Automated quantification of choroidal neovascularization on Optical Coherence Tomography Angiography images
To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with n...
Saved in:
Published in | Computers in biology and medicine Vol. 114; p. 103450 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2019
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2019.103450 |
Cover
Abstract | To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.
In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”.
Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.
This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”.
•Automated CNV segmentation using enhancement filters and Fuzzy-C-Means.•Two segmentation algorithms adapted to the lesions topologies.•Quantification of three biomarkers of neovascular AMD on OCTA images.•Comparison to AngioVue software measures, the new gold standard in OCTA imaging.•Comparable results to expert delineation are achieved for the total area measure. |
---|---|
AbstractList | To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.
In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”.
Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.
This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”.
•Automated CNV segmentation using enhancement filters and Fuzzy-C-Means.•Two segmentation algorithms adapted to the lesions topologies.•Quantification of three biomarkers of neovascular AMD on OCTA images.•Comparison to AngioVue software measures, the new gold standard in OCTA imaging.•Comparable results to expert delineation are achieved for the total area measure. AbstractObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. Material and methodsIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”. ResultsAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. ConclusionThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”. ObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.Material and methodsIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”.ResultsAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.ConclusionThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”. To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics". Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics". To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.OBJECTIVESTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics".MATERIAL AND METHODSIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics".Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.RESULTSAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".CONCLUSIONThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics". |
ArticleNumber | 103450 |
Author | Colantuono, Donato Souied, Eric Taibouni, Kawther Petit, Eric Miere, Alexandra Chenoune, Yasmina |
Author_xml | – sequence: 1 givenname: Kawther surname: Taibouni fullname: Taibouni, Kawther email: kawther.taibouni@univ-paris-est.fr organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France – sequence: 2 givenname: Yasmina surname: Chenoune fullname: Chenoune, Yasmina email: yasmina.chenoune@esme.fr organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France – sequence: 3 givenname: Alexandra surname: Miere fullname: Miere, Alexandra email: alexandramiere@gmail.com organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France – sequence: 4 givenname: Donato surname: Colantuono fullname: Colantuono, Donato email: colantuono.donato88@gmail.com organization: Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94000, Créteil, France – sequence: 5 givenname: Eric surname: Souied fullname: Souied, Eric email: esouied@hotmail.com organization: Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94000, Créteil, France – sequence: 6 givenname: Eric surname: Petit fullname: Petit, Eric email: petit@u-pec.fr organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31550556$$D View this record in MEDLINE/PubMed https://hal.science/hal-03487639$$DView record in HAL |
BookMark | eNqVkt9v0zAQxy00xLrBv4Ai8QIPLf4RJ_ELolTAkCrtgfFsOc6ldZfYmZ0Ulb8eh7SbNAlpe7Jlf-57d9-7C3RmnQWEEoIXBJPs426hXduVxrVQLSgmIj6zlOMXaEaKXMwxZ-kZmmFM8DwtKD9HFyHsMMYpZvgVOmeEc8x5NkO3y6F3reqhSu4GZXtTG61642zi6kRvnXemUk1iwe1V0EOjvPlz_LfJdddHuklWbgserIbkxrVu41W3PSRLuzGnu2nVBsJr9LJWTYA3x_MS_fr29WZ1NV9ff_-xWq7nmouin9cVKVlaVZSrHIPIKK-LMqcFaMaKUlQMQ5bXecagFJBhpWsCKdCM5rHriqTsEolJd7CdOvxWTSM7H0vwB0mwHA2UO_lgoBwNlJOBMfbDFLtVD1FOGXm1XMvxLWJFzC32JLLvJ7bz7m6A0MvWBA1No6JdQ5CUipzQTIgiou8eoTs3eBtdkJThnGWc8zxSb4_UUI6FnfKfxhWBYgK0dyF4qJ_T2KdHodr0_ybZe2Wapwh8mQQgjm5vwMugzTj0ynjQvayceUYV9yK6MXZcols4QLg3hchAJZY_xw0eF5gIhlm0Mgp8_r_A02r4C3WcBUg |
CitedBy_id | crossref_primary_10_3390_diagnostics13223407 crossref_primary_10_1371_journal_pone_0261052 crossref_primary_10_3389_fmed_2022_891369 crossref_primary_10_1371_journal_pone_0262111 crossref_primary_10_3390_app11209734 crossref_primary_10_1016_j_ajo_2021_06_004 crossref_primary_10_3390_diagnostics13071309 |
Cites_doi | 10.1186/s40942-015-0005-8 10.1371/journal.pone.0149943 10.1371/journal.pone.0205513 10.1016/j.ajo.2017.12.005 10.1016/j.compbiomed.2019.103352 10.1371/journal.pone.0158996 10.1016/j.ophtha.2014.01.034 10.14419/ijet.v7i4.11.20794 10.1016/j.compbiomed.2015.09.009 10.1016/S0039-6257(05)80092-X 10.21037/qims.2016.07.02 10.1097/IAE.0000000000001312 10.1136/bjophthalmol-2017-310569 10.1155/2018/3751702 10.1117/1.JBO.21.7.076010 10.1364/BOE.6.003564 10.1016/j.compbiomed.2017.08.008 10.1364/BOE.9.003208 10.3390/app8020155 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd Attribution - NonCommercial |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES ADTOC UNPAY |
DOI | 10.1016/j.compbiomed.2019.103450 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 103450 |
ExternalDocumentID | 10.1016/j.compbiomed.2019.103450 oai_HAL_hal_03487639v1 31550556 10_1016_j_compbiomed_2019_103450 S0010482519303269 1_s2_0_S0010482519303269 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR 77I AAYXX ACLOT CITATION ~HD NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c598t-fd1b34dd25a70e9625f8b728ec338b9d30e67f763eb9e60acf1e4e2627534d143 |
IEDL.DBID | UNPAY |
ISSN | 0010-4825 1879-0534 |
IngestDate | Wed Oct 01 16:34:51 EDT 2025 Tue Sep 09 06:32:53 EDT 2025 Wed Oct 01 14:30:49 EDT 2025 Wed Aug 13 09:10:04 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Wed Oct 01 05:23:32 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Fri Feb 23 02:42:45 EST 2024 Sun Feb 23 10:19:13 EST 2025 Tue Aug 26 16:34:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vessel enhancement filtering Optical Coherence Tomography Angiography Choroidal neovascularization Age-related macular degeneration Vascular segmentation |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-fd1b34dd25a70e9625f8b728ec338b9d30e67f763eb9e60acf1e4e2627534d143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4123-8210 0000-0001-5047-1407 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010482519303269?via%3Dihub |
PMID | 31550556 |
PQID | 2307365557 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2019_103450 hal_primary_oai_HAL_hal_03487639v1 proquest_miscellaneous_2297126998 proquest_journals_2307365557 pubmed_primary_31550556 crossref_primary_10_1016_j_compbiomed_2019_103450 crossref_citationtrail_10_1016_j_compbiomed_2019_103450 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103450 elsevier_clinicalkeyesjournals_1_s2_0_S0010482519303269 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
References | Gao (bib3) 2016; 21 Baghaie, Yu, D'Souza (bib8) 2015; 5 Chen, Yu, Sun, Dai (bib28) 2016 Liu, Gao, Bailey, Huang, Li, Jia (bib1) 2015; 6 OULHADJ, NAKIB, SIARRY (bib22) 2007; 11–14 BahadarKhan, Khaliq, Shahid (bib14) 2016; 11 Bird (bib17) 1995; 39 Bansal, Singh (bib11) 2017; vol. 1 Eladawi (bib31) 2017; 89 Xu (bib29) 2018; 187 Mehta, Kaur (bib12) 2016; 4 Frangi, Niessen, Vincken, Viergever (bib16) 1998 Ali, Hussain, Zaki (bib19) 2018; 7 Khan, Shaikh, Mansuri, Soni (bib13) 2011; 2 Amoroso, Miere, Semoun, Jung, Capuano, Souied (bib25) 2018; 102 De Carlo, Romano, Waheed, Duker (bib6) 2015; 1 Camino (bib7) 2016; 6 Aslan, Ceylan, Durdu (bib20) 2018 Jia (bib4) 2014; 121 Xue, Camino, Bailey, Liu, Li, Jia (bib9) 2018; 9 Memari, Ramli, Saripan, Mashohor, Moghbel (bib21) 2018 Almotiri, Elleithy, Elleithy (bib10) 2018; 8 Wei, Ting, Ng, Khandelwal, Agrawal, Cheung (bib2) 2017; 37 Tang, Liang, Yan, Zhang, Coppola, Sun (bib32) 2019; 111 Miere (bib26) 2018; 2018 Oliveira, Teixeira, Ren, Cavalcanti, Sijbers (bib15) 2016; 11 Gargouri (bib23) 2012 Spaide, Fujimoto, Waheed (bib5) 2015; vol. 35 Oloumi, Rangayyan, Casti, Ells (bib30) 2015; 66 Tankyevych, Talbot, Dokladal (bib18) 2008 Coscas (bib27) Oct. 2018; 13 Xiong (bib24) Bird (10.1016/j.compbiomed.2019.103450_bib17) 1995; 39 Spaide (10.1016/j.compbiomed.2019.103450_bib5) 2015; vol. 35 Baghaie (10.1016/j.compbiomed.2019.103450_bib8) 2015; 5 Tang (10.1016/j.compbiomed.2019.103450_bib32) 2019; 111 Memari (10.1016/j.compbiomed.2019.103450_bib21) 2018 Camino (10.1016/j.compbiomed.2019.103450_bib7) 2016; 6 Miere (10.1016/j.compbiomed.2019.103450_bib26) 2018; 2018 Aslan (10.1016/j.compbiomed.2019.103450_bib20) 2018 Amoroso (10.1016/j.compbiomed.2019.103450_bib25) 2018; 102 Xu (10.1016/j.compbiomed.2019.103450_bib29) 2018; 187 Oliveira (10.1016/j.compbiomed.2019.103450_bib15) 2016; 11 Xue (10.1016/j.compbiomed.2019.103450_bib9) 2018; 9 Jia (10.1016/j.compbiomed.2019.103450_bib4) 2014; 121 Oloumi (10.1016/j.compbiomed.2019.103450_bib30) 2015; 66 Ali (10.1016/j.compbiomed.2019.103450_bib19) 2018; 7 Tankyevych (10.1016/j.compbiomed.2019.103450_bib18) 2008 De Carlo (10.1016/j.compbiomed.2019.103450_bib6) 2015; 1 Liu (10.1016/j.compbiomed.2019.103450_bib1) 2015; 6 Xiong (10.1016/j.compbiomed.2019.103450_bib24) Almotiri (10.1016/j.compbiomed.2019.103450_bib10) 2018; 8 Gargouri (10.1016/j.compbiomed.2019.103450_bib23) Wei (10.1016/j.compbiomed.2019.103450_bib2) 2017; 37 Khan (10.1016/j.compbiomed.2019.103450_bib13) 2011; 2 Frangi (10.1016/j.compbiomed.2019.103450_bib16) 1998 Eladawi (10.1016/j.compbiomed.2019.103450_bib31) 2017; 89 Bansal (10.1016/j.compbiomed.2019.103450_bib11) 2017; vol. 1 Chen (10.1016/j.compbiomed.2019.103450_bib28) 2016 Gao (10.1016/j.compbiomed.2019.103450_bib3) 2016; 21 BahadarKhan (10.1016/j.compbiomed.2019.103450_bib14) 2016; 11 OULHADJ (10.1016/j.compbiomed.2019.103450_bib22) 2007; 11–14 Mehta (10.1016/j.compbiomed.2019.103450_bib12) 2016; 4 Coscas (10.1016/j.compbiomed.2019.103450_bib27) 2018; 13 |
References_xml | – volume: vol. 35 start-page: 2163 year: 2015 ident: bib5 article-title: Image Artifacts in Optical Coherence Angiography – start-page: 1 year: 2018 end-page: 5 ident: bib20 article-title: ‘Segmentation of Retinal Blood Vessel Using Gabor Filter and Extreme Learning Machines’, Presented at the 2018 International Conference on Artificial Intelligence and Data Processing – volume: 66 start-page: 316 year: 2015 end-page: 329 ident: bib30 article-title: Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants publication-title: Comput. Biol. Med. – volume: 187 start-page: 10 year: 2018 end-page: 20 ident: bib29 article-title: Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography publication-title: Am. J. Ophthalmol. – volume: 4 start-page: 1034 year: 2016 end-page: 1039 ident: bib12 article-title: A review on retinal blood vessel segmentation techniques publication-title: Int. J. Sci. Res. Dev. – start-page: 1011 year: 2008 end-page: 1014 ident: bib18 article-title: ‘Curvilinear Morpho-Hessian Filter’, Presented at the 2008 5th IEEE International Symposium on Biomedical Imaging – volume: 39 start-page: 367 year: 1995 end-page: 374 ident: bib17 article-title: An international classification and grading system for age-related maculopathy and age-related macular degeneration publication-title: Surv. Ophthalmol. – volume: vol. 1 year: 2017 ident: bib11 publication-title: ‘Retinal Vessel Segmentation Techniques: A Review’, Presented at the Proceedings of the World Congress on Engineering and Computer Science – volume: 121 start-page: 1435 year: 2014 end-page: 1444 ident: bib4 article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration publication-title: Ophthalmology – volume: 1 start-page: 5 year: 2015 ident: bib6 article-title: A review of optical coherence tomography angiography (OCTA) publication-title: Int. J. Retin. Vitr. – volume: 11–14 year: 2007 ident: bib22 article-title: ‘Segmentation d’images par maximisation de l’entropie à deux dimensions basée sur le recuit microcanonique’, presented at the 21° Colloque GRETSI publication-title: Troyes, FRA – volume: 7 start-page: 163 year: 2018 end-page: 167 ident: bib19 article-title: Segmenting retinal blood vessels with gabor filter and automatic binarization publication-title: Int. J. Eng. Technol. – volume: 102 start-page: 821 year: 2018 end-page: 826 ident: bib25 article-title: Optical coherence tomography angiography reproducibility of lesion size measurements in neovascular age-related macular degeneration (AMD) publication-title: Br. J. Ophthalmol. – start-page: 130 year: 1998 end-page: 137 ident: bib16 article-title: ‘Multiscale Vessel Enhancement Filtering’, Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention – ident: bib24 article-title: Fuzzy c-means thresholding – volume: 5 start-page: 603 year: 2015 ident: bib8 article-title: State-of-the-art in retinal optical coherence tomography image analysis publication-title: Quant. Imaging Med. Surg. – start-page: 1 year: 2018 end-page: 19 ident: bib21 article-title: Retinal blood vessel segmentation by using matched filtering and fuzzy C-means clustering with integrated level set method for diabetic retinopathy assessment publication-title: J. Med. Biol. Eng. – volume: 9 start-page: 3208 year: 2018 end-page: 3219 ident: bib9 article-title: Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes publication-title: Biomed. Opt. Express – volume: 2 start-page: 1140 year: 2011 end-page: 1144 ident: bib13 article-title: A review of retinal vessel segmentation techniques and algorithms publication-title: Int. J. Comput. Technol. Appl. – year: 2012 ident: bib23 article-title: Thresholding the maximum entropy – volume: 6 start-page: 391 year: 2016 ident: bib7 article-title: Automated registration and enhanced processing of clinical optical coherence tomography angiography publication-title: Quant. Imaging Med. Surg. – volume: 21 year: 2016 ident: bib3 article-title: Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography publication-title: J. Biomed. Opt. – volume: 2018 year: 2018 ident: bib26 article-title: Optical coherence tomography angiography to distinguish changes of choroidal neovascularization after anti-VEGF therapy: monthly loading dose versus Pro Re Nata Regimen publication-title: J. Ophthalmol. – volume: 11 year: 2016 ident: bib14 article-title: A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding publication-title: PLoS One – volume: 6 start-page: 3564 year: 2015 end-page: 3576 ident: bib1 article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography publication-title: Biomed. Opt. Express – volume: 89 start-page: 150 year: 2017 end-page: 161 ident: bib31 article-title: Automatic blood vessels segmentation based on different retinal maps from OCTA scans publication-title: Comput. Biol. Med. – volume: 8 start-page: 155 year: 2018 ident: bib10 article-title: Retinal vessels segmentation techniques and algorithms: a survey publication-title: Appl. Sci. – volume: 13 year: Oct. 2018 ident: bib27 article-title: Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission publication-title: PLoS One – volume: 111 start-page: 103352 year: 2019 ident: bib32 article-title: Multi-proportion channel ensemble model for retinal vessel segmentation publication-title: Comput. Biol. Med. – volume: 11 year: 2016 ident: bib15 article-title: Unsupervised retinal vessel segmentation using combined filters publication-title: PLoS One – volume: 37 start-page: 1120 year: 2017 end-page: 1125 ident: bib2 article-title: Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration publication-title: Retina – start-page: 2016 year: 2016 ident: bib28 article-title: The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization publication-title: J. Ophthalmol. – volume: 1 start-page: 5 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.103450_bib6 article-title: A review of optical coherence tomography angiography (OCTA) publication-title: Int. J. Retin. Vitr. doi: 10.1186/s40942-015-0005-8 – volume: 5 start-page: 603 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2019.103450_bib8 article-title: State-of-the-art in retinal optical coherence tomography image analysis publication-title: Quant. Imaging Med. Surg. – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib15 article-title: Unsupervised retinal vessel segmentation using combined filters publication-title: PLoS One doi: 10.1371/journal.pone.0149943 – ident: 10.1016/j.compbiomed.2019.103450_bib23 – volume: vol. 35 start-page: 2163 year: 2015 ident: 10.1016/j.compbiomed.2019.103450_bib5 – volume: vol. 1 year: 2017 ident: 10.1016/j.compbiomed.2019.103450_bib11 – volume: 13 issue: 10 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib27 article-title: Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission publication-title: PLoS One doi: 10.1371/journal.pone.0205513 – volume: 187 start-page: 10 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib29 article-title: Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2017.12.005 – volume: 111 start-page: 103352 year: 2019 ident: 10.1016/j.compbiomed.2019.103450_bib32 article-title: Multi-proportion channel ensemble model for retinal vessel segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103352 – volume: 11 issue: 7 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib14 article-title: A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding publication-title: PLoS One doi: 10.1371/journal.pone.0158996 – volume: 121 start-page: 1435 issue: 7 year: 2014 ident: 10.1016/j.compbiomed.2019.103450_bib4 article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.01.034 – volume: 4 start-page: 1034 issue: 6 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib12 article-title: A review on retinal blood vessel segmentation techniques publication-title: Int. J. Sci. Res. Dev. – volume: 7 start-page: 163 issue: 4 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib19 article-title: Segmenting retinal blood vessels with gabor filter and automatic binarization publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v7i4.11.20794 – start-page: 2016 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib28 article-title: The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization publication-title: J. Ophthalmol. – volume: 66 start-page: 316 year: 2015 ident: 10.1016/j.compbiomed.2019.103450_bib30 article-title: Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.09.009 – volume: 39 start-page: 367 issue: 5 year: 1995 ident: 10.1016/j.compbiomed.2019.103450_bib17 article-title: An international classification and grading system for age-related maculopathy and age-related macular degeneration publication-title: Surv. Ophthalmol. doi: 10.1016/S0039-6257(05)80092-X – volume: 6 start-page: 391 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib7 article-title: Automated registration and enhanced processing of clinical optical coherence tomography angiography publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims.2016.07.02 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib21 article-title: Retinal blood vessel segmentation by using matched filtering and fuzzy C-means clustering with integrated level set method for diabetic retinopathy assessment publication-title: J. Med. Biol. Eng. – volume: 37 start-page: 1120 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2019.103450_bib2 article-title: Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration publication-title: Retina doi: 10.1097/IAE.0000000000001312 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib20 – volume: 102 start-page: 821 issue: 6 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib25 article-title: Optical coherence tomography angiography reproducibility of lesion size measurements in neovascular age-related macular degeneration (AMD) publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2017-310569 – ident: 10.1016/j.compbiomed.2019.103450_bib24 – volume: 2018 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib26 article-title: Optical coherence tomography angiography to distinguish changes of choroidal neovascularization after anti-VEGF therapy: monthly loading dose versus Pro Re Nata Regimen publication-title: J. Ophthalmol. doi: 10.1155/2018/3751702 – volume: 2 start-page: 1140 issue: 5 year: 2011 ident: 10.1016/j.compbiomed.2019.103450_bib13 article-title: A review of retinal vessel segmentation techniques and algorithms publication-title: Int. J. Comput. Technol. Appl. – volume: 21 issue: 7 year: 2016 ident: 10.1016/j.compbiomed.2019.103450_bib3 article-title: Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.7.076010 – start-page: 1011 year: 2008 ident: 10.1016/j.compbiomed.2019.103450_bib18 – start-page: 130 year: 1998 ident: 10.1016/j.compbiomed.2019.103450_bib16 – volume: 11–14 year: 2007 ident: 10.1016/j.compbiomed.2019.103450_bib22 article-title: ‘Segmentation d’images par maximisation de l’entropie à deux dimensions basée sur le recuit microcanonique’, presented at the 21° Colloque GRETSI publication-title: Troyes, FRA – volume: 6 start-page: 3564 issue: 9 year: 2015 ident: 10.1016/j.compbiomed.2019.103450_bib1 article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.003564 – volume: 89 start-page: 150 year: 2017 ident: 10.1016/j.compbiomed.2019.103450_bib31 article-title: Automatic blood vessels segmentation based on different retinal maps from OCTA scans publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.008 – volume: 9 start-page: 3208 issue: 7 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib9 article-title: Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.003208 – volume: 8 start-page: 155 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2019.103450_bib10 article-title: Retinal vessels segmentation techniques and algorithms: a survey publication-title: Appl. Sci. doi: 10.3390/app8020155 |
SSID | ssj0004030 |
Score | 2.2910192 |
Snippet | To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular... AbstractObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular... ObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related... |
SourceID | unpaywall hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103450 |
SubjectTerms | Age Age related diseases Age-related macular degeneration Algorithms Angiography Automation Bias Biomarkers Choroidal neovascularization Conflicts of interest Eye diseases Image processing Image segmentation Internal Medicine Life Sciences Macular degeneration Medical imaging Methods Morlet wavelet Noise Optical Coherence Tomography Optical Coherence Tomography Angiography Other Standard deviation Statistical analysis Tomography Topology Vascular segmentation Vascularization Vessel enhancement filtering |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKDzwOiDeBggLiGprYcRyL06qiWiEel1bqzbJjGwLb7NLdtOLCb2cmdlJQe1gJaQ_ZJJM4nsnncfJ9E0LeSCu8sF5nVkielaLymeGaZd4IJo0pGdNDtc_P1fy4_HDCT3bIwaiFQVplxP6A6QNaxzX7sTf3V22LGl-YSgzKS4BhWqGID6t_QUy__X1J8yhzFmQogDe4d2TzBI4X0raDzB1JXhIV6CUq8K8fom58Q67k1UT0DrnVdyv960IvFn8NTof3yN2YVaaz0PD7ZMd1D8jNT_G9-UPyY9ZvlpCbOpv-7HXgBw0uSZc-BQA8W7YW7Ds3MVOjPDOF35fV8Lw7RSXHoA1Mj5ansdJ1Ouu-tuNyewrgtH5Ejg_fHx3Ms_iZhazhst5k3haGldZSrkXuJEyIfG0ErV0D01cjLctdBQ6tmDPSVblufOFKR7G8MZhBvvWY7HbLzj0lqc8bl0urDYcjFqbWtNSN8dY3tGnKhiZEjD2rmliDHD-FsVAj2ey7uvSJQp-o4JOEFJPlKtTh2MJGjs5To84UkFHBYLGFrbjO1q3jLb5WhVpTlasrYZiQd5PlP5G85XlfQ5RNl4jFv-ezjwrXwXYsHyjPi4TsjUGopvYgo59VnHORkFfTZgALfAOkIYB62IdKUUAbZZ2QJyF4p1OxYbLKq4TQKZq37upn_3XRz8lt_Bcknntkd3PWuxeQ623My-Fm_gNPp1Pm priority: 102 providerName: Elsevier – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIkE5IJ4lUFBAXCMSO4nX4oBWiGWFeBxopd4sP8vCNtk2uyD-PePYySJRoZVyiJJMXjMez9jfNwZ4yQ1zzDiZGcarrGS1y1QlaeYUo1ypklLZV_v8XM9Pyg-n1WkccOsirHLwib2jNq32Y-SvPGCZ1lVVsTeri8yvGuVnV-MSGntwvSBoSZ4pPnu_5UXmNFBQ0NeUmApFJE_Ad3nIdqC4e4AX9-zz0rPvr-6e9r55nOS_QegtuLlpVvL3L7lc_tUxze7A7RhRptNgAnfhmm3uwY1Pcc78PvyYbtYtxqXWpBcbGbBBvTrS1qXo_C7bhUH5xo6o1EjNTHH7surHulPP4uh5gelxex6rXKfT5mwx7C_O0TF1D-Bk9u747TyLSyxkuuKTdeZMoWhpDKkkyy3HZMhNFCMTqzF1VdzQ3NaozJpaxW2dS-0KW1riSxujGMZaD2G_aRv7CFKXa5tzI1WFdyzURJJSauWM00TrUpME2PBnhY71x_0yGEsxAM2-i61OhNeJCDpJoBglV6EGxw4yfFCeGDim6BUFdhQ7yLKrZG0Xm3cnCtERkYuvfXWjnvyLkQCpeQKvR8kYwYTIZMfnvkArGz_RF_6eTz8KfwzP-9KB_GeRwNFghGJ8n23jSOD5eBodhZ_9kWhAG7yGcIaNBNPrBA6D8Y6Pon2iWtUJkNGad_7Vj___Rk_gwF8c-JtHsL--3NinGMit1bO-tf4BB8VIvg priority: 102 providerName: ProQuest |
Title | Automated quantification of choroidal neovascularization on Optical Coherence Tomography Angiography images |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303269 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519303269 https://dx.doi.org/10.1016/j.compbiomed.2019.103450 https://www.ncbi.nlm.nih.gov/pubmed/31550556 https://www.proquest.com/docview/2307365557 https://www.proquest.com/docview/2297126998 https://hal.science/hal-03487639 https://www.sciencedirect.com/science/article/am/pii/S0010482519303269?via%3Dihub |
UnpaywallVersion | publishedVersion |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250805 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB7tthLHA_cRWKqA4DFtbsfiAQXYUq6yoK1Uniw7cdiwbVraZhE88NsZJ044dh8qhFSlaZLJ4X75PBPPNwF4SFOSkTTjVkpoYPkkzCwRcM_KBPGoEL7n8ara5zgcTfxX02C6A-8bLYxKq9TcX3N6xdZ6yUC35oDPB8s8VzJfjCYq8SUysRvSJyc5f-Q9z49KsQvdUI05daA7GR_EH2tGti21uQrCIkItBKCvs3vqnC-Vxl3L3lXSF1WKdF8p8s_usnaPVO7kacf0IpwviyX_9pXPZr91VsPLsGous85ROe6XG9FPvv9VAfK_tsMVuKRdWzOura7Cjiyuwbm3evD-OhzH5WaBDrJMzS8lr5OUKlyYi8xEFl4t8hTtC9mmx2qNqImfd8vqobup5CSVQNE8XMx1uW0zLj7lzXw-R4Zc34DJcP_w2cjS73qwkoBGGytLHeH5aeoGnNiSYlSWRYK4kUwwhhY09WwZIqpCTwoqQ5snmSN96aoay2iGTt9N6BSLQt4GM7MTadOUiwD36IiIuz5PRJZmiZskfuIaQJq_kyW6ELp6H8eMNRlvn9kvIDAFBFYDwQCntVzWxUC2sKENYlgjdkV6ZthjbWFLzrKVa80za-awtctsdgoABjxuLf-A0ZbHfYDQbi9RVSAfxW-YWobrVQ1DeuIYsNcgn7Xno2QFXhgEATHgfrsaGUsNQ3EEUInbuJQ4eI40MuBWfce0h_KqiDkIDXDbW2jrpr7zL0Z34YL6VctL96CzWZXyHvqZG9GD3f4PB6dkSnAaDV_0oBu_fD0a4_fT_fHBh57mlp9t4oPS |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQ2LwgPhNYEBA8BiR2ElcCyFUAVPHuvFAJ_XNs2MbCl3SrS3T_in-Rs5xkiIxob5M6kPV9BLHd_l8jr_vDPCKa2aZtjLSjGdRynIbqUzSyCpGuVIppbKu9nmYD47Sz-NsvAG_Wy2Mo1W2mFgDta4K9478jSMs0zzLMvZ-dhq5XaPc6mq7hYYPi31zcY5Ttvm7vY_o39eE7H4afRhEza4CUZHx3iKyOlE01ZpkksWGY_5ve4qRnilwtqa4prHJsf05NYqbPJaFTUxqiKvmi2aYXuB5N-FaSuPU1epnY7bSYcbUS14Q21KcejXMIc8ncxRxL6l3hDLu1O6pU_tfPhxufne8zH-T3puwvSxn8uJcTqd_DYS7t-FWk8GGfR9yd2DDlHfh-kGzRn8PfvaXiwrzYKPD06X0XKTa_WFlQwTbs2qi0b40HQu2kYKG-Pkyq9-th041UusQw1F10lTVDvvlt0n7fXKCQDi_D0dX0vkPYKusSvMIQhsXJuZaqgzPmKieJKkslNW2IEWRFiQA1vasKJp6527bjaloiW0_xMonwvlEeJ8EkHSWM1_zYw0b3jpPtJpWRGGBA9MatuwyWzNv4GQuEjEnIhZf62pKtdgYMw-S8wDedpZNxuQzoTWv-xKjrLtFV2h80B8K9xsed6UK-a8kgJ02CEXXntXDGMCL7jACk1ttkhhAS_wP4SzBNvJeAA998HaXovXEOMsDIF00r93Vj__fouewPRgdDMVw73D_Cdxwhl47ugNbi7OleYpJ5EI9q5_cEI6vGir-AG9ohZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahjTgAXEnMCAgeIxI7CSuhRCqGFXHxkBik_pmfGUdXdKtLdP-Gr-O49yKxIT6MqkPVdOTOPbJ53Pi7zsGeMUNc8w4GRnGsyhluYtUJmnkFKNcqZRSWVX73M-Hh-mnUTZag9-tFsbTKltMrIDalNq_I3_jCcs0zzJM4F1Di_i6PXg_PY38DlJ-pbXdTqN2kV17cY7p2-zdzjaO9WtCBh8PPgyjZoeBSGe8N4-cSRRNjSGZZLHlmAu4nmKkZzVmboobGtsc7yWnVnGbx1K7xKaW-Mq-aIahBp53Ha4xmlJPJ2MjttRkxrSWvyDOpZiGNSyimlvm6eK1vN6Ty7hXvqde-X_51Lh-5Dma_wbAN-H6opjKi3M5mfw1KQ5uw60mmg37tfvdgTVb3IXNz816_T342V_MS4yJrQlPF7LmJVWuEJYuROA9K8cG7QvbMWIbWWiIny_T6j176BUklSYxPChPmgrbYb_4MW6_j08QFGf34fBKOv8BbBRlYR9B6GJtY26kyvCMiepJkkqtnHGaaJ1qEgBre1bopva534JjIlqS27FYjonwYyLqMQkg6Syndf2PFWx4O3ii1bciIgucpFawZZfZ2lkDLTORiBkRsfhWVVaqhMcYhZCcB_C2s2yipzoqWvG6L9HLulv0RceH_T3hf8Pjvmwh_5UEsNU6oejas3wwA3jRHUaQ8itPEh1ogf8hnCXYRt4L4GHtvN2laJUkZ3kApPPmlbv68f9b9Bw2ESTE3s7-7hO44e1qGekWbMzPFvYpxpNz9ax6cEP4ftVI8QfAL4nL |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOonLA9cBgYECgsesuTsWD6gCpgrBAGmVxpNlOzYLa9PSNkPw6zmOnXDZHiqE1Ic0yWkS58tnn_r7TgCe0pJoUmoelIRmQUpyHYiMJ4EWJKFCpEnC22qfh_l4kr45zo634GPnhTGySsf9ltNbtnZrhq41h3w2XFSVsfliNtGaL5GJ45y-OKv4s-RVddKIbdjJzZzTAHYmhx9Gnywjh4HZ3SRhBaEBAjB16h6r-TIybmt7N6IvahzpqXHkX9xlbZ8Y7eT5gelVuNzUC_79G59Of-usDq7DsrtMq1E53W_WYl_--KsC5H9thxtwzQ1t_ZGNuglbqr4Fl965yfvbcDpq1nMcIKvS_9pwK1JqceHPtY8svJxXJcbXqpfHOo-oj5_3i_ZPd9_YSVqDon80n7ly2_6o_lx1y9UMGXK1C5OD10cvx4F710MgM1qsA11GIknLMs44CRXFrEwXgsSFkphDC1omocoRVXmiBFV5yKWOVKpiU2MZw3DQdwcG9bxW98DXoVQhLbnI8BcjUfA45VLoUstYylTGHpDudjLpCqGb93FMWad4-8J-AYEZIDALBA-iPnJhi4FsEEM7xLDO7Ir0zLDH2iCWXBSrVo5nVixiq5iF7BwAPHjeR_4Bow2P-wSh3V-iqUA-Hr1lZh1uNzUM6VnkwV6HfNafj7EVJHmWZcSDx_1mZCwzDcURQA3uE1MS4TnSwoO79onpD5W0GXOWexD3j9DGTX3_X4IewBXzzdpL92CwXjbqIY4z1-KRY46fYx993w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+quantification+of+choroidal+neovascularization+on+Optical+Coherence+Tomography+Angiography+images&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Taibouni%2C+Kawther&rft.au=Chenoune%2C+Yasmina&rft.au=Miere%2C+Alexandra&rft.au=Colantuono%2C+Donato&rft.date=2019-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=114&rft.spage=103450&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103450&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00104%2Fcov150h.gif |