苹果采摘机器人夜间图像降噪算法

苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 10; pp. 219 - 226
Main Author 贾伟宽 赵德安 阮承治 沈甜 陈玉 姬伟
Format Journal Article
LanguageChinese
Published 武夷学院机电工程学院,武夷山 354300%江苏大学电气信息工程学院,镇江,212013 2015
江苏大学电气信息工程学院,镇江 212013
江苏大学机械工业设施农业测控技术与装备重点实验室,镇江 212013%江苏大学电气信息工程学院,镇江 212013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2015.10.029

Cover

Abstract 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理想。然后对白炽灯、荧光灯、LED灯3种不同的人工光源下采集到10个样本点的夜间图像进行验证试验,结果表明,从视觉效果评价,在3种人工光源环境下,PSO-ICA降噪方法得到低噪图像均表现为噪点明显减少;从相对峰值信噪比(relative peak signal-to-noise ratio,RPSNR)看,在3种人工光源下的平均值,PSO-ICA得到的低噪图像,分别比原始图像、均值滤波降噪和ICA降噪得到的图像的相对峰值信噪比提高21.28%、12.41%、5.53%;从运行时间看,PSO-ICA方法较ICA方法的运行时间平均减少了49.60%。PSO-ICA方法用于夜间图像降噪有着独到的优势,为实现苹果采摘机器人的夜间作业打下坚实的基础。
AbstractList 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理想。然后对白炽灯、荧光灯、LED灯3种不同的人工光源下采集到10个样本点的夜间图像进行验证试验,结果表明,从视觉效果评价,在3种人工光源环境下,PSO-ICA降噪方法得到低噪图像均表现为噪点明显减少;从相对峰值信噪比(relative peak signal-to-noise ratio,RPSNR)看,在3种人工光源下的平均值,PSO-ICA得到的低噪图像,分别比原始图像、均值滤波降噪和ICA降噪得到的图像的相对峰值信噪比提高21.28%、12.41%、5.53%;从运行时间看,PSO-ICA方法较ICA方法的运行时间平均减少了49.60%。PSO-ICA方法用于夜间图像降噪有着独到的优势,为实现苹果采摘机器人的夜间作业打下坚实的基础。
TP24%TP391; 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理想。然后对白炽灯、荧光灯、LED灯3种不同的人工光源下采集到10个样本点的夜间图像进行验证试验,结果表明,从视觉效果评价,在3种人工光源环境下,PSO-ICA降噪方法得到低噪图像均表现为噪点明显减少;从相对峰值信噪比(relative peak signal-to-noise ratio, RPSNR)看,在3种人工光源下的平均值,PSO-ICA得到的低噪图像,分别比原始图像、均值滤波降噪和ICA降噪得到的图像的相对峰值信噪比提高21.28%、12.41%、5.53%;从运行时间看,PSO-ICA方法较ICA方法的运行时间平均减少了49.60%。PSO-ICA方法用于夜间图像降噪有着独到的优势,为实现苹果采摘机器人的夜间作业打下坚实的基础。
Abstract_FL As apple harvesting needs large amount of labor, and the seasonality is strong, the night operation of apple harvesting robot is proposed, in order to improve the efficiency of harvesting. The apple’s real-time night vision image contains lots of noise, which is captured by image processing system of apple harvesting robot. The noise will influence the operating efficiency and recognition precision, and then influence the harvesting efficiency. Under different artificial lights, apple night vision images are captured, the noises are analyzed through the difference image method, and the type of noise is determined to be mixed noise. The main part of mixed noise is Gaussian noise, accompanied by some salt-pepper noise. Aiming at the problem of Gaussian noise removal, the theory of independent component analysis (ICA) is introduced into the de-noising method for night vision image. The ICA algorithm mostly uses gradient iterative solver, so it has some defects, such as easily trapped in local minimum, slow convergence speed. All of these defects lead to the following phenomena easily, such as the unthoroughness in the de-noising and the long running time. In order to overcome these defects, particle swarm optimization (PSO) algorithm is used to optimize the ICA, further to establish an optimized ICA de-noising method based on PSO (PSO-ICA), applied in night vision image, hoping to minimize noise pollution and improving the operating efficiency of de-noising method. Using the standard Lenna image and apple image captured under nature light, by the simulation experiments, these 2 pictures are added with the Gaussian noise with the variance of 0.05 and the salt-pepper noise with the P value of 0.05, respectively. Compared with the average filtering method and ICA de-noising method, the results show that the de-noising effect of PSO-ICA algorithm is the most ideal. Using peak signal-to-noise ratio (PSNR) to do difference test, the result shows that, under 0.05 significant level, 3 de-noising methods show significant difference. Using different apple night vision images captured to do experiments, the results show that, from the visual evaluation, the low noise image is obtained by PSO-ICA de-noising method, and its noise decreased significantly. In order to evaluate the de-noising effect of night vision image more objectively, taking the natural light image as reference, the concept of relative peak signal-to-noise ratio (RPSNR) is proposed. From the RPSNR evaluation, compared with the original image, the image after average filtering de-noising and that after ICA de-noising, the image based on the method of PSO-ICA de-noising increased on average by 21.28%, 12.41% and 5.53%, respectively. From the run time evaluation, PSO algorithm has greatly improved the efficiency of ICA algorithm. Under incandescent lamp, the night vision image and its de-noised images have the highest RPSNR, so this type of light is suitable for artificial light source. Finally, under the natural light and 3 different artificial lights, 10 images of natural light and 30 night images are captured from 10 sample points. Using all of these images to do the repeated experiments, the trends of experimental results are consistent. In conclusion, PSO-ICA algorithm has unique advantage for night vision image de-noising, which provides a solid foundation for the night operation of apple picking robot.
Author 贾伟宽 赵德安 阮承治 沈甜 陈玉 姬伟
AuthorAffiliation 江苏大学电气信息工程学院,镇江212013 江苏大学机械工业设施农业测控技术与装备重点实验室,镇江212013 武夷学院机电工程学院,武夷山354300
AuthorAffiliation_xml – name: 江苏大学电气信息工程学院,镇江 212013; 江苏大学机械工业设施农业测控技术与装备重点实验室,镇江 212013%江苏大学电气信息工程学院,镇江 212013; 武夷学院机电工程学院,武夷山 354300%江苏大学电气信息工程学院,镇江,212013
Author_FL Zhao Dean
Ruan Chengzhi
Shen Tian
Jia Weikuan
Ji Wei
Chen Yu
Author_FL_xml – sequence: 1
  fullname: Jia Weikuan
– sequence: 2
  fullname: Zhao Dean
– sequence: 3
  fullname: Ruan Chengzhi
– sequence: 4
  fullname: Shen Tian
– sequence: 5
  fullname: Chen Yu
– sequence: 6
  fullname: Ji Wei
Author_xml – sequence: 1
  fullname: 贾伟宽 赵德安 阮承治 沈甜 陈玉 姬伟
BookMark eNo9jz1Lw1AYhe9QwVr7JwRxSnzvZ3JHKX5BwUH3kJvexBS90QTRzg4dRMRBajE4OYiDiy5m8NeYaP6FKRWnl3N4OOc9S6hlEqMRWsVgYywdvj604ywzNgYglnCxtAlg3kgbiGyh9r-_iLpZFivgmDoADLeR9XP1UT3m9Xhc3d5XeVFOn7-KonzK68l7-fBZXt7U0-ty-vL9Oqne7pbRQugfZbr7dztof2vzoLdj9fe2d3sbfSvgUlquDB1FiEOAiOYPIhRIl2vhMs10CI0R4IAykEqwAeVK-4pLH0vm6GBAgXbQ2jz13DehbyJvmJylpunzzCgKLtRs3GySbMiVORkcJiY6jRv2JI2P_XTkCcGBcgcz-gtA0GLH
ClassificationCodes TP24%TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2015.10.029
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate De-noising algorithm of night vision image for apple harvesting robot
DocumentTitle_FL De-noising algorithm of night vision image for apple harvesting robot
EndPage 226
ExternalDocumentID nygcxb201510029
665035714
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 江苏省高校优势学科建设项目; 高等学校博士学科点专项科研基金; 江苏省普通高校研究生科研创新计划项目。
  funderid: (61203014,61379101); ( PAPD ); (20133227110024); (KYLX-1062)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c599-89f7b227202601526b0985e684e4ef0526c1c3409b64d35beab59a1947ecd303
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:31:28 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords image processing
算法
algorithms
PSO-ICA de-noising method
机器人
PSO-ICA降噪
图像处理
夜间图像
night vision image
相对信噪比
robots
relative peak signal-to- noise ratio
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599-89f7b227202601526b0985e684e4ef0526c1c3409b64d35beab59a1947ecd303
Notes 11-2047/S
Jia Weikuan, Zhao Dean, Ruan Chengzhi, Shen Tian, Chen Yu, Ji Wei (1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment of Machinery Industry, Jiangsu University, Zhenjiang 212013, China; 3. School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China)
image processing;algorithms;robots;night vision image;PSO-ICA de-noising method;relative peak signal-to- noise ratio
As apple harvesting needs large amount of labor, and the seasonality is strong, the night operation of apple harvesting robot is proposed, in order to improve the efficiency of harvesting. The apple’s real-time night vision image contains lots of noise, which is captured by image processing system of apple harvesting robot. The noise will influence the operating efficiency and recognition precision, and then influence the harvesting efficiency. Under different artificial lights,
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201510029
chongqing_primary_665035714
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 武夷学院机电工程学院,武夷山 354300%江苏大学电气信息工程学院,镇江,212013
江苏大学电气信息工程学院,镇江 212013
江苏大学机械工业设施农业测控技术与装备重点实验室,镇江 212013%江苏大学电气信息工程学院,镇江 212013
Publisher_xml – name: 武夷学院机电工程学院,武夷山 354300%江苏大学电气信息工程学院,镇江,212013
– name: 江苏大学机械工业设施农业测控技术与装备重点实验室,镇江 212013%江苏大学电气信息工程学院,镇江 212013
– name: 江苏大学电气信息工程学院,镇江 212013
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0949006
Snippet 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的...
TP24%TP391; 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 219
SubjectTerms PSO-ICA降噪
图像处理
夜间图像
机器人
相对信噪比
算法
Title 苹果采摘机器人夜间图像降噪算法
URI http://lib.cqvip.com/qk/90712X/201510/665035714.html
https://d.wanfangdata.com.cn/periodical/nygcxb201510029
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09bxMx1IpSCcGA-BSlgDLgKbpwH7bPHu-SiyokWChStyj3lU5XKKkEXRk6IIQYUImImBgQAwssZOB38ANIIP-C93zOJYiqAqST5bP9Puzns599fs-E3FRu4qW571iZslOLublr9YXPrATVAU_awo7RdvjOXbF5n93e5tu12reVU0v7w7iVHBxrV_I_UoU0kCtayf6DZCukkABxkC-EIGEI_0rGNJJUhjRUNBJURVS1aaQoLO_hwRSHKqkjbRoGNOJUKRpACsPXMiVgBkr5NGS6DCCMMCI9Krs6C3B2FuAA5dMgwvKAOfRoeXvlQsHVgJoiUpFUaSohgHANqBlGuh0aCMQgA8haiB0rBFwgfQjbVHV12YiGnabO4_ggwghxlnlSNTWXEl8Qo6JhVzPn0jBsmpiUSF9hdZuLSukkaTAALuCvXVFe3Q8pbUHN4I2ju5BmCDaju5ljTC-2jxmry2nfLQ33_5xRlM_1lIIkWhUJPBTIW3gu0GzY_O60W2BP5z7esL7m4k5RnawFYSfsLlVVB1fj1Vjq4D0GztKG2UUPBWK5FOSOhxcRVMeX8Oc913_yDUOnCF2we-skZtGHyM5uMXgImpE2VCvyfjFY0am2zpGzZjHUCMqefZ7UDnYukDPBYM84hMkuEuvnsy-zt-P54eHs5evZeDIdvf8-mUzfjedHn6dvvk6fvpiPnk9HH358PJp9enWJ3OtGW-1Ny1zxYSVcKUuq3I9dPAqAnu24K2JbSZ4JyTKW5eiKKHESj9kqFiz1eJz1Y676jmJ-lqSgfF0m9WK3yK6QhhCpzFPhu1wmTELD8ST3c5uxNAclNhfrZKOqdu9B6cilV0lpnTRMQ_TM5_2oVzwZJI9jbDlsR3X1RAQb5DSWLPfmrpH6cG8_uw7a6jC-YQT_C83va2I
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%8B%B9%E6%9E%9C%E9%87%87%E6%91%98%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%A4%9C%E9%97%B4%E5%9B%BE%E5%83%8F%E9%99%8D%E5%99%AA%E7%AE%97%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%B4%BE%E4%BC%9F%E5%AE%BD+%E8%B5%B5%E5%BE%B7%E5%AE%89+%E9%98%AE%E6%89%BF%E6%B2%BB+%E6%B2%88%E7%94%9C+%E9%99%88%E7%8E%89+%E5%A7%AC%E4%BC%9F&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=10&rft.spage=219&rft.epage=226&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2015.10.029&rft.externalDocID=665035714
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg