse_202200012 crossref_primary_10_1186_s12931_023_02590_4 crossref_primary_10_1002_smtd_202300327 crossref_primary_10_1016_j_aca_2024_343004 crossref_primary_10_1021_jacs_2c09870 crossref_primary_10_1246_bcsj_20220179 crossref_primary_10_1002_anie_202407049 crossref_primary_10_3390_v15112195 crossref_primary_10_1080_10717544_2022_2079768 crossref_primary_10_1002_ange_202407049 crossref_primary_10_1002_anbr_202200067 crossref_primary_10_1002_cnma_202300069 crossref_primary_10_1002_ange_202415226 crossref_primary_10_4103_JAPTR_JAPTR_117_23 crossref_primary_10_1021_acs_analchem_4c01607 |
Cites_doi | 10.1155/2014/157895 10.1126/science.abb2762 10.1016/S0140-6736(20)30185-9 10.1002/anie.201901192 10.1021/jacs.8b08047 10.1002/ange.201916039 10.1021/jacs.7b04547 10.1056/NEJMoa2001017 10.1021/acs.analchem.0c01394 10.1021/jacs.9b11490 10.1016/j.cell.2020.02.052 10.1021/jacs.9b12409 10.1002/ange.201901192 10.1038/s41564-020-00789-5 10.1016/j.cell.2020.05.025 10.1002/anie.201916039 10.1021/acs.analchem.0c00051 10.1038/s41467-020-15297-7 10.1002/anie.202004805 10.1002/anie.201809753 10.1093/nar/gkaa800 10.1016/j.cell.2020.04.031 10.1016/j.cell.2020.05.042 10.1021/acsnano.9b09884 10.1038/nm.3443 10.1038/s41586-020-2599-8 10.1038/s41557-020-0426-3 10.1038/s41586-020-2381-y 10.1038/s41586-020-2349-y 10.1039/C7SC05141G 10.1038/s41586-020-2012-7 10.1002/ange.201809753 10.1002/advs.201900143 10.1038/s41586-020-2180-5 10.1038/s41586-020-2380-z 10.1126/science.abb9983 10.1101/2020.03.28.013276 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202100225 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Public Health |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 10272 |
ExternalDocumentID | PMC8014204 33561300 10_1002_anie_202100225 ANIE202100225 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22022409; 21735004; 21874089; 21705024 – fundername: National Natural Science Foundation of China grantid: 21874089 – fundername: National Natural Science Foundation of China grantid: 22022409 – fundername: National Natural Science Foundation of China grantid: 21705024 – fundername: National Natural Science Foundation of China grantid: 21735004 – fundername: ; grantid: 22022409; 21735004; 21874089; 21705024 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5995-247967a9cbce06dd059b800f333ea68c61d842a97fb39c156e4d9df99bf9b2903 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:45:35 EDT 2025 Fri Jul 11 00:35:06 EDT 2025 Sun Jul 13 04:17:46 EDT 2025 Wed Feb 19 02:28:18 EST 2025 Tue Jul 01 01:17:56 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Jan 22 16:29:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | neutralization therapy SARS-CoV-2 viral infections aptamers |
Language | English |
License | 2021 Wiley-VCH GmbH. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5995-247967a9cbce06dd059b800f333ea68c61d842a97fb39c156e4d9df99bf9b2903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6793-6685 0000-0002-2374-5342 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8014204 |
PMID | 33561300 |
PQID | 2516869563 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8014204 proquest_miscellaneous_2488189898 proquest_journals_2516869563 pubmed_primary_33561300 crossref_primary_10_1002_anie_202100225 crossref_citationtrail_10_1002_anie_202100225 wiley_primary_10_1002_anie_202100225_ANIE202100225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 26, 2021 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: April 26, 2021 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2019; 6 2018; 140 2020; 581 2020; 382 2020; 583 2020; 142 2020; 181 2020; 182 2020 2020; 59 132 2020; 369 2020; 59 2020; 14 2020; 584 2014; 2014 2020; 12 2020; 11 2020; 367 2020; 586 2019 2019; 58 131 2017; 139 2014; 20 2018; 9 2020; 5 2020; 395 2018 2018; 57 130 2020; 92 2020; 48 2020; 579 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_3 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_47_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_39_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_33_1 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 58 131 start-page: 8013 8097 year: 2019 2019 end-page: 8017 8101 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 9128 year: 2017 end-page: 9131 publication-title: J. Am. Chem. Soc. – volume: 2014 year: 2014 publication-title: Adv. Biol. – volume: 369 start-page: 330 year: 2020 end-page: 333 publication-title: Science – volume: 20 start-page: 143 year: 2014 end-page: 151 publication-title: Nat. Med. – volume: 59 start-page: 17540 year: 2020 end-page: 17700 publication-title: Angew. Chem. Int. Ed. – volume: 395 start-page: 470 year: 2020 end-page: 473 publication-title: Lancet – volume: 11 start-page: 1518 year: 2020 publication-title: Nat. Commun. – volume: 581 start-page: 215 year: 2020 end-page: 220 publication-title: Nature – volume: 382 start-page: 727 year: 2020 end-page: 733 publication-title: N. Engl. J. Med. – volume: 48 start-page: 10680 year: 2020 end-page: 10690 publication-title: Nucleic Acids Res. – volume: 584 start-page: 120 year: 2020 end-page: 124 publication-title: Nature – volume: 59 132 start-page: 4800 4830 year: 2020 2020 end-page: 4805 4835 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 181 start-page: 1004 year: 2020 end-page: 1015 publication-title: Cell – volume: 182 start-page: 429 year: 2020 end-page: 446 publication-title: Cell – volume: 367 start-page: 1444 year: 2020 end-page: 1448 publication-title: Science – volume: 57 130 start-page: 17048 17294 year: 2018 2018 end-page: 17052 17298 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 583 start-page: 290 year: 2020 end-page: 295 publication-title: Nature – volume: 140 start-page: 13335 year: 2018 end-page: 13339 publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 5370 year: 2020 end-page: 5378 publication-title: Anal. Chem. – volume: 579 start-page: 270 year: 2020 end-page: 273 publication-title: Nature – volume: 182 start-page: 73 year: 2020 end-page: 84 publication-title: Cell – volume: 142 start-page: 2532 year: 2020 end-page: 2540 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 381 year: 2020 end-page: 390 publication-title: Nat. Chem. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 142 start-page: 3862 year: 2020 end-page: 3872 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3050 year: 2018 end-page: 3055 publication-title: Chem. Sci. – volume: 92 start-page: 9895 year: 2020 end-page: 9900 publication-title: Anal. Chem. – volume: 586 start-page: 572 year: 2020 end-page: 577 publication-title: Nature – volume: 5 start-page: 1185 year: 2020 end-page: 1191 publication-title: Nat. Microbiol. – volume: 584 start-page: 115 year: 2020 end-page: 119 publication-title: Nature – volume: 181 start-page: 271 year: 2020 end-page: 280 publication-title: Cell – volume: 14 start-page: 9562 year: 2020 end-page: 9571 publication-title: ACS Nano – ident: e_1_2_6_23_1 – ident: e_1_2_6_15_2 doi: 10.1155/2014/157895 – ident: e_1_2_6_33_1 doi: 10.1126/science.abb2762 – ident: e_1_2_6_2_2 doi: 10.1016/S0140-6736(20)30185-9 – ident: e_1_2_6_37_1 – ident: e_1_2_6_39_2 doi: 10.1002/anie.201901192 – ident: e_1_2_6_21_2 doi: 10.1021/jacs.8b08047 – ident: e_1_2_6_18_3 doi: 10.1002/ange.201916039 – ident: e_1_2_6_43_2 doi: 10.1021/jacs.7b04547 – ident: e_1_2_6_4_2 doi: 10.1056/NEJMoa2001017 – ident: e_1_2_6_36_2 doi: 10.1021/acs.analchem.0c01394 – ident: e_1_2_6_44_2 doi: 10.1021/jacs.9b11490 – ident: e_1_2_6_32_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_2_6_20_2 doi: 10.1021/jacs.9b12409 – ident: e_1_2_6_11_2 – ident: e_1_2_6_39_3 doi: 10.1002/ange.201901192 – ident: e_1_2_6_47_1 doi: 10.1038/s41564-020-00789-5 – ident: e_1_2_6_8_2 doi: 10.1016/j.cell.2020.05.025 – ident: e_1_2_6_6_1 – ident: e_1_2_6_18_2 doi: 10.1002/anie.201916039 – ident: e_1_2_6_22_2 doi: 10.1021/acs.analchem.0c00051 – ident: e_1_2_6_25_2 doi: 10.1038/s41467-020-15297-7 – ident: e_1_2_6_41_2 doi: 10.1002/anie.202004805 – ident: e_1_2_6_34_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_26_2 doi: 10.1002/anie.201809753 – ident: e_1_2_6_38_2 doi: 10.1093/nar/gkaa800 – ident: e_1_2_6_45_1 doi: 10.1016/j.cell.2020.04.031 – ident: e_1_2_6_5_1 doi: 10.1016/j.cell.2020.05.042 – ident: e_1_2_6_40_2 doi: 10.1021/acsnano.9b09884 – ident: e_1_2_6_14_2 doi: 10.1038/nm.3443 – ident: e_1_2_6_42_1 – ident: e_1_2_6_46_1 doi: 10.1038/s41586-020-2599-8 – ident: e_1_2_6_24_2 doi: 10.1038/s41557-020-0426-3 – ident: e_1_2_6_12_2 doi: 10.1038/s41586-020-2381-y – ident: e_1_2_6_9_2 doi: 10.1038/s41586-020-2349-y – ident: e_1_2_6_35_2 doi: 10.1039/C7SC05141G – ident: e_1_2_6_3_2 doi: 10.1038/s41586-020-2012-7 – ident: e_1_2_6_19_1 – ident: e_1_2_6_26_3 doi: 10.1002/ange.201809753 – ident: e_1_2_6_17_2 doi: 10.1002/advs.201900143 – ident: e_1_2_6_30_1 – ident: e_1_2_6_10_1 – ident: e_1_2_6_31_2 doi: 10.1038/s41586-020-2180-5 – ident: e_1_2_6_27_1 – ident: e_1_2_6_13_1 – ident: e_1_2_6_16_1 – ident: e_1_2_6_7_2 doi: 10.1038/s41586-020-2380-z – ident: e_1_2_6_28_2 doi: 10.1126/science.abb9983 – ident: e_1_2_6_29_2 doi: 10.1101/2020.03.28.013276 |
SSID | ssj0028806 |
Score | 2.6774492 |
Snippet | The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and... The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (S RBD )... The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (S ) and... The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (SRBD )... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10266 |
SubjectTerms | ACE2 Affinity Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - metabolism Antibodies Antiviral Agents - chemistry Antiviral Agents - pharmacology Aptamers Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - pharmacology Binding Blocking COVID-19 COVID-19 - drug therapy COVID-19 - metabolism Drug Discovery Global health HEK293 Cells Humans Molecular docking Molecular Docking Simulation neutralization therapy Pandemics Protein Binding - drug effects Protein Interaction Domains and Motifs - drug effects Public health Receptors Room temperature SARS-CoV-2 SARS-CoV-2 - chemistry SARS-CoV-2 - drug effects SARS-CoV-2 - physiology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - metabolism Strategy Viral diseases viral infections Viruses |
Title | Aptamer Blocking Strategy Inhibits SARS‐CoV‐2 Virus Infection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100225 https://www.ncbi.nlm.nih.gov/pubmed/33561300 https://www.proquest.com/docview/2516869563 https://www.proquest.com/docview/2488189898 https://pubmed.ncbi.nlm.nih.gov/PMC8014204 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXODSF32khSqVKvVkyNqOEx_DCgRI5QAFcYtsxxErIIt2s4f21J_Ab-SXdCYvWFBVqb1EsTxWYntsf2N7vgH4UsQlwlRTsBJnYCad1MyoVDKnpE-jxCmRkL_ztyO1fyoPz-PzB178LT_EsOFGI6OZr2mAGzvfvicNJQ9stO84JTl5mY9E3JzTHg_8URyVs3UvEoJRFPqetTHi28vFl1elJ1Dz6Y3Jh0i2WYr2XoDpK9HeQLncWtR2y_18xO_4P7V8Cc87nBpmrWK9gme-eg2r4z483Dpk2U1trv0s3MHlkPbbw47o9kd4UF1M7KSehyfZ8cndr9vx9AyfPDybzBZzzG2vf1Vv4HRv9_t4n3XxGJgjWjLGZaJVYrSzzkeqKBCZWcSbpRDCYwc7NSpSyY1OSiu0Q8PQy0IXpda21JbrSLyFlWpa-fcQutj6WFk0XmMjS-_RyHHkFWsii4hKyABY3x-568jKKWbGVd7SLPOcGiYfGiaAr4P8TUvT8UfJjb578264znMEeSpVaCqKAD4P2digdHpiKj9doAxOdSMKtpkG8K7VhuFTQjR2WBRAsqQngwCReC_nVJOLhsyb2Ht4hBXmjRr85e_z7Ohgd0h9-JdCH2GN3ulEjKsNWKlnC7-JwKq2n5rB8xsL1xs1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0qghVSqxMltajtOfAzbVrvQ7qEvcYtix1FXLdlqN3uAEz-B38gvYSavdqkQElwiObaV2J6xv7E93wBs5WGBMDXLWYEzMJNWapapWDKrpIuDyCoRkb_z0VgNz-THz2F3m5B8YRp-iH7DjTSjnq9JwWlDeueGNZRcsNHA45Tk4X14QId0pJt7xz2DFEfxbByMhGAUh77jbQz4znL95XXpDti8e2fyNpatF6ODx2C6ZjR3UC63F5XZtt9-Y3j8r3Y-gUctVPWTRraewj1XPoPVQRch7jkkyXWVfXEz_wOuiLTl7rdct1_9UXkxMZNq7p8kxyc_v_8YTM_xyf3zyWwxx9zmBlj5As4O9k8HQ9aGZGCWmMkYl5FWUaatsS5QeY7gzCDkLIQQDsfYqt08ljzTUWGEtmgbOpnrvNDaFNpwHYiXsFJOS_cKfBsaFyqD9muYycI5tHMsOcZmgUFQJaQHrBuQ1LZ85RQ24yptmJZ5Sh2T9h3jwfu-_HXD1PHHkuvd-Katxs5TxHkqVmgtCg82-2zsUDpAyUo3XWAZnO12Kd5m7MFaIw79p4SoTbHAg2hJUPoCxOO9nFNOLmo-byLw4QE2mNdy8Je_T5PxaL9Pvf6XSu9gdXh6dJgejsaf3sBDek8HZFytw0o1W7gNxFmVeVtr0i-zwx9R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLeRYCBYKExMltajtOfAxLV10eK9TSqrcodhx11ZJd7WYP5cRP4Df2l3QmL7pUCAkukRyPldge29_Ynm8A3uRhgTA1y1mBMzCTVmqWqVgyq6SLg8gqEZG_8-ex2juUH47D4yte_A0_RL_hRiOjnq9pgM_yYvsXaSh5YKN9xynJw5twSyo0sQgW7fcEUhy1s_EvEoJRGPqOtjHg26vlV5ela1jz-pXJq1C2XouG9yDratFcQTndWlZmy37_jeDxf6p5H9ZboOonjWY9gBuufAh3Bl18uEeQJLMq--bm_jtcD2nD3W-Zbs_9UXkyMZNq4R8k-wcXP34Opkf45P7RZL5cYG5z_6t8DIfD3a-DPdYGZGCWeMkYl5FWUaatsS5QeY7QzCDgLIQQDnvYqp08ljzTUWGEtmgZOpnrvNDaFNpwHYgNWCunpXsKvg2NC5VB6zXMZOEcWjmW3GKzwCCkEtID1vVHalu2cgqacZY2PMs8pYZJ-4bx4G0vP2t4Ov4oudl1b9qO10WKKE_FCm1F4cHrPhsblI5PstJNlyiDc90ORduMPXjSaEP_KSFqQyzwIFrRk16AWLxXc8rJSc3mTfQ9PMAK81oN_vL3aTIe7fapZ_9S6BXc_vJ-mH4ajT8-h7v0mk7HuNqEtWq-dC8QZFXmZT2OLgE6jh4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aptamer+Blocking+Strategy+Inhibits+SARS%E2%80%90CoV%E2%80%902+Virus+Infection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Miao&rft.au=Liu%2C+Siwen&rft.au=Wei%2C+Xinyu&rft.au=Wan%2C+Shuang&rft.date=2021-04-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=10266&rft.epage=10272&rft_id=info:doi/10.1002%2Fanie.202100225&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |