基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析

作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 11; pp. 147 - 156
Main Author 欧阳玲 毛德华 王宗明 李慧颖 满卫东 贾明明 刘明月 张淼 刘焕军
Format Journal Article
LanguageChinese
Published 赤峰学院资源与环境科学学院,赤峰 024000 2017
中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.11.019

Cover

Abstract 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。
AbstractList 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。
TP79; 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义.该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型.结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km2,其中大豆的种植面积最大,占作物种植面积的51.24%.基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R2=0.8237,均方根误差135.45 g/m2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8659、2846 kg/hm2,总产量分别为16.93×108、6.27×108 kg.利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考.
Abstract_FL Crop classification and yield estimation are key research in remote sensing-based precision agriculture, which have important significance in making agricultural policies. To improve the accuracy of classification based on single-source and single-season images, multi-temporal, multi-source and high spatial resolution image data were used to extract information of crops. Multi-source remote sensing data can play an important role in the coupling process. Multi-spectral data are used to distinguish between different crop species. Based on Landsat8 OLI (operational land imager) and GF-1 images, crop structure was mapped and yield was estimated for Beian County, Heilongjiang Province. According to phonology information and spectral characteristics, the critical period of crop identification and the characteristic parameters were determined, and the model of object-oriented decision-tree classification was built and crop structure was explored. Meanwhile, compositing multi-spectral images of crop maturation period and yield crop data, vegetation indexes were selected. Using correlation analysis, stepwise regression analysis and one-way ANOVA (analysis of variance), the correlation was explored and the model was built between yields of maize and soybeans and vegetation indices, which included NDVI (normalized differential vegetation index), EVI (enhanced vegetation index), GNDVI (green normalized difference vegetation index), OSAVI (optimal soil adjusted vegetation index), RVI (ratio vegetation index), SIPI (structure intensive pigment index), SAVI (soil adjusted vegetation index), NRI (nitrogen reflectance index) and DVI (difference vegetation index). Results show that the multi-source and multi-temporal remote sensing data can be used to show seasonal characteristics of different crops. Characteristic parameters of crops (including NDVI, NDWI, RVI, brightness, rectangular fit and texture) can be used to identify crop characteristics in landsat8 OLI and GF-1 images. After verified by ground investigation, the results of classification were accurate. The overall accuracy and Kappa coefficient were 87.54% and 0.8115, respectively. The soybean had the largest area (2204 km2) and the areas of maize, rice and wheat were 1955, 122 and 19 km2, respectively. The high-yield maize was concentrated in the western area and the high-yield soybean was distributed in the east of study area. Correlation coefficients between crop yields and vegetation indices were more than 0.85 (P<0.001), which indicated that vegetation indices (including NDVI, EVI, GNDVI, OSAV and RVI) were closely related with the production of maize and soybean. Meanwhile, the sensibility of each vegetation index was different (NDVI>GNDVI>OSAVI>EVI>RVI>NRI>SAVI>SIPI>DVI). After cross validation for the yield-estimation model, the NDVI, EVI and GNDVI model can be used to estimate accurately the yield of maize and soybean, and the yield estimation was significantly correlated to the actual production (R2=0.8237, RMSE=135.45 g/m2, accuracy was 80.55%) based on regression analysis which indicated these vegetation indices can be used for crop yields estimation with the yield-estimation model. Total yields of maize and soybean were estimated to be 16.93×108 and 6.27×108 kg, with per unit area yields of 8659 and 2846 kg/hm2, respectively. Crop planting structure can be mapped accurately and efficiently using crop key phonological phase, multi-source and multi-temporal remote sensing data. The results provide the reference for the study on remote sensing indicators and the scientific and technological support for the development of precision agriculture science.
Author 欧阳玲 毛德华 王宗明 李慧颖 满卫东 贾明明 刘明月 张淼 刘焕军
AuthorAffiliation 赤峰学院资源与环境科学学院,赤峰024000 中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春130102 吉林大学地球科学学院,长春130000 中国科学院遥感与数字地球研究所,北京100049 中国科学院大学,北京100049
AuthorAffiliation_xml – name: 赤峰学院资源与环境科学学院,赤峰 024000;中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102;中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102;中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049
Author_xml – sequence: 1
  fullname: 欧阳玲 毛德华 王宗明 李慧颖 满卫东 贾明明 刘明月 张淼 刘焕军
BookMark eNo9j09LAkEYh-dgkJnfIYLotNu8szszO8eQNGHBi3eZcXdspcZyi_Kc9OegBt0i7BJIx25h-G12XfoWrRjBCz94fw_vy7OFCqZnQoT2ANsAgtODrh3FsbEBY2IxD4RNMPC8szGIAir-7zdROY4jhSk4HGMXiqiSvs2T-bhWtSD5GvvSBLG89HYafj1dfKa3k-xlmCxes8ePbDZavo-y7-fldJiTyXz2cz9JH-6W06dttKHlaRyW_7KEmtWjZuXY8hu1euXQt9pUCEtrx1VMUMk1lyxUHg-JYtwBRpWi3A2wpmw1kggdYuYS19WSB0RShbXSTgntr89eS6Ol6bS6vau-yR-2zKDTvlErZ4DcOCd312T7pGc6F1HOnvejM9kftBgn1KMCY-cXTuBtjQ
ClassificationCodes TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.11.019
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images
DocumentTitle_FL Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images
EndPage 156
ExternalDocumentID nygcxb201711019
672585900
GrantInformation_xml – fundername: 中国科学院野外站联盟项目; 国家重点研发计划子课题
  funderid: (KFJ-SW-YW026); (2016YFC0500201-03)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c599-ff34b695a7f7a6eb87e2b673165bb574d0f56f56fa29fe064244fa7d2a5b0fbf3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:00:07 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 多源/多时相影像
面向对象
作物
plant structure
种植结构
remote sensing
提取
遥感
crops
extraction
object-oriented image
crop yields
multi-source/temporal images
作物产量
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599-ff34b695a7f7a6eb87e2b673165bb574d0f56f56fa29fe064244fa7d2a5b0fbf3
Notes remote sensing; crops; extraction; multi-source/temporal images; object-oriented image; plant structure; crop yields
11-2047/S
Ouyang Ling1'2'5, Mao Dehua2, Wang Zongming2, Li Huiying3, Man Weidong2'5, Jia Mingming2, Liu Mingyue2'5, Zhang Miao4,Liu Huanjun2 (1. School of Resource and Environmental Sciences, Chifeng University, Chifeng 024000, China; 2. Northeast Institute of Geography and Agroecology, Key Laboratory of Wetland Ecology and Environment, Chinese Academy of Sciences, Changchun 130102, China; 3. College of Earth Science, Jilin University, Changchun 130000, China; 4. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100049, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China)
Crop classification and yield estimation are key research in remote sensing-based precision agriculture,which have important significance in making agricultural policies.To improve the accuracy of classification based on single-source and single-season images,multi-temporal
PageCount 10
ParticipantIDs wanfang_journals_nygcxb201711019
chongqing_primary_672585900
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 赤峰学院资源与环境科学学院,赤峰 024000
中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049
Publisher_xml – name: 赤峰学院资源与环境科学学院,赤峰 024000
– name: 中国科学院大学,北京 100049%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春,130102%吉林大学地球科学学院,长春,130000%中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
– name: 中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室,长春 130102
– name: 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所,北京,100049
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1774256
Snippet 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时...
TP79; 作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义.该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 147
SubjectTerms 作物
作物产量
多源/多时相影像
提取
种植结构
遥感
面向对象
Title 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析
URI http://lib.cqvip.com/qk/90712X/201711/672585900.html
https://d.wanfangdata.com.cn/periodical/nygcxb201711019
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0GpTCcEB8RSlgHLAp2rLPuy1fdxXKKjApUi9hXWSTU8plFSCXql4HNoicUOoXJAqjtxQUf8macRfMOP1pqlAFSBFK9sznpmdiXdsyzMm5LbibelKVjiqFeYOU17H0TlUYTHBZKD9drnf8eBhuPiY3V_hK1PTTyZOLW309UJr849xJf9jVWgDu2KU7D9YdkwUGqAM9oUnWBief2VjmnGqGjSOaMbwKbO7DcczFQmVJQzjzfty_tHSPUSNUxp7WJABlQ2aCaqgDzP4KVUJtkhFI4WFCMopzUIaMVMQNI6pCrBFZVUv5GJ5A36mqBSGMrAAUGiRy5s6qymwgYaGnaEAMqBswJEbvtAxxpYopZGhIIE4r_4YRqLEclOSxoGROqOxP29gDapM9zhDmsgrBfC8xbKkQSZhhJMlDEqpeRXgxi3xyKcqNDB48cizpKK4EjsBGPBnyKkiNUnT6AAqJ2AJNBpYDO_gGuKg2GQSXaByFa_UFE_uy5QBqNaJoJcJpXUF1suU6T6q0eRN-AyvTDlqpx9emWf9d8-mBDeuDVksjFng4USxgHloLbuTycND4cN6ULnuNJnxcceqRmaiOI0bx1NmD3cFxt90D-9T8I5jqX3MlBAeL0m5F-CFCONjVHiIgJsTBVagM4RW4t45TVjMZbK61us-gxmaCZjrFXmvOzG3W75AzttFWT0qR9hFMrW5eomci7rrNjFN5zJJhp8PBgc7OL4G33eqkVWHkTU8_DZ8tTv6uDU4_DR693W0v330ZXv048PR3hZgDg72f77ZHb59fbT3_gpZbmTLyaJjLyBxWlwppygCpkPFc1GIPOxoKTq-DvGqN641F6ztFjzEX-6rooMrecaKXLT9nGu30EVwldR6a73ONVLXvuasLXShRci48HJYSBRFizE3b2Ec4SyZG2uj-bTMM9McG2-W1K1-mvbr87zZe9ltvdCoULSgun4qgTlyFjHLrcMbpNZf3-jchMl0X9-y_4dfuo2TYQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGF-1%E4%B8%8ELandsat8+OLI%E5%BD%B1%E5%83%8F%E7%9A%84%E4%BD%9C%E7%89%A9%E7%A7%8D%E6%A4%8D%E7%BB%93%E6%9E%84%E4%B8%8E%E4%BA%A7%E9%87%8F%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%AC%A7%E9%98%B3%E7%8E%B2+%E6%AF%9B%E5%BE%B7%E5%8D%8E+%E7%8E%8B%E5%AE%97%E6%98%8E+%E6%9D%8E%E6%85%A7%E9%A2%96+%E6%BB%A1%E5%8D%AB%E4%B8%9C+%E8%B4%BE%E6%98%8E%E6%98%8E+%E5%88%98%E6%98%8E%E6%9C%88+%E5%BC%A0%E6%B7%BC+%E5%88%98%E7%84%95%E5%86%9B&rft.date=2017&rft.issn=1002-6819&rft.volume=33&rft.issue=11&rft.spage=147&rft.epage=156&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.11.019&rft.externalDocID=672585900
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg