牛肉质构特性的近红外光谱无损检测

为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2 500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹性、咀嚼性和黏附性,经小波消噪后,分别采用平滑、一阶微分、二阶微分等6种方法预处理,建立了牛肉质构特性的偏最小二乘回归模型,并用最优模型进行预测。结果表明:经小波消噪后采用二阶微分预处理方法建立的牛肉硬度、弹性、咀嚼性的检测模型效果最好,其校正集相关系数r均在0.9以上,校正集均方根误差(root means square error of calibration,RMSEC)分别为6.247 N、0.760 mm、14.954 m J,预...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 16; pp. 286 - 292
Main Author 李志刚 贾策 王晓闻 刘强 董常生
Format Journal Article
LanguageChinese
Published 山西农业大学食品科学与工程学院,太谷,030801%山西农业大学动物科技学院,太谷,030801 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.16.038

Cover

Abstract 为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2 500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹性、咀嚼性和黏附性,经小波消噪后,分别采用平滑、一阶微分、二阶微分等6种方法预处理,建立了牛肉质构特性的偏最小二乘回归模型,并用最优模型进行预测。结果表明:经小波消噪后采用二阶微分预处理方法建立的牛肉硬度、弹性、咀嚼性的检测模型效果最好,其校正集相关系数r均在0.9以上,校正集均方根误差(root means square error of calibration,RMSEC)分别为6.247 N、0.760 mm、14.954 m J,预测集相关系数均在0.664以上,预测集均方根误差(root means square error of prediction,RMSEP)分别为8.887 N、0.951 mm、22.117 m J,相对预测误差(ratio of prediction to deviation,RPD)值分别为2.43、1.88、2.32,预测精度较高,能够有效地预测牛肉的硬度、咀嚼性,可以检测精度要求不高的牛肉弹性;试验所建立的牛肉黏附性检测模型的预测性能不是很理想,虽然其校正集和预测集相关系数较高(分别为0.720、0.694),RMSEC和RESEP均较小(分别为0.302、0.243 N·mm),但其RPD值小于1.5,模型预测精度较差,不可以用于预测未知样品的黏附性,此方法还需进一步研究。研究结果为牛肉质构特性的快速无损评价提供了理论依据。
AbstractList O657.3%TS251.5+2; 为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹性、咀嚼性和黏附性,经小波消噪后,分别采用平滑、一阶微分、二阶微分等6种方法预处理,建立了牛肉质构特性的偏最小二乘回归模型,并用最优模型进行预测。结果表明:经小波消噪后采用二阶微分预处理方法建立的牛肉硬度、弹性、咀嚼性的检测模型效果最好,其校正集相关系数 r 均在0.9以上,校正集均方根误差(root means square error of calibration,RMSEC)分别为6.247 N、0.760 mm、14.954 mJ,预测集相关系数均在0.664以上,预测集均方根误差(root means square error of prediction,RMSEP)分别为8.887 N、0.951 mm、22.117 mJ,相对预测误差(ratio of prediction to deviation,RPD)值分别为2.43、1.88、2.32,预测精度较高,能够有效地预测牛肉的硬度、咀嚼性,可以检测精度要求不高的牛肉弹性;试验所建立的牛肉黏附性检测模型的预测性能不是很理想,虽然其校正集和预测集相关系数较高(分别为0.720、0.694),RMSEC 和 RESEP 均较小(分别为0.302、0.243 N·mm),但其 RPD 值小于1.5,模型预测精度较差,不可以用于预测未知样品的黏附性,此方法还需进一步研究。研究结果为牛肉质构特性的快速无损评价提供了理论依据。
为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2 500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹性、咀嚼性和黏附性,经小波消噪后,分别采用平滑、一阶微分、二阶微分等6种方法预处理,建立了牛肉质构特性的偏最小二乘回归模型,并用最优模型进行预测。结果表明:经小波消噪后采用二阶微分预处理方法建立的牛肉硬度、弹性、咀嚼性的检测模型效果最好,其校正集相关系数r均在0.9以上,校正集均方根误差(root means square error of calibration,RMSEC)分别为6.247 N、0.760 mm、14.954 m J,预测集相关系数均在0.664以上,预测集均方根误差(root means square error of prediction,RMSEP)分别为8.887 N、0.951 mm、22.117 m J,相对预测误差(ratio of prediction to deviation,RPD)值分别为2.43、1.88、2.32,预测精度较高,能够有效地预测牛肉的硬度、咀嚼性,可以检测精度要求不高的牛肉弹性;试验所建立的牛肉黏附性检测模型的预测性能不是很理想,虽然其校正集和预测集相关系数较高(分别为0.720、0.694),RMSEC和RESEP均较小(分别为0.302、0.243 N·mm),但其RPD值小于1.5,模型预测精度较差,不可以用于预测未知样品的黏附性,此方法还需进一步研究。研究结果为牛肉质构特性的快速无损评价提供了理论依据。
Abstract_FL This study aims to establish a rapid detective method for the characteristics of beef texture through near infrared spectroscopy. The diffuse reflectance spectra at 800-2500 nm of 202 fresh beef samples were collected. The hardness, springiness, chewiness and the adhesiveness of beef samples were tested by texture analyzer. After wavelet denoising, the data were collected through processing the diffuse reflectance spectra by smoothness, first order differential, second order differential, standard normal variate (SNV), SNV combined with first order differential or SNV combined with second order differential respectively, and then the partial least square regression (PLSR) statistical analysis models for the near-infrared spectra of beef samples were established. According to the predicted results of hardness, springiness and chewiness of beef through 6 PLSR statistical analysis models, the optimal predictive model was the PLSR statistical analysis model for the near-infrared spectra by the second order differential preconditioning method after wavelet denoising. The correlation coefficients of their calibration sets for hardness, springiness and chewiness of beef samples were all above 0.9, and the root mean square errors of calibration (RMSEC) were 6.247 N, 0.760 mm and 14.954 mJ, respectively. The correlation coefficients of their prediction sets were all above 0.664, and the root mean square errors of prediction (RMSEP) were 8.887 N, 0.951 mm and 22.117 mJ, respectively. The ratio of prediction to deviation (RPD) were 2.43, 1.88 and 2.32, respectively. The high predictive accuracy of hardness and chewiness of beef samples was obtained through the established optimal model, which was also fit for predicting the springiness of beef with low accuracy. The hardness, springiness and chewiness of beef are closely related to its own water, protein, fat and other chemical components. These chemical components of beef can be detected using near infrared spectra. Therefore, the hardness, springiness and chewiness of beef can be predicted through near infrared spectroscopy technology. The correlation coefficients of the adhesiveness in the calibration set and prediction set were high (0.720 and 0.694), and RMSEC and RESEP were small (0.302 and 0.243 N·mm) by using first order differential preconditioning method after wavelet denoising, but its RPD value was less than 1.5, so the prediction performance of the detection model of beef adhesiveness was not very satisfactory and the model was not fit for predicting the adhesiveness of unknown samples. This may be due to the adhesiveness value of each sample was the average value of 4 points in different parts of the sample. The difference was relatively large between the measured values, and the performance of the prediction model was affected by the accuracy of the measurement results. Further studies were needed for establishing the accuracy predictive model of the adhesiveness of beef by near infrared spectroscopy. The present study has established a rapid and accurate predictive model, which possesses the features of nondestructive inspection, qualitative analysis and quantitative detection for beef texture characteristics.
Author 李志刚 贾策 王晓闻 刘强 董常生
AuthorAffiliation 山西农业大学食品科学与工程学院,太谷030801 山西农业大学动物科技学院,太谷030801
AuthorAffiliation_xml – name: 山西农业大学食品科学与工程学院,太谷,030801%山西农业大学动物科技学院,太谷,030801
Author_FL Jia Ce
Wang Xiaowen
Liu Qiang
Dong Changsheng
Li Zhigang
Author_FL_xml – sequence: 1
  fullname: Li Zhigang
– sequence: 2
  fullname: Jia Ce
– sequence: 3
  fullname: Wang Xiaowen
– sequence: 4
  fullname: Liu Qiang
– sequence: 5
  fullname: Dong Changsheng
Author_xml – sequence: 1
  fullname: 李志刚 贾策 王晓闻 刘强 董常生
BookMark eNo9j79KA0EYxLeIYIx5CUGscn7f7e3ebSnBfxCwSR92l914QTeaQzRdkFgcksJGQUFFBS0VtNDGp8ndPYYnEWFgYPgxwyyQius7Q8gygocoQrba8-IkcR4C-A0eofB8QO6VAhpVSPU_nyf1JIkVMKQhQIBVAnl6U5ymxftLdjvO089s9Jxfj4vvi_zrYfp0OT1Li9e37Oo-m9xlj6Ps43yRzFm5l5j6n9dIe2O93dxqtHY2t5trrYZmQpRjAQZgkKKxkQSlQ6oDbRQPOfhCcCulARthYH2QxlegMODKagaS-ZxFtEZWZrXH0lnpup1e_2jgysGOG3b1ifo9iByoKMmlGal3-657GJfswSDel4Nhh3PBkQrG6A-35GWC
ClassificationCodes O657.3%TS251.5+2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.16.038
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Nondestructive determination of beef textural properties by near infrared spectroscopy
DocumentTitle_FL Nondestructive determination of beef textural properties by near infrared spectroscopy
EndPage 292
ExternalDocumentID nygcxb201616039
669613955
GrantInformation_xml – fundername: 山西省农业产业体系项目
  funderid: (2015-05)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c599-684140e131ef8a0bc73c4ceb67602996faae0f814f20ae2b0b146bfc50a526583
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:16:29 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 16
Keywords 牛肉
近红外光谱
texture
near infrared spectroscopy
beef
无损检测
nondestructive determination
质构
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599-684140e131ef8a0bc73c4ceb67602996faae0f814f20ae2b0b146bfc50a526583
Notes 11-2047/S
Li Zhigang,Jia Ce,Wang Xiaowen,Liu Qiang,Dong Changsheng (1. College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; 2. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China)
This study aims to establish a rapid detective method for the characteristics of beef texture through near infrare spectroscopy. The diffuse reflectance spectra at 800-2500 nm of 202 fresh beef samples were collected. The hardness springiness, chewiness and the adhesiveness of beef samples were tested by texture analyzer. After wavelet denoising, the dat were collected through processing the diffuse reflectance spectra by smoothness, first order differential, second orde differential, standard normal variate(SNV), SNV combined with first order differential or SNV combined with second orde differential respectively, and then the partial least square regression(PLSR) statistical analysis models for the near-infrare spectra of beef samples were es
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201616039
chongqing_primary_669613955
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 山西农业大学食品科学与工程学院,太谷,030801%山西农业大学动物科技学院,太谷,030801
Publisher_xml – name: 山西农业大学食品科学与工程学院,太谷,030801%山西农业大学动物科技学院,太谷,030801
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.135918
Snippet 为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2 500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹性、咀嚼性和黏附性,经...
O657.3%TS251.5+2; 为了建立基于近红外光谱技术的牛肉质构特性快速检测方法,该试验采集了202个新鲜牛肉样品在800~2500 nm波长范围内的漫反射光谱,测定了牛肉的硬度、弹...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 286
SubjectTerms 无损检测
牛肉
质构
近红外光谱
Title 牛肉质构特性的近红外光谱无损检测
URI http://lib.cqvip.com/qk/90712X/201616/669613955.html
https://d.wanfangdata.com.cn/periodical/nygcxb201616039
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NixMxFA-1C6IH8RPXVenBnErXzEdmkuOknbIIeqqwtzKZpt1Td11b0D0tsh6KePCioKCigh4V9KAX_wP_i237Z_he5qNFZVFhGNLX5Pfey2tfXjKTF0Ku9ZOkJ13mN4zXgwmKdmVDeEZDIOdB8MBSJjQ-0b15K9i47d_Y5JuVyo-lt5bGI72e7v1xX8n_WBVoYFfcJfsPli1BgQBlsC_cwcJw_ysb0zikQlKpaCyocLEMBeXTSNA4oDKmws_rKIkUwWgUIkVG9iuo3KbSQYqKaOTSmNPIpzLAguAFIKPKsYAhjZjFaVHZxkLkISYUFFRWy5GuRYAmTRr7VAnkCBQFCBzZgYRCWXYtGgUWEwTghf0ttxYVsW3URs6IhzD1XEcVWxyQJKhbJWOLCO2gRzwaS2ykVL1oKCxUExS1CKA1CI8kgRf2CSjeXl4FybZn5i4bfXogcseb-_TFmum42MxZeOgi83b2KTuI7_dxRIbcDiTIYr1kga8CButwsSwlzS-puoNAQnQkOT9GVlxcH6qSlUi1VHsRoDo4By89qIOnFziLncsu5iUIFhNA7nh4_ED50hI-suf2-X0u0HFCC3GvHyUsZg7Z2h4O7kA8ZLenDfvJcLAUSXVOk1P5FKgWZb_nM6Syt3WWnIwGu3kaGHOOsNnkxfzBZP75w_TlwWzydbr_fvb8YP79yezbm8N3Tw8fTuYfP02fvZ4-fjV9uz_98ug86bTjTnOjkZ_t0Ui5lCCfDzN743iO6YuE6TT0Uj81GrRnECAF4EIM6wvH77ssMa5mGkZ03U85S_A8B-FdINXh9tBcJDWdcKPDnoFI1_FDmSSp6aVOGoYQCfNeIlbJWql6dydL4dItLbVKanlndPM_9t3u8P4gvaex9_AMdnnpSIA1cgJrZqtyl0l1tDs2VyBOHemrufF_Ahw5bHU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%89%9B%E8%82%89%E8%B4%A8%E6%9E%84%E7%89%B9%E6%80%A7%E7%9A%84%E8%BF%91%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E6%97%A0%E6%8D%9F%E6%A3%80%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%BF%97%E5%88%9A+%E8%B4%BE%E7%AD%96+%E7%8E%8B%E6%99%93%E9%97%BB+%E5%88%98%E5%BC%BA+%E8%91%A3%E5%B8%B8%E7%94%9F&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=16&rft.spage=286&rft.epage=292&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.16.038&rft.externalDocID=669613955
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg