基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析
作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻...
        Saved in:
      
    
          | Published in | 农业工程学报 Vol. 33; no. 11; pp. 147 - 156 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            赤峰学院资源与环境科学学院,赤峰 024000
    
        2017
     中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-6819 | 
| DOI | 10.11975/j.issn.1002-6819.2017.11.019 | 
Cover
| Abstract | 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。 | 
    
|---|---|
| AbstractList | 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。 TP79; 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义.该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型.结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km2,其中大豆的种植面积最大,占作物种植面积的51.24%.基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R2=0.8237,均方根误差135.45 g/m2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8659、2846 kg/hm2,总产量分别为16.93×108、6.27×108 kg.利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考.  | 
    
| Abstract_FL | Crop classification and yield estimation are key research in remote sensing-based precision agriculture, which have important significance in making agricultural policies. To improve the accuracy of classification based on single-source and single-season images, multi-temporal, multi-source and high spatial resolution image data were used to extract information of crops. Multi-source remote sensing data can play an important role in the coupling process. Multi-spectral data are used to distinguish between different crop species. Based on Landsat8 OLI (operational land imager) and GF-1 images, crop structure was mapped and yield was estimated for Beian County, Heilongjiang Province. According to phonology information and spectral characteristics, the critical period of crop identification and the characteristic parameters were determined, and the model of object-oriented decision-tree classification was built and crop structure was explored. Meanwhile, compositing multi-spectral images of crop maturation period and yield crop data, vegetation indexes were selected. Using correlation analysis, stepwise regression analysis and one-way ANOVA (analysis of variance), the correlation was explored and the model was built between yields of maize and soybeans and vegetation indices, which included NDVI (normalized differential vegetation index), EVI (enhanced vegetation index), GNDVI (green normalized difference vegetation index), OSAVI (optimal soil adjusted vegetation index), RVI (ratio vegetation index), SIPI (structure intensive pigment index), SAVI (soil adjusted vegetation index), NRI (nitrogen reflectance index) and DVI (difference vegetation index). Results show that the multi-source and multi-temporal remote sensing data can be used to show seasonal characteristics of different crops. Characteristic parameters of crops (including NDVI, NDWI, RVI, brightness, rectangular fit and texture) can be used to identify crop characteristics in landsat8 OLI and GF-1 images. After verified by ground investigation, the results of classification were accurate. The overall accuracy and Kappa coefficient were 87.54% and 0.8115, respectively. The soybean had the largest area (2204 km2) and the areas of maize, rice and wheat were 1955, 122 and 19 km2, respectively. The high-yield maize was concentrated in the western area and the high-yield soybean was distributed in the east of study area. Correlation coefficients between crop yields and vegetation indices were more than 0.85 (P<0.001), which indicated that vegetation indices (including NDVI, EVI, GNDVI, OSAV and RVI) were closely related with the production of maize and soybean. Meanwhile, the sensibility of each vegetation index was different (NDVI>GNDVI>OSAVI>EVI>RVI>NRI>SAVI>SIPI>DVI). After cross validation for the yield-estimation model, the NDVI, EVI and GNDVI model can be used to estimate accurately the yield of maize and soybean, and the yield estimation was significantly correlated to the actual production (R2=0.8237, RMSE=135.45 g/m2, accuracy was 80.55%) based on regression analysis which indicated these vegetation indices can be used for crop yields estimation with the yield-estimation model. Total yields of maize and soybean were estimated to be 16.93×108 and 6.27×108 kg, with per unit area yields of 8659 and 2846 kg/hm2, respectively. Crop planting structure can be mapped accurately and efficiently using crop key phonological phase, multi-source and multi-temporal remote sensing data. The results provide the reference for the study on remote sensing indicators and the scientific and technological support for the development of precision agriculture science. | 
    
| Author | 欧阳玲 毛德华 王宗明 李慧颖 满卫东 贾明明 刘明月 张淼 刘焕军 | 
    
| AuthorAffiliation | 赤峰学院资源与环境科学学院,赤峰024000 中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春130102 吉林大学地球科学学院,长春130000 中国科学院遥感与数字地球研究所,北京100049 中国科学院大学,北京100049 | 
    
| AuthorAffiliation_xml | – name: 赤峰学院资源与环境科学学院,赤峰 024000;中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102;中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102;中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049 | 
    
| Author_xml | – sequence: 1 fullname: 欧阳玲 毛德华 王宗明 李慧颖 满卫东 贾明明 刘明月 张淼 刘焕军  | 
    
| BookMark | eNo9j09LAkEYh-dgkJnfIYLotNu8szszO8eQNGHBi3eZcXdspcZyi_Kc9OegBt0i7BJIx25h-G12XfoWrRjBCz94fw_vy7OFCqZnQoT2ANsAgtODrh3FsbEBY2IxD4RNMPC8szGIAir-7zdROY4jhSk4HGMXiqiSvs2T-bhWtSD5GvvSBLG89HYafj1dfKa3k-xlmCxes8ePbDZavo-y7-fldJiTyXz2cz9JH-6W06dttKHlaRyW_7KEmtWjZuXY8hu1euXQt9pUCEtrx1VMUMk1lyxUHg-JYtwBRpWi3A2wpmw1kggdYuYS19WSB0RShbXSTgntr89eS6Ol6bS6vau-yR-2zKDTvlErZ4DcOCd312T7pGc6F1HOnvejM9kftBgn1KMCY-cXTuBtjQ | 
    
| ClassificationCodes | TP79 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.11975/j.issn.1002-6819.2017.11.019 | 
    
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| DocumentTitleAlternate | Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images | 
    
| DocumentTitle_FL | Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images | 
    
| EndPage | 156 | 
    
| ExternalDocumentID | nygcxb201711019 672585900  | 
    
| GrantInformation_xml | – fundername: 中国科学院野外站联盟项目; 国家重点研发计划子课题 funderid: (KFJ-SW-YW026); (2016YFC0500201-03)  | 
    
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX  | 
    
| ID | FETCH-LOGICAL-c599-ff34b695a7f7a6eb87e2b673165bb574d0f56f56fa29fe064244fa7d2a5b0fbf3 | 
    
| ISSN | 1002-6819 | 
    
| IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:00:07 EST 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | 多源/多时相影像 面向对象 作物 plant structure 种植结构 remote sensing 提取 遥感 crops extraction object-oriented image crop yields multi-source/temporal images 作物产量  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c599-ff34b695a7f7a6eb87e2b673165bb574d0f56f56fa29fe064244fa7d2a5b0fbf3 | 
    
| Notes | remote sensing; crops; extraction; multi-source/temporal images; object-oriented image; plant structure; crop yields 11-2047/S Ouyang Ling1'2'5, Mao Dehua2, Wang Zongming2, Li Huiying3, Man Weidong2'5, Jia Mingming2, Liu Mingyue2'5, Zhang Miao4,Liu Huanjun2 (1. School of Resource and Environmental Sciences, Chifeng University, Chifeng 024000, China; 2. Northeast Institute of Geography and Agroecology, Key Laboratory of Wetland Ecology and Environment, Chinese Academy of Sciences, Changchun 130102, China; 3. College of Earth Science, Jilin University, Changchun 130000, China; 4. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100049, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China) Crop classification and yield estimation are key research in remote sensing-based precision agriculture,which have important significance in making agricultural policies.To improve the accuracy of classification based on single-source and single-season images,multi-temporal  | 
    
| PageCount | 10 | 
    
| ParticipantIDs | wanfang_journals_nygcxb201711019 chongqing_primary_672585900  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017 | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – year: 2017 text: 2017  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 农业工程学报 | 
    
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering | 
    
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering | 
    
| PublicationYear | 2017 | 
    
| Publisher | 赤峰学院资源与环境科学学院,赤峰 024000 中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049  | 
    
| Publisher_xml | – name: 赤峰学院资源与环境科学学院,赤峰 024000 – name: 中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 – name: 中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102 – name: 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049  | 
    
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668  | 
    
| Score | 2.1774256 | 
    
| Snippet | 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时... TP79; 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义.该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和...  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 147 | 
    
| SubjectTerms | 作物 作物产量 多源/多时相影像 提取 种植结构 遥感 面向对象  | 
    
| Title | 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析 | 
    
| URI | http://lib.cqvip.com/qk/90712X/201711/672585900.html https://d.wanfangdata.com.cn/periodical/nygcxb201711019  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0GpTCcEB8RSlgHLAp2rLPuy1fdxXKKjApUi9hXWSTU8plFSCXql4HNoicUOoXJAqjtxQUf8macRfMOP1pqlAFSBFK9sznpmdiXdsyzMm5LbibelKVjiqFeYOU17H0TlUYTHBZKD9drnf8eBhuPiY3V_hK1PTTyZOLW309UJr849xJf9jVWgDu2KU7D9YdkwUGqAM9oUnWBief2VjmnGqGjSOaMbwKbO7DcczFQmVJQzjzfty_tHSPUSNUxp7WJABlQ2aCaqgDzP4KVUJtkhFI4WFCMopzUIaMVMQNI6pCrBFZVUv5GJ5A36mqBSGMrAAUGiRy5s6qymwgYaGnaEAMqBswJEbvtAxxpYopZGhIIE4r_4YRqLEclOSxoGROqOxP29gDapM9zhDmsgrBfC8xbKkQSZhhJMlDEqpeRXgxi3xyKcqNDB48cizpKK4EjsBGPBnyKkiNUnT6AAqJ2AJNBpYDO_gGuKg2GQSXaByFa_UFE_uy5QBqNaJoJcJpXUF1suU6T6q0eRN-AyvTDlqpx9emWf9d8-mBDeuDVksjFng4USxgHloLbuTycND4cN6ULnuNJnxcceqRmaiOI0bx1NmD3cFxt90D-9T8I5jqX3MlBAeL0m5F-CFCONjVHiIgJsTBVagM4RW4t45TVjMZbK61us-gxmaCZjrFXmvOzG3W75AzttFWT0qR9hFMrW5eomci7rrNjFN5zJJhp8PBgc7OL4G33eqkVWHkTU8_DZ8tTv6uDU4_DR693W0v330ZXv048PR3hZgDg72f77ZHb59fbT3_gpZbmTLyaJjLyBxWlwppygCpkPFc1GIPOxoKTq-DvGqN641F6ztFjzEX-6rooMrecaKXLT9nGu30EVwldR6a73ONVLXvuasLXShRci48HJYSBRFizE3b2Ec4SyZG2uj-bTMM9McG2-W1K1-mvbr87zZe9ltvdCoULSgun4qgTlyFjHLrcMbpNZf3-jchMl0X9-y_4dfuo2TYQ | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGF-1%E4%B8%8ELandsat8+OLI%E5%BD%B1%E5%83%8F%E7%9A%84%E4%BD%9C%E7%89%A9%E7%A7%8D%E6%A4%8D%E7%BB%93%E6%9E%84%E4%B8%8E%E4%BA%A7%E9%87%8F%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%AC%A7%E9%98%B3%E7%8E%B2+%E6%AF%9B%E5%BE%B7%E5%8D%8E+%E7%8E%8B%E5%AE%97%E6%98%8E+%E6%9D%8E%E6%85%A7%E9%A2%96+%E6%BB%A1%E5%8D%AB%E4%B8%9C+%E8%B4%BE%E6%98%8E%E6%98%8E+%E5%88%98%E6%98%8E%E6%9C%88+%E5%BC%A0%E6%B7%BC+%E5%88%98%E7%84%95%E5%86%9B&rft.date=2017&rft.issn=1002-6819&rft.volume=33&rft.issue=11&rft.spage=147&rft.epage=156&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.11.019&rft.externalDocID=672585900 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg  |