Automated quantification of choroidal neovascularization on Optical Coherence Tomography Angiography images

To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with n...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 114; p. 103450
Main Authors Taibouni, Kawther, Chenoune, Yasmina, Miere, Alexandra, Colantuono, Donato, Souied, Eric, Petit, Eric
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2019
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103450

Cover

Abstract To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”. Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”. •Automated CNV segmentation using enhancement filters and Fuzzy-C-Means.•Two segmentation algorithms adapted to the lesions topologies.•Quantification of three biomarkers of neovascular AMD on OCTA images.•Comparison to AngioVue software measures, the new gold standard in OCTA imaging.•Comparable results to expert delineation are achieved for the total area measure.
AbstractList To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”. Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”. •Automated CNV segmentation using enhancement filters and Fuzzy-C-Means.•Two segmentation algorithms adapted to the lesions topologies.•Quantification of three biomarkers of neovascular AMD on OCTA images.•Comparison to AngioVue software measures, the new gold standard in OCTA imaging.•Comparable results to expert delineation are achieved for the total area measure.
AbstractObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. Material and methodsIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”. ResultsAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. ConclusionThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”.
ObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.Material and methodsIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1–24 images; Group 2–30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software “AngioAnalytics”.ResultsAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.ConclusionThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to “AngioAnalytics”.
To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics". Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".
To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.OBJECTIVESTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics".MATERIAL AND METHODSIn this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics".Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.RESULTSAutomated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".CONCLUSIONThis paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".
ArticleNumber 103450
Author Colantuono, Donato
Souied, Eric
Taibouni, Kawther
Petit, Eric
Miere, Alexandra
Chenoune, Yasmina
Author_xml – sequence: 1
  givenname: Kawther
  surname: Taibouni
  fullname: Taibouni, Kawther
  email: kawther.taibouni@univ-paris-est.fr
  organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France
– sequence: 2
  givenname: Yasmina
  surname: Chenoune
  fullname: Chenoune, Yasmina
  email: yasmina.chenoune@esme.fr
  organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France
– sequence: 3
  givenname: Alexandra
  surname: Miere
  fullname: Miere, Alexandra
  email: alexandramiere@gmail.com
  organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France
– sequence: 4
  givenname: Donato
  surname: Colantuono
  fullname: Colantuono, Donato
  email: colantuono.donato88@gmail.com
  organization: Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94000, Créteil, France
– sequence: 5
  givenname: Eric
  surname: Souied
  fullname: Souied, Eric
  email: esouied@hotmail.com
  organization: Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94000, Créteil, France
– sequence: 6
  givenname: Eric
  surname: Petit
  fullname: Petit, Eric
  email: petit@u-pec.fr
  organization: Université Paris-Est, LISSI (EA 3956), UPEC, F-94010, Vitry-sur-Seine, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31550556$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03487639$$DView record in HAL
BookMark eNqVkt9v0zAQxy00xLrBv4Ai8QIPLf4RJ_ELolTAkCrtgfFsOc6ldZfYmZ0Ulb8eh7SbNAlpe7Jlf-57d9-7C3RmnQWEEoIXBJPs426hXduVxrVQLSgmIj6zlOMXaEaKXMwxZ-kZmmFM8DwtKD9HFyHsMMYpZvgVOmeEc8x5NkO3y6F3reqhSu4GZXtTG61642zi6kRvnXemUk1iwe1V0EOjvPlz_LfJdddHuklWbgserIbkxrVu41W3PSRLuzGnu2nVBsJr9LJWTYA3x_MS_fr29WZ1NV9ff_-xWq7nmouin9cVKVlaVZSrHIPIKK-LMqcFaMaKUlQMQ5bXecagFJBhpWsCKdCM5rHriqTsEolJd7CdOvxWTSM7H0vwB0mwHA2UO_lgoBwNlJOBMfbDFLtVD1FOGXm1XMvxLWJFzC32JLLvJ7bz7m6A0MvWBA1No6JdQ5CUipzQTIgiou8eoTs3eBtdkJThnGWc8zxSb4_UUI6FnfKfxhWBYgK0dyF4qJ_T2KdHodr0_ybZe2Wapwh8mQQgjm5vwMugzTj0ynjQvayceUYV9yK6MXZcols4QLg3hchAJZY_xw0eF5gIhlm0Mgp8_r_A02r4C3WcBUg
CitedBy_id crossref_primary_10_3390_diagnostics13223407
crossref_primary_10_1371_journal_pone_0261052
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_1371_journal_pone_0262111
crossref_primary_10_3390_app11209734
crossref_primary_10_1016_j_ajo_2021_06_004
crossref_primary_10_3390_diagnostics13071309
Cites_doi 10.1186/s40942-015-0005-8
10.1371/journal.pone.0149943
10.1371/journal.pone.0205513
10.1016/j.ajo.2017.12.005
10.1016/j.compbiomed.2019.103352
10.1371/journal.pone.0158996
10.1016/j.ophtha.2014.01.034
10.14419/ijet.v7i4.11.20794
10.1016/j.compbiomed.2015.09.009
10.1016/S0039-6257(05)80092-X
10.21037/qims.2016.07.02
10.1097/IAE.0000000000001312
10.1136/bjophthalmol-2017-310569
10.1155/2018/3751702
10.1117/1.JBO.21.7.076010
10.1364/BOE.6.003564
10.1016/j.compbiomed.2017.08.008
10.1364/BOE.9.003208
10.3390/app8020155
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2019.103450
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103450
ExternalDocumentID 10.1016/j.compbiomed.2019.103450
oai_HAL_hal_03487639v1
31550556
10_1016_j_compbiomed_2019_103450
S0010482519303269
1_s2_0_S0010482519303269
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
77I
AAYXX
ACLOT
CITATION
~HD
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c598t-fd1b34dd25a70e9625f8b728ec338b9d30e67f763eb9e60acf1e4e2627534d143
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 16:34:51 EDT 2025
Tue Sep 09 06:32:53 EDT 2025
Wed Oct 01 14:30:49 EDT 2025
Wed Aug 13 09:10:04 EDT 2025
Thu Apr 03 07:02:09 EDT 2025
Wed Oct 01 05:23:32 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Fri Feb 23 02:42:45 EST 2024
Sun Feb 23 10:19:13 EST 2025
Tue Aug 26 16:34:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vessel enhancement filtering
Optical Coherence Tomography Angiography
Choroidal neovascularization
Age-related macular degeneration
Vascular segmentation
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-fd1b34dd25a70e9625f8b728ec338b9d30e67f763eb9e60acf1e4e2627534d143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4123-8210
0000-0001-5047-1407
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010482519303269?via%3Dihub
PMID 31550556
PQID 2307365557
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2019_103450
hal_primary_oai_HAL_hal_03487639v1
proquest_miscellaneous_2297126998
proquest_journals_2307365557
pubmed_primary_31550556
crossref_primary_10_1016_j_compbiomed_2019_103450
crossref_citationtrail_10_1016_j_compbiomed_2019_103450
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103450
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519303269
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Gao (bib3) 2016; 21
Baghaie, Yu, D'Souza (bib8) 2015; 5
Chen, Yu, Sun, Dai (bib28) 2016
Liu, Gao, Bailey, Huang, Li, Jia (bib1) 2015; 6
OULHADJ, NAKIB, SIARRY (bib22) 2007; 11–14
BahadarKhan, Khaliq, Shahid (bib14) 2016; 11
Bird (bib17) 1995; 39
Bansal, Singh (bib11) 2017; vol. 1
Eladawi (bib31) 2017; 89
Xu (bib29) 2018; 187
Mehta, Kaur (bib12) 2016; 4
Frangi, Niessen, Vincken, Viergever (bib16) 1998
Ali, Hussain, Zaki (bib19) 2018; 7
Khan, Shaikh, Mansuri, Soni (bib13) 2011; 2
Amoroso, Miere, Semoun, Jung, Capuano, Souied (bib25) 2018; 102
De Carlo, Romano, Waheed, Duker (bib6) 2015; 1
Camino (bib7) 2016; 6
Aslan, Ceylan, Durdu (bib20) 2018
Jia (bib4) 2014; 121
Xue, Camino, Bailey, Liu, Li, Jia (bib9) 2018; 9
Memari, Ramli, Saripan, Mashohor, Moghbel (bib21) 2018
Almotiri, Elleithy, Elleithy (bib10) 2018; 8
Wei, Ting, Ng, Khandelwal, Agrawal, Cheung (bib2) 2017; 37
Tang, Liang, Yan, Zhang, Coppola, Sun (bib32) 2019; 111
Miere (bib26) 2018; 2018
Oliveira, Teixeira, Ren, Cavalcanti, Sijbers (bib15) 2016; 11
Gargouri (bib23) 2012
Spaide, Fujimoto, Waheed (bib5) 2015; vol. 35
Oloumi, Rangayyan, Casti, Ells (bib30) 2015; 66
Tankyevych, Talbot, Dokladal (bib18) 2008
Coscas (bib27) Oct. 2018; 13
Xiong (bib24)
Bird (10.1016/j.compbiomed.2019.103450_bib17) 1995; 39
Spaide (10.1016/j.compbiomed.2019.103450_bib5) 2015; vol. 35
Baghaie (10.1016/j.compbiomed.2019.103450_bib8) 2015; 5
Tang (10.1016/j.compbiomed.2019.103450_bib32) 2019; 111
Memari (10.1016/j.compbiomed.2019.103450_bib21) 2018
Camino (10.1016/j.compbiomed.2019.103450_bib7) 2016; 6
Miere (10.1016/j.compbiomed.2019.103450_bib26) 2018; 2018
Aslan (10.1016/j.compbiomed.2019.103450_bib20) 2018
Amoroso (10.1016/j.compbiomed.2019.103450_bib25) 2018; 102
Xu (10.1016/j.compbiomed.2019.103450_bib29) 2018; 187
Oliveira (10.1016/j.compbiomed.2019.103450_bib15) 2016; 11
Xue (10.1016/j.compbiomed.2019.103450_bib9) 2018; 9
Jia (10.1016/j.compbiomed.2019.103450_bib4) 2014; 121
Oloumi (10.1016/j.compbiomed.2019.103450_bib30) 2015; 66
Ali (10.1016/j.compbiomed.2019.103450_bib19) 2018; 7
Tankyevych (10.1016/j.compbiomed.2019.103450_bib18) 2008
De Carlo (10.1016/j.compbiomed.2019.103450_bib6) 2015; 1
Liu (10.1016/j.compbiomed.2019.103450_bib1) 2015; 6
Xiong (10.1016/j.compbiomed.2019.103450_bib24)
Almotiri (10.1016/j.compbiomed.2019.103450_bib10) 2018; 8
Gargouri (10.1016/j.compbiomed.2019.103450_bib23)
Wei (10.1016/j.compbiomed.2019.103450_bib2) 2017; 37
Khan (10.1016/j.compbiomed.2019.103450_bib13) 2011; 2
Frangi (10.1016/j.compbiomed.2019.103450_bib16) 1998
Eladawi (10.1016/j.compbiomed.2019.103450_bib31) 2017; 89
Bansal (10.1016/j.compbiomed.2019.103450_bib11) 2017; vol. 1
Chen (10.1016/j.compbiomed.2019.103450_bib28) 2016
Gao (10.1016/j.compbiomed.2019.103450_bib3) 2016; 21
BahadarKhan (10.1016/j.compbiomed.2019.103450_bib14) 2016; 11
OULHADJ (10.1016/j.compbiomed.2019.103450_bib22) 2007; 11–14
Mehta (10.1016/j.compbiomed.2019.103450_bib12) 2016; 4
Coscas (10.1016/j.compbiomed.2019.103450_bib27) 2018; 13
References_xml – volume: vol. 35
  start-page: 2163
  year: 2015
  ident: bib5
  article-title: Image Artifacts in Optical Coherence Angiography
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib20
  article-title: ‘Segmentation of Retinal Blood Vessel Using Gabor Filter and Extreme Learning Machines’, Presented at the 2018 International Conference on Artificial Intelligence and Data Processing
– volume: 66
  start-page: 316
  year: 2015
  end-page: 329
  ident: bib30
  article-title: Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants
  publication-title: Comput. Biol. Med.
– volume: 187
  start-page: 10
  year: 2018
  end-page: 20
  ident: bib29
  article-title: Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography
  publication-title: Am. J. Ophthalmol.
– volume: 4
  start-page: 1034
  year: 2016
  end-page: 1039
  ident: bib12
  article-title: A review on retinal blood vessel segmentation techniques
  publication-title: Int. J. Sci. Res. Dev.
– start-page: 1011
  year: 2008
  end-page: 1014
  ident: bib18
  article-title: ‘Curvilinear Morpho-Hessian Filter’, Presented at the 2008 5th IEEE International Symposium on Biomedical Imaging
– volume: 39
  start-page: 367
  year: 1995
  end-page: 374
  ident: bib17
  article-title: An international classification and grading system for age-related maculopathy and age-related macular degeneration
  publication-title: Surv. Ophthalmol.
– volume: vol. 1
  year: 2017
  ident: bib11
  publication-title: ‘Retinal Vessel Segmentation Techniques: A Review’, Presented at the Proceedings of the World Congress on Engineering and Computer Science
– volume: 121
  start-page: 1435
  year: 2014
  end-page: 1444
  ident: bib4
  article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration
  publication-title: Ophthalmology
– volume: 1
  start-page: 5
  year: 2015
  ident: bib6
  article-title: A review of optical coherence tomography angiography (OCTA)
  publication-title: Int. J. Retin. Vitr.
– volume: 11–14
  year: 2007
  ident: bib22
  article-title: ‘Segmentation d’images par maximisation de l’entropie à deux dimensions basée sur le recuit microcanonique’, presented at the 21° Colloque GRETSI
  publication-title: Troyes, FRA
– volume: 7
  start-page: 163
  year: 2018
  end-page: 167
  ident: bib19
  article-title: Segmenting retinal blood vessels with gabor filter and automatic binarization
  publication-title: Int. J. Eng. Technol.
– volume: 102
  start-page: 821
  year: 2018
  end-page: 826
  ident: bib25
  article-title: Optical coherence tomography angiography reproducibility of lesion size measurements in neovascular age-related macular degeneration (AMD)
  publication-title: Br. J. Ophthalmol.
– start-page: 130
  year: 1998
  end-page: 137
  ident: bib16
  article-title: ‘Multiscale Vessel Enhancement Filtering’, Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention
– ident: bib24
  article-title: Fuzzy c-means thresholding
– volume: 5
  start-page: 603
  year: 2015
  ident: bib8
  article-title: State-of-the-art in retinal optical coherence tomography image analysis
  publication-title: Quant. Imaging Med. Surg.
– start-page: 1
  year: 2018
  end-page: 19
  ident: bib21
  article-title: Retinal blood vessel segmentation by using matched filtering and fuzzy C-means clustering with integrated level set method for diabetic retinopathy assessment
  publication-title: J. Med. Biol. Eng.
– volume: 9
  start-page: 3208
  year: 2018
  end-page: 3219
  ident: bib9
  article-title: Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes
  publication-title: Biomed. Opt. Express
– volume: 2
  start-page: 1140
  year: 2011
  end-page: 1144
  ident: bib13
  article-title: A review of retinal vessel segmentation techniques and algorithms
  publication-title: Int. J. Comput. Technol. Appl.
– year: 2012
  ident: bib23
  article-title: Thresholding the maximum entropy
– volume: 6
  start-page: 391
  year: 2016
  ident: bib7
  article-title: Automated registration and enhanced processing of clinical optical coherence tomography angiography
  publication-title: Quant. Imaging Med. Surg.
– volume: 21
  year: 2016
  ident: bib3
  article-title: Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography
  publication-title: J. Biomed. Opt.
– volume: 2018
  year: 2018
  ident: bib26
  article-title: Optical coherence tomography angiography to distinguish changes of choroidal neovascularization after anti-VEGF therapy: monthly loading dose versus Pro Re Nata Regimen
  publication-title: J. Ophthalmol.
– volume: 11
  year: 2016
  ident: bib14
  article-title: A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding
  publication-title: PLoS One
– volume: 6
  start-page: 3564
  year: 2015
  end-page: 3576
  ident: bib1
  article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography
  publication-title: Biomed. Opt. Express
– volume: 89
  start-page: 150
  year: 2017
  end-page: 161
  ident: bib31
  article-title: Automatic blood vessels segmentation based on different retinal maps from OCTA scans
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 155
  year: 2018
  ident: bib10
  article-title: Retinal vessels segmentation techniques and algorithms: a survey
  publication-title: Appl. Sci.
– volume: 13
  year: Oct. 2018
  ident: bib27
  article-title: Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission
  publication-title: PLoS One
– volume: 111
  start-page: 103352
  year: 2019
  ident: bib32
  article-title: Multi-proportion channel ensemble model for retinal vessel segmentation
  publication-title: Comput. Biol. Med.
– volume: 11
  year: 2016
  ident: bib15
  article-title: Unsupervised retinal vessel segmentation using combined filters
  publication-title: PLoS One
– volume: 37
  start-page: 1120
  year: 2017
  end-page: 1125
  ident: bib2
  article-title: Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration
  publication-title: Retina
– start-page: 2016
  year: 2016
  ident: bib28
  article-title: The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization
  publication-title: J. Ophthalmol.
– volume: 1
  start-page: 5
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103450_bib6
  article-title: A review of optical coherence tomography angiography (OCTA)
  publication-title: Int. J. Retin. Vitr.
  doi: 10.1186/s40942-015-0005-8
– volume: 5
  start-page: 603
  issue: 4
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103450_bib8
  article-title: State-of-the-art in retinal optical coherence tomography image analysis
  publication-title: Quant. Imaging Med. Surg.
– volume: 11
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib15
  article-title: Unsupervised retinal vessel segmentation using combined filters
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149943
– ident: 10.1016/j.compbiomed.2019.103450_bib23
– volume: vol. 35
  start-page: 2163
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103450_bib5
– volume: vol. 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103450_bib11
– volume: 13
  issue: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib27
  article-title: Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205513
– volume: 187
  start-page: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib29
  article-title: Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2017.12.005
– volume: 111
  start-page: 103352
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103450_bib32
  article-title: Multi-proportion channel ensemble model for retinal vessel segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103352
– volume: 11
  issue: 7
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib14
  article-title: A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158996
– volume: 121
  start-page: 1435
  issue: 7
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103450_bib4
  article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.01.034
– volume: 4
  start-page: 1034
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib12
  article-title: A review on retinal blood vessel segmentation techniques
  publication-title: Int. J. Sci. Res. Dev.
– volume: 7
  start-page: 163
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib19
  article-title: Segmenting retinal blood vessels with gabor filter and automatic binarization
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v7i4.11.20794
– start-page: 2016
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib28
  article-title: The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization
  publication-title: J. Ophthalmol.
– volume: 66
  start-page: 316
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103450_bib30
  article-title: Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.09.009
– volume: 39
  start-page: 367
  issue: 5
  year: 1995
  ident: 10.1016/j.compbiomed.2019.103450_bib17
  article-title: An international classification and grading system for age-related maculopathy and age-related macular degeneration
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/S0039-6257(05)80092-X
– volume: 6
  start-page: 391
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib7
  article-title: Automated registration and enhanced processing of clinical optical coherence tomography angiography
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims.2016.07.02
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib21
  article-title: Retinal blood vessel segmentation by using matched filtering and fuzzy C-means clustering with integrated level set method for diabetic retinopathy assessment
  publication-title: J. Med. Biol. Eng.
– volume: 37
  start-page: 1120
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103450_bib2
  article-title: Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration
  publication-title: Retina
  doi: 10.1097/IAE.0000000000001312
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib20
– volume: 102
  start-page: 821
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib25
  article-title: Optical coherence tomography angiography reproducibility of lesion size measurements in neovascular age-related macular degeneration (AMD)
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2017-310569
– ident: 10.1016/j.compbiomed.2019.103450_bib24
– volume: 2018
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib26
  article-title: Optical coherence tomography angiography to distinguish changes of choroidal neovascularization after anti-VEGF therapy: monthly loading dose versus Pro Re Nata Regimen
  publication-title: J. Ophthalmol.
  doi: 10.1155/2018/3751702
– volume: 2
  start-page: 1140
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103450_bib13
  article-title: A review of retinal vessel segmentation techniques and algorithms
  publication-title: Int. J. Comput. Technol. Appl.
– volume: 21
  issue: 7
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103450_bib3
  article-title: Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.21.7.076010
– start-page: 1011
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103450_bib18
– start-page: 130
  year: 1998
  ident: 10.1016/j.compbiomed.2019.103450_bib16
– volume: 11–14
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103450_bib22
  article-title: ‘Segmentation d’images par maximisation de l’entropie à deux dimensions basée sur le recuit microcanonique’, presented at the 21° Colloque GRETSI
  publication-title: Troyes, FRA
– volume: 6
  start-page: 3564
  issue: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103450_bib1
  article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.003564
– volume: 89
  start-page: 150
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103450_bib31
  article-title: Automatic blood vessels segmentation based on different retinal maps from OCTA scans
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.008
– volume: 9
  start-page: 3208
  issue: 7
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib9
  article-title: Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.003208
– volume: 8
  start-page: 155
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103450_bib10
  article-title: Retinal vessels segmentation techniques and algorithms: a survey
  publication-title: Appl. Sci.
  doi: 10.3390/app8020155
SSID ssj0004030
Score 2.2910192
Snippet To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular...
AbstractObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular...
ObjectivesTo report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related...
SourceID unpaywall
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103450
SubjectTerms Age
Age related diseases
Age-related macular degeneration
Algorithms
Angiography
Automation
Bias
Biomarkers
Choroidal neovascularization
Conflicts of interest
Eye diseases
Image processing
Image segmentation
Internal Medicine
Life Sciences
Macular degeneration
Medical imaging
Methods
Morlet wavelet
Noise
Optical Coherence Tomography
Optical Coherence Tomography Angiography
Other
Standard deviation
Statistical analysis
Tomography
Topology
Vascular segmentation
Vascularization
Vessel enhancement filtering
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKDzwOiDeBggLiGprYcRyL06qiWiEel1bqzbJjGwLb7NLdtOLCb2cmdlJQe1gJaQ_ZJJM4nsnncfJ9E0LeSCu8sF5nVkielaLymeGaZd4IJo0pGdNDtc_P1fy4_HDCT3bIwaiFQVplxP6A6QNaxzX7sTf3V22LGl-YSgzKS4BhWqGID6t_QUy__X1J8yhzFmQogDe4d2TzBI4X0raDzB1JXhIV6CUq8K8fom58Q67k1UT0DrnVdyv960IvFn8NTof3yN2YVaaz0PD7ZMd1D8jNT_G9-UPyY9ZvlpCbOpv-7HXgBw0uSZc-BQA8W7YW7Ds3MVOjPDOF35fV8Lw7RSXHoA1Mj5ansdJ1Ouu-tuNyewrgtH5Ejg_fHx3Ms_iZhazhst5k3haGldZSrkXuJEyIfG0ErV0D01cjLctdBQ6tmDPSVblufOFKR7G8MZhBvvWY7HbLzj0lqc8bl0urDYcjFqbWtNSN8dY3tGnKhiZEjD2rmliDHD-FsVAj2ey7uvSJQp-o4JOEFJPlKtTh2MJGjs5To84UkFHBYLGFrbjO1q3jLb5WhVpTlasrYZiQd5PlP5G85XlfQ5RNl4jFv-ezjwrXwXYsHyjPi4TsjUGopvYgo59VnHORkFfTZgALfAOkIYB62IdKUUAbZZ2QJyF4p1OxYbLKq4TQKZq37upn_3XRz8lt_Bcknntkd3PWuxeQ623My-Fm_gNPp1Pm
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIkE5IJ4lUFBAXCMSO4nX4oBWiGWFeBxopd4sP8vCNtk2uyD-PePYySJRoZVyiJJMXjMez9jfNwZ4yQ1zzDiZGcarrGS1y1QlaeYUo1ypklLZV_v8XM9Pyg-n1WkccOsirHLwib2jNq32Y-SvPGCZ1lVVsTeri8yvGuVnV-MSGntwvSBoSZ4pPnu_5UXmNFBQ0NeUmApFJE_Ad3nIdqC4e4AX9-zz0rPvr-6e9r55nOS_QegtuLlpVvL3L7lc_tUxze7A7RhRptNgAnfhmm3uwY1Pcc78PvyYbtYtxqXWpBcbGbBBvTrS1qXo_C7bhUH5xo6o1EjNTHH7surHulPP4uh5gelxex6rXKfT5mwx7C_O0TF1D-Bk9u747TyLSyxkuuKTdeZMoWhpDKkkyy3HZMhNFCMTqzF1VdzQ3NaozJpaxW2dS-0KW1riSxujGMZaD2G_aRv7CFKXa5tzI1WFdyzURJJSauWM00TrUpME2PBnhY71x_0yGEsxAM2-i61OhNeJCDpJoBglV6EGxw4yfFCeGDim6BUFdhQ7yLKrZG0Xm3cnCtERkYuvfXWjnvyLkQCpeQKvR8kYwYTIZMfnvkArGz_RF_6eTz8KfwzP-9KB_GeRwNFghGJ8n23jSOD5eBodhZ_9kWhAG7yGcIaNBNPrBA6D8Y6Pon2iWtUJkNGad_7Vj___Rk_gwF8c-JtHsL--3NinGMit1bO-tf4BB8VIvg
  priority: 102
  providerName: ProQuest
Title Automated quantification of choroidal neovascularization on Optical Coherence Tomography Angiography images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303269
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519303269
https://dx.doi.org/10.1016/j.compbiomed.2019.103450
https://www.ncbi.nlm.nih.gov/pubmed/31550556
https://www.proquest.com/docview/2307365557
https://www.proquest.com/docview/2297126998
https://hal.science/hal-03487639
https://www.sciencedirect.com/science/article/am/pii/S0010482519303269?via%3Dihub
UnpaywallVersion publishedVersion
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250805
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB7tthLHA_cRWKqA4DFtbsfiAQXYUq6yoK1Uniw7cdiwbVraZhE88NsZJ044dh8qhFSlaZLJ4X75PBPPNwF4SFOSkTTjVkpoYPkkzCwRcM_KBPGoEL7n8ara5zgcTfxX02C6A-8bLYxKq9TcX3N6xdZ6yUC35oDPB8s8VzJfjCYq8SUysRvSJyc5f-Q9z49KsQvdUI05daA7GR_EH2tGti21uQrCIkItBKCvs3vqnC-Vxl3L3lXSF1WKdF8p8s_usnaPVO7kacf0IpwviyX_9pXPZr91VsPLsGous85ROe6XG9FPvv9VAfK_tsMVuKRdWzOura7Cjiyuwbm3evD-OhzH5WaBDrJMzS8lr5OUKlyYi8xEFl4t8hTtC9mmx2qNqImfd8vqobup5CSVQNE8XMx1uW0zLj7lzXw-R4Zc34DJcP_w2cjS73qwkoBGGytLHeH5aeoGnNiSYlSWRYK4kUwwhhY09WwZIqpCTwoqQ5snmSN96aoay2iGTt9N6BSLQt4GM7MTadOUiwD36IiIuz5PRJZmiZskfuIaQJq_kyW6ELp6H8eMNRlvn9kvIDAFBFYDwQCntVzWxUC2sKENYlgjdkV6ZthjbWFLzrKVa80za-awtctsdgoABjxuLf-A0ZbHfYDQbi9RVSAfxW-YWobrVQ1DeuIYsNcgn7Xno2QFXhgEATHgfrsaGUsNQ3EEUInbuJQ4eI40MuBWfce0h_KqiDkIDXDbW2jrpr7zL0Z34YL6VctL96CzWZXyHvqZG9GD3f4PB6dkSnAaDV_0oBu_fD0a4_fT_fHBh57mlp9t4oPS
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQ2LwgPhNYEBA8BiR2ElcCyFUAVPHuvFAJ_XNs2MbCl3SrS3T_in-Rs5xkiIxob5M6kPV9BLHd_l8jr_vDPCKa2aZtjLSjGdRynIbqUzSyCpGuVIppbKu9nmYD47Sz-NsvAG_Wy2Mo1W2mFgDta4K9478jSMs0zzLMvZ-dhq5XaPc6mq7hYYPi31zcY5Ttvm7vY_o39eE7H4afRhEza4CUZHx3iKyOlE01ZpkksWGY_5ve4qRnilwtqa4prHJsf05NYqbPJaFTUxqiKvmi2aYXuB5N-FaSuPU1epnY7bSYcbUS14Q21KcejXMIc8ncxRxL6l3hDLu1O6pU_tfPhxufne8zH-T3puwvSxn8uJcTqd_DYS7t-FWk8GGfR9yd2DDlHfh-kGzRn8PfvaXiwrzYKPD06X0XKTa_WFlQwTbs2qi0b40HQu2kYKG-Pkyq9-th041UusQw1F10lTVDvvlt0n7fXKCQDi_D0dX0vkPYKusSvMIQhsXJuZaqgzPmKieJKkslNW2IEWRFiQA1vasKJp6527bjaloiW0_xMonwvlEeJ8EkHSWM1_zYw0b3jpPtJpWRGGBA9MatuwyWzNv4GQuEjEnIhZf62pKtdgYMw-S8wDedpZNxuQzoTWv-xKjrLtFV2h80B8K9xsed6UK-a8kgJ02CEXXntXDGMCL7jACk1ttkhhAS_wP4SzBNvJeAA998HaXovXEOMsDIF00r93Vj__fouewPRgdDMVw73D_Cdxwhl47ugNbi7OleYpJ5EI9q5_cEI6vGir-AG9ohZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahjTgAXEnMCAgeIxI7CSuhRCqGFXHxkBik_pmfGUdXdKtLdP-Gr-O49yKxIT6MqkPVdOTOPbJ53Pi7zsGeMUNc8w4GRnGsyhluYtUJmnkFKNcqZRSWVX73M-Hh-mnUTZag9-tFsbTKltMrIDalNq_I3_jCcs0zzJM4F1Di_i6PXg_PY38DlJ-pbXdTqN2kV17cY7p2-zdzjaO9WtCBh8PPgyjZoeBSGe8N4-cSRRNjSGZZLHlmAu4nmKkZzVmboobGtsc7yWnVnGbx1K7xKaW-Mq-aIahBp53Ha4xmlJPJ2MjttRkxrSWvyDOpZiGNSyimlvm6eK1vN6Ty7hXvqde-X_51Lh-5Dma_wbAN-H6opjKi3M5mfw1KQ5uw60mmg37tfvdgTVb3IXNz816_T342V_MS4yJrQlPF7LmJVWuEJYuROA9K8cG7QvbMWIbWWiIny_T6j176BUklSYxPChPmgrbYb_4MW6_j08QFGf34fBKOv8BbBRlYR9B6GJtY26kyvCMiepJkkqtnHGaaJ1qEgBre1bopva534JjIlqS27FYjonwYyLqMQkg6Syndf2PFWx4O3ii1bciIgucpFawZZfZ2lkDLTORiBkRsfhWVVaqhMcYhZCcB_C2s2yipzoqWvG6L9HLulv0RceH_T3hf8Pjvmwh_5UEsNU6oejas3wwA3jRHUaQ8itPEh1ogf8hnCXYRt4L4GHtvN2laJUkZ3kApPPmlbv68f9b9Bw2ESTE3s7-7hO44e1qGekWbMzPFvYpxpNz9ax6cEP4ftVI8QfAL4nL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7aOonLA9cBgYECgsesuTsWD6gCpgrBAGmVxpNlOzYLa9PSNkPw6zmOnXDZHiqE1Ic0yWkS58tnn_r7TgCe0pJoUmoelIRmQUpyHYiMJ4EWJKFCpEnC22qfh_l4kr45zo634GPnhTGySsf9ltNbtnZrhq41h3w2XFSVsfliNtGaL5GJ45y-OKv4s-RVddKIbdjJzZzTAHYmhx9Gnywjh4HZ3SRhBaEBAjB16h6r-TIybmt7N6IvahzpqXHkX9xlbZ8Y7eT5gelVuNzUC_79G59Of-usDq7DsrtMq1E53W_WYl_--KsC5H9thxtwzQ1t_ZGNuglbqr4Fl965yfvbcDpq1nMcIKvS_9pwK1JqceHPtY8svJxXJcbXqpfHOo-oj5_3i_ZPd9_YSVqDon80n7ly2_6o_lx1y9UMGXK1C5OD10cvx4F710MgM1qsA11GIknLMs44CRXFrEwXgsSFkphDC1omocoRVXmiBFV5yKWOVKpiU2MZw3DQdwcG9bxW98DXoVQhLbnI8BcjUfA45VLoUstYylTGHpDudjLpCqGb93FMWad4-8J-AYEZIDALBA-iPnJhi4FsEEM7xLDO7Ir0zLDH2iCWXBSrVo5nVixiq5iF7BwAPHjeR_4Bow2P-wSh3V-iqUA-Hr1lZh1uNzUM6VnkwV6HfNafj7EVJHmWZcSDx_1mZCwzDcURQA3uE1MS4TnSwoO79onpD5W0GXOWexD3j9DGTX3_X4IewBXzzdpL92CwXjbqIY4z1-KRY46fYx993w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+quantification+of+choroidal+neovascularization+on+Optical+Coherence+Tomography+Angiography+images&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Taibouni%2C+Kawther&rft.au=Chenoune%2C+Yasmina&rft.au=Miere%2C+Alexandra&rft.au=Colantuono%2C+Donato&rft.date=2019-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=114&rft.spage=103450&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103450&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00104%2Fcov150h.gif