基于K均值聚类和开闭交替滤波的黄瓜叶片水滴荧光图像分割

为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的黄瓜叶片作为试验试材,采用移液枪向叶面、叶缘部位上滴水,模拟不同的叶片湿润情形,使用荧光成像仪蓝光镜头在白天(07:00)和夜晚(18:00)分别采集图像。应用K-均值聚类算法在L*a*b颜色空间对水滴图像进行分割,首先要将原始图像由RGB颜色空间转换到L*a*b颜色空间,然后在在L*a*b颜色空间中利用a*b*二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,聚类得到的图像灰度化后进一步用数学形态学中的开闭交替滤波方法...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 17; pp. 136 - 143
Main Author 杨信廷 孙文娟 李明 陈梅香 明楠 韩佳伟 李文勇 陈明
Format Journal Article
LanguageChinese
Published 上海海洋大学信息学院,上海 201306 2016
国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京,100097%上海海洋大学信息学院,上海,201306
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.17.019

Cover

Abstract 为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的黄瓜叶片作为试验试材,采用移液枪向叶面、叶缘部位上滴水,模拟不同的叶片湿润情形,使用荧光成像仪蓝光镜头在白天(07:00)和夜晚(18:00)分别采集图像。应用K-均值聚类算法在L*a*b颜色空间对水滴图像进行分割,首先要将原始图像由RGB颜色空间转换到L*a*b颜色空间,然后在在L*a*b颜色空间中利用a*b*二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,聚类得到的图像灰度化后进一步用数学形态学中的开闭交替滤波方法进行校正,最终完成图像分割。利用该方法对10幅含有不同水滴数量的黄瓜叶片荧光图像进行分割,为了验证该方法的有效性,分别采用基于H分量直方图分割算法、主动轮廓即C_V模型分割方法、融合K均值聚类和Ncut算法作对比试验。试验结果表明,该方法的平均匹配率、误分率相较于其他3种方法有明显的优势,平均匹配率为81.27%、平均误分率为9.57%,较之于其他3种方法,平均匹配率分别提高了44.11、11.50、10.90百分点,平均误分率分别降低了23.03、5.47和5.05百分点。该方法能够较为准确地将水滴从图像中分割出来,这为用计算机器视觉的方法监测黄瓜叶片的润湿时间提供了新的思路。
AbstractList S126%TP391.41; 为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的黄瓜叶片作为试验试材,采用移液枪向叶面、叶缘部位上滴水,模拟不同的叶片湿润情形,使用荧光成像仪蓝光镜头在白天(07:00)和夜晚(18:00)分别采集图像。应用 K-均值聚类算法在L*a*b颜色空间对水滴图像进行分割,首先要将原始图像由RGB颜色空间转换到L*a*b颜色空间,然后在在L*a*b颜色空间中利用a*b*二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,聚类得到的图像灰度化后进一步用数学形态学中的开闭交替滤波方法进行校正,最终完成图像分割。利用该方法对10幅含有不同水滴数量的黄瓜叶片荧光图像进行分割,为了验证该方法的有效性,分别采用基于H分量直方图分割算法、主动轮廓即C_V模型分割方法、融合K均值聚类和Ncut算法作对比试验。试验结果表明,该方法的平均匹配率、误分率相较于其他3种方法有明显的优势,平均匹配率为81.27%、平均误分率为9.57%,较之于其他3种方法,平均匹配率分别提高了44.11、11.50、10.90百分点,平均误分率分别降低了23.03、5.47和5.05百分点。该方法能够较为准确地将水滴从图像中分割出来,这为用计算机器视觉的方法监测黄瓜叶片的润湿时间提供了新的思路。
为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的黄瓜叶片作为试验试材,采用移液枪向叶面、叶缘部位上滴水,模拟不同的叶片湿润情形,使用荧光成像仪蓝光镜头在白天(07:00)和夜晚(18:00)分别采集图像。应用K-均值聚类算法在L*a*b颜色空间对水滴图像进行分割,首先要将原始图像由RGB颜色空间转换到L*a*b颜色空间,然后在在L*a*b颜色空间中利用a*b*二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,聚类得到的图像灰度化后进一步用数学形态学中的开闭交替滤波方法进行校正,最终完成图像分割。利用该方法对10幅含有不同水滴数量的黄瓜叶片荧光图像进行分割,为了验证该方法的有效性,分别采用基于H分量直方图分割算法、主动轮廓即C_V模型分割方法、融合K均值聚类和Ncut算法作对比试验。试验结果表明,该方法的平均匹配率、误分率相较于其他3种方法有明显的优势,平均匹配率为81.27%、平均误分率为9.57%,较之于其他3种方法,平均匹配率分别提高了44.11、11.50、10.90百分点,平均误分率分别降低了23.03、5.47和5.05百分点。该方法能够较为准确地将水滴从图像中分割出来,这为用计算机器视觉的方法监测黄瓜叶片的润湿时间提供了新的思路。
Abstract_FL Monitoring moisture condition of cucumber leaves is to calculate leaf wetness duration for the disease forecasting in greenhouse, which is especially important for improving the yield and quality of agricultural products.K-means clustering with opening and closing alternately filtering algorithm was used for the fluorescence images segmentation of water droplets on cucumber leaves. The healthy and clean cucumber leaves in the artificial climate chamber were chosen as the experimental materials. In the experiment, we used a pipette with different volume of water (100 or 200 mL) to drop water on cucumber leaves. Each time, water was dropped to different parts of the cucumber leaves, including leaf surface and margin to simulate different leaf wetness situation. We used the fluorescence imaging instrument to collect the image at day and night. In this article, the image segmentation method was divided into two parts, which included K- means clustering and opening and closing alternately filtering. The main steps of segmentation algorithm of water droplet fluorescence image were as follows. The original images were collected in RGB color space, but the color distribution of the RGB color space was uneven. The advantages of the L*a*b* color space could make up for the shortage. So the original image was firstly converted to the L*a*b* color space from RGB color space. In the L*a*b* color space, all color information was contained in a* and b* components. Secondly the color difference between the two-dimensional data space of a* and b* was used, and Euclidean distance was chosen to measure the similarity between pixels. The fluorescence images were clustered byK- means. After finish of the clustering operation, the images were grayed, and then they were corrected by use of mathematical morphology methods. For morphology methods operation steps, open operation was firstly applied and then close operation was applied. The operations were repeated until the desired results were obtained and finally the image segmentation was completed. The experiment was carried out to segment ten fluorescence images of cucumber leaves with different numbers of water droplets. In order to verify the validity of the method, we compared our results with three other segmentation algorithms based on H component, active contour model (C_V model), and fusion ofK-means and Ncut. The results showed that the average matching rate was 81.27% and the average misclassification rate of this method was 9.57%. Compared with the three methods, the average matching rate from our method was improved by 44.11%, 11.50% and 10.90%, respectively. In comparison to the three methods, the average misclassification rate of the method was reduced by 23.03%, 5.47% and 5.05%, respectively. From the experimental data, the segmentation results of the fluorescence images were satisfactory. This method can be used to segment water droplets from the fluorescence images of water droplets on cucumber leaves accurately, which provides a new way to monitor the wetness duration of cucumber leaves by computer vision.
Author 杨信廷 孙文娟 李明 陈梅香 明楠 韩佳伟 李文勇 陈明
AuthorAffiliation 上海海洋大学信息学院,上海201306 国家农业信息化工程技术研究中心、农业部农业信息技术重点开放实验室、北京市农业物联网工程技术研究中心,北京100097
AuthorAffiliation_xml – name: 上海海洋大学信息学院,上海 201306; 国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京,100097%上海海洋大学信息学院,上海,201306
Author_FL Yang Xinting
Chen Ming
Li Ming
Ming Nan
Han Jiawei
Sun Wenjuan
Chen Meixiang
Li Wenyong
Author_FL_xml – sequence: 1
  fullname: Yang Xinting
– sequence: 2
  fullname: Sun Wenjuan
– sequence: 3
  fullname: Li Ming
– sequence: 4
  fullname: Chen Meixiang
– sequence: 5
  fullname: Ming Nan
– sequence: 6
  fullname: Han Jiawei
– sequence: 7
  fullname: Li Wenyong
– sequence: 8
  fullname: Chen Ming
Author_xml – sequence: 1
  fullname: 杨信廷 孙文娟 李明 陈梅香 明楠 韩佳伟 李文勇 陈明
BookMark eNo9kMtKw0AUhmdRwVr7EoK4apyTNMnMUoo3LHTTfZlkkpqiU20Q7a7ipRbUgi6EVhGk4ErwUlw0RV-mk7RvYaTi6sDh4_vP-edQQlSFg9AiYAWAmvpyRfF8XyiAsZoxCFBFxWAoYCoYaAIl__ezKO37noV10EyMs5BEBfk4GA2ut-RDUzaG4-NO9BbIm0s5bEzuXkaDXtj9DoNe-PEUdU4nwWl0ey_bn1GrGb72w6A_vnqWZy3Z_ZInbXlxLlvv82jGZTu-k_6bKVRcWy3mNjL5wvpmbiWfsXVKM8RwLOCUg0Mw1SzVju80XUxMxh1uWa4BatYGltVdm1PmuMzhmqlym7sMiKYSLYWWptpDJlwmyqVK9aAm4sCSqJftI-v3fzBja0wuTEl7uyrK-17M7tW8XVarl4y4A0JUTdd-AKHofSM
ClassificationCodes S126%TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.17.019
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Water droplets fluorescence image segmentation of cucumber leaves based on K-means clustering with opening and closing alternately filtering
DocumentTitle_FL Water droplets fluorescence image segmentation of cucumber leaves based onK-means clustering with opening and closing alternately filtering
EndPage 143
ExternalDocumentID nygcxb201617019
670088235
GrantInformation_xml – fundername: 国家自然科学基金项目; 北京市自然科学基金青年项目; 欧盟FP7项目
  funderid: (31401683); (6164034); (PIRSES-GA-2013-612659)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c599-86eb1d9d1e8093b2c0197f087adedbbf6124c1a45fcd9aefaed372dcdfa183283
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:14:38 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 17
Keywords image processing
algorithms
开闭运算
opening and closing operation
色彩空间
wet leaf
算法
荧光
滤波
image segmentation
fluorescence
图像处理
湿润叶片
图像分割
filtering
color space
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599-86eb1d9d1e8093b2c0197f087adedbbf6124c1a45fcd9aefaed372dcdfa183283
Notes 11-2047/S
Monitoring moisture condition of cucumber leaves is to calculate leaf wetness duration for the disease forecasting in greenhouse, which is especially important for improving the yield and quality of agricultural products. K-means clustering with opening and closing alternately filtering algorithm was used for the fluorescence images segmentation of water droplets on cucumber leaves. The healthy and clean cucumber leaves in the artificial climate chamber were chosen as the experimental materials. In the experiment, we used a pipette with different volume of water(100 or 200 mL) to drop water on cucumber leaves. Each time, water was dropped to different parts of the cucumber leaves, including leaf surface and margin to simulate different leaf wetness situation. We used the fluorescence imaging instrument to collect the image at day and night. In this article, the image segmentation method was divided into two parts, which included K- means clustering and opening and closing alternately filtering. The m
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201617019
chongqing_primary_670088235
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 上海海洋大学信息学院,上海 201306
国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京,100097%上海海洋大学信息学院,上海,201306
Publisher_xml – name: 上海海洋大学信息学院,上海 201306
– name: 国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心/农业部农业信息技术重点开放实验室/北京市农业物联网工程技术研究中心,北京,100097%上海海洋大学信息学院,上海,201306
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136374
Snippet 为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的黄瓜叶片作为试验...
S126%TP391.41; 为了监测温室黄瓜叶片湿润情况以计算叶片湿润时间并用于病害预警,利用K-均值聚类算法实现黄瓜叶片的水滴荧光图像分割。选择人工气候室培育的健康且洁净的...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 136
SubjectTerms 图像分割
图像处理
开闭运算
湿润叶片
滤波
算法
色彩空间
荧光
Title 基于K均值聚类和开闭交替滤波的黄瓜叶片水滴荧光图像分割
URI http://lib.cqvip.com/qk/90712X/201617/670088235.html
https://d.wanfangdata.com.cn/periodical/nygcxb201617019
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDRA_iE2NUcrBPy67z7Ok-zuzOEgzqJUJuyzw3p43GXdCcIkZjQA3oQUgUQQKeBB_BQzboz2R2k7-wqqf3ESJBvQxFTT27Zreqmn4Qcj3SU2YEkVYURuhAg2KmRZFwqwi5Ww-4rUW2vOvw1m02fde6OWfPjYw2h1YttZphKVr6476S_4kq4CCuuEv2HyLbFwoIgCG-8IQIw_OvYkx9m4oq9VzqW_jk_oxEVSi0-ABwjXpl6nMoF6kAIod6OvU8SWNQXkYACIDMF1Q41K0oQa5FfUaFR70qAsCSYzyTugbKAWncQi54hQBgTCqkQA4GMcRwIc0ALjDDUnIQAHsq1M0ttJEM7YFXvsSYKAEBIGMSAC3GcBEtkUyqA2u5dA0cAftt1OsCo_QR3HEZ6uXgkd37tKRnFaRC7ip1dckN-p2C4hJCEjE1jEAqqgXFx30JgA6_IIdNoKWAgoEBbwADOoUo9KnkOxCi5eSgUEjNFRxNBMpHpfc0gx_cOaxGyhyeq8k3karEgpmHcZUeVOYZzOy2eltYVR7RTTZUkuj5SVZHs51wbJnuUEWprwIXLLKS7pQ0pe7wgeK4MQv6KtMeJeMGzmKNkXHXq3jVQRmt40xB_39exzsW9MH-agNPT2CDNtXWTbwkob-0ChcW2HKVgTLoBKE9c28cZyyebzK_0Kjfh6pNbqJrpEGjPlTvzZ4hp1WjNuXmv7qzZGRp_hw55dYX1WE1yXlyJ_uws7fzaiZ7v5ot7-4_3uh-bWevX2S7ywdvP-_tbHU2f3XaW53vH7sbKwftle6bd9n6j-7aaufLdqe9vf_yU_Z0Ldv8mT1Zz54_y9a-XSCzVX-2PF1UF5QUI1uIImdQ6MQi1hOuCTM0InDBSTXuBHESh2EKzYMV6YFlp1EsgiQNkth0jDiK0wATKTcvkrHGQiO5RKbCNNb1ILAjy4kslrAA2nwtim3sD6CjTyfIZH9kavfyc2hq_UBOkCk1VjX17_Sg1nhUjx6GOLjyxoXLxwqYJCeRMp9avELGmout5CoU283wmvo2fgPVhaUV
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EK%E5%9D%87%E5%80%BC%E8%81%9A%E7%B1%BB%E5%92%8C%E5%BC%80%E9%97%AD%E4%BA%A4%E6%9B%BF%E6%BB%A4%E6%B3%A2%E7%9A%84%E9%BB%84%E7%93%9C%E5%8F%B6%E7%89%87%E6%B0%B4%E6%BB%B4%E8%8D%A7%E5%85%89%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E4%BF%A1%E5%BB%B7+%E5%AD%99%E6%96%87%E5%A8%9F+%E6%9D%8E%E6%98%8E+%E9%99%88%E6%A2%85%E9%A6%99+%E6%98%8E%E6%A5%A0+%E9%9F%A9%E4%BD%B3%E4%BC%9F+%E6%9D%8E%E6%96%87%E5%8B%87+%E9%99%88%E6%98%8E&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=17&rft.spage=136&rft.epage=143&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.17.019&rft.externalDocID=670088235
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg