农田土壤墒情监测与预报系统研发

为了定量预报农田未来7 d土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 18; pp. 140 - 146
Main Author 张晓月 李荣平 焦敏 张琪 王莹 李辑
Format Journal Article
LanguageChinese
Published 辽宁省气象科学研究所,沈阳,110166 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.18.019

Cover

Abstract 为了定量预报农田未来7 d土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9%,系统对于辽宁省农田土壤干旱级别的预报具有较高准确率。
AbstractList 为了定量预报农田未来7 d土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9%,系统对于辽宁省农田土壤干旱级别的预报具有较高准确率。
S165%P49; 为了定量预报农田未来7d 土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9%,系统对于辽宁省农田土壤干旱级别的预报具有较高准确率。
Abstract_FL A system was designed for monitoring current soil moisture and predicting soil moisture changes in the next 1-7 days in Liaoning province. In this system, data of soil volumetric water content from 54 automatic observation stations and weather forecast data from Central Meteorological Observatory in Liaoning were used. The soil moisture data of 8 soil layers was included, and they were different among different stations. The parameters of stations like longitude, latitude, altitude, etc were obtained from the observation stations. The soil parameters like field capacity, soil bulk density, wilting humidity were obtained by measuring soil samples when the stations were established. The next 7 days weather forecast data from the National Meteorological Center of CMA included daily maximum temperature, minimum temperature, precipitation, and cloudiness. A regression model of the sunshine and cloudiness was established based on the information of 54 stations during 1981 to 2010. All the data above were input into the system for monitoring and forecasting the soil moisture. The system was developed by VC++ and Fortran based on soil water dynamic and CERES-MAIZE model. The model simulated the runoff process, infiltration process, evapotranspiration process and root water uptake process to obtain the soil moisture data of 8 layers. The system was used to predict the next 1-7 days soil moisture from June to August 2015 in order to verify the accuracy of the forecast. Results showed that when the absolute error between forecast and measured relative soil moisture was less than 3%, the highest accuracy was 52.9%for the next 1-d forecast. When the difference was less than 5%, the highest accuracy was 70.3%. When the absolute error was less than 10%, the accuracy was 78.5%for the 7 d forecast. The highest accuracy was 91.1%for the next 1-d forecast. The prediction accuracy decreased with increasing forecast date. In addition, drought level was predicted using the data of June-August, 2015. According to the threshold of relative soil moisture, 5 type of drought grade included severe drought, moderate drought, light drought, suitable, saturation with relative soil moisture less than 40%, 40%to 50%, 50%to 60%, 60%to 90%, and larger than and equal to 90%. The lowest value of drought level accuracy was 70.1%, and the highest value of drought level accuracy was 81.9%. Liaoning province suffered varying degrees of drought in the summer of 2015, which had impacted growth of maize and other field crops. The system played an important supporting role in agriculture meteorological service, as proved by its application in July 24. The study provides an effective system for improving the quality and efficiency in agriculture meteorological service.
Author 张晓月 李荣平 焦敏 张琪 王莹 李辑
AuthorAffiliation 辽宁省气象科学研究所,沈阳110166
AuthorAffiliation_xml – name: 辽宁省气象科学研究所,沈阳,110166
Author_FL Li Rongping
Jiao Min
Zhang Qi
Zhang Xiaoyue
Li Ji
Wang Ying
Author_FL_xml – sequence: 1
  fullname: Zhang Xiaoyue
– sequence: 2
  fullname: Li Rongping
– sequence: 3
  fullname: Jiao Min
– sequence: 4
  fullname: Zhang Qi
– sequence: 5
  fullname: Wang Ying
– sequence: 6
  fullname: Li Ji
Author_xml – sequence: 1
  fullname: 张晓月 李荣平 焦敏 张琪 王莹 李辑
BookMark eNo9j81Kw0AUhWdRwVr7EoK4Srw3mUzmLqX4BwU33ZfJOI0pOtUG0a79WSgole4sVKruBRGEvo5J8C2MVFwdOHycj7PEKrZnDWOrCC4ihcF6103S1LoI4DlCIrkeoHBRuoBUYdX_fpHV0zSJIEA_BOBYZU52PS5Gb9l4kj2_ZNOH_OKqeBzmH7dfn3ff08v85rV4nxWzSfE0yu6Hy2yhow5TU__LGmttbbYaO05zb3u3sdF0dEDkcBGU3lAKIz1FRJEyhjoCfZ8LFQCB4PueBG0Up8gzQgqIdEiaNJehx32_xtbms2fKdpSN293ead-WwrYdxPo8-n2HsnSU5Mqc1Ac9G58kJXvcT45Uf9AW5UMpOaD_A1gvYpM
ClassificationCodes S165%P49
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.18.019
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Development of soil moisture monitor and forecast system
DocumentTitle_FL Development of soil moisture monitor and forecast system
EndPage 146
ExternalDocumentID nygcxb201618019
670088401
GrantInformation_xml – fundername: 国家自然科学基金; 辽宁省气象科学研究所农业气象预报技术创新团队,2015年中央财政“三农”服务专项重点建设任务
  funderid: (41330531); 辽宁省气象科学研究所农业气象预报技术创新团队,2015年中央财政“三农”服务专项重点建设任务
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c599-465019786e82a999baee9f613346a509064d280cea49b2e6860bc79c9c4872433
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:14:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 18
Keywords forecast system
models
预报系统
干旱
drought
网络化
模型
墒情
moisture
soils
土壤
web-based
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599-465019786e82a999baee9f613346a509064d280cea49b2e6860bc79c9c4872433
Notes 11-2047/S
Zhang Xiaoyue, Li Rongping, Jiao Min, Zhang Qi, wang Ying, Li Ji (Liaoning Institute of Meteorological Science, Shenyang 110166, China)
A system was designed for monitoring current soil moisture and predicting soil moisture changes in the next 1-7 days in Liaoning province. In this system, data of soil volumetric water content from 54 automatic observation stations and weather forecast data from Central Meteorological Observatory in Liaoning were used. The soil moisture data of 8 soil layers was included, and they were different among different stations. The parameters of stations like longitude, latitude, altitude, etc were obtained from the observation stations. The soil parameters like field capacity, soil bulk density, wilting humidity were obtained by measuring soil samples when the stations were established. The next 7 days weather forecast data from the National Meteorological Center of CMA included daily maximum temperature, minimum temperature, precipitation, and cloudiness. A regression mode
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201618019
chongqing_primary_670088401
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 辽宁省气象科学研究所,沈阳,110166
Publisher_xml – name: 辽宁省气象科学研究所,沈阳,110166
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1391506
Snippet 为了定量预报农田未来7 d土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语...
S165%P49; 为了定量预报农田未来7d 土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 140
SubjectTerms 土壤
墒情
干旱
模型
网络化
预报系统
Title 农田土壤墒情监测与预报系统研发
URI http://lib.cqvip.com/qk/90712X/201618/670088401.html
https://d.wanfangdata.com.cn/periodical/nygcxb201618019
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxMNQWRB_ET6xV6YN53HM3m80mj8neHkXQpwp9OzZ7e9enq9YWtK9-PCgolb5ZqFR9F0QQ-ne8Hv4LZ7Lp3qnFr5dlLjuZmczsZWZCMiHkBpes17NSBAWzScAhZQhUj6dBKWJm0zKK-u7mudt3xNJdfmslWZk5kU_tWtrcsK1y69hzJf9jVWgDu-Ip2X-wbEMUGgAG-8ITLAzPv7IxzRMqBVUZzVOqODUhtsBP1UFAx1RzBzCqGM0FlTGViUM2VEXYYoCCoTn0lVTmNFeILLlD1lQ7ZBNTYxxgHOWU6hDZIfcOra_BOgpwp0RyNJXGFpN6Ulo6diBSm2rRcDkyu8PNkDy8UYqq2AEZlXKCAg1tJyvQauMgsZMCKScoKQ6hpq9QyGPogw5CqvX0qkd9HNN9oUjc5NS0naw5xNuuR-YAgYrG8QNORLV7pVOn0GZgjY4AANnqoSrcV8IyRwG0LFHdSqJ-WRbhAoeY8hHoRIT0M713IpNF2s3Go9QuIarLUfnowi-4_uq4VJo4z4UsWg0L3HsoWpFshZ7dj7XBh48G5UPL3K0HIRa_nWMpBFyzZE6btulM4uIIU_9m4mZY_kBM8swkivGWg2ZvFO4MSNw2AS_GSUKPhLz5OxGxQMnq2nBwH8Iudwpu2C-Gg6mAbfksOeMzrUVd_23OkZmt1fPktB6s-2oz1QUSjJ7tjnc-jnb3Ru_ej_ZfHz5-On6zffj5xdcvL7_tPzl8_mH86WB8sDd-uzN6tX2RLHfy5Wwp8PeHBGWiVMAh-QCJpagkKyAPskVVqT6ErzEXBcTJEIz3mAzLquDKskpIEdoyVaUqIYlnPI4vkdnh2rC6TBYh7OaxDdOCJ5ZbrGqA93vZst9TvIz68TxZaMbdvVeXieniATgpeRjNk0Wvia6fPB50f7LclT-jLJBTCNfLf1fJ7Mb6ZnUNAuINe92b-zu6oYQo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%86%9C%E7%94%B0%E5%9C%9F%E5%A3%A4%E5%A2%92%E6%83%85%E7%9B%91%E6%B5%8B%E4%B8%8E%E9%A2%84%E6%8A%A5%E7%B3%BB%E7%BB%9F%E7%A0%94%E5%8F%91&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%99%93%E6%9C%88&rft.au=%E6%9D%8E%E8%8D%A3%E5%B9%B3&rft.au=%E7%84%A6%E6%95%8F&rft.au=%E5%BC%A0%E7%90%AA&rft.date=2016&rft.pub=%E8%BE%BD%E5%AE%81%E7%9C%81%E6%B0%94%E8%B1%A1%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%B2%88%E9%98%B3%2C110166&rft.issn=1002-6819&rft.volume=32&rft.issue=18&rft.spage=140&rft.epage=146&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.18.019&rft.externalDocID=nygcxb201618019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg