Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction

Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data....

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 717
Main Authors Zhao, Juan, Feng, QiPing, Wu, Patrick, Lupu, Roxana A., Wilke, Russell A., Wells, Quinn S., Denny, Joshua C., Wei, Wei-Qi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.01.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-018-36745-x

Cover

Abstract Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice – American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.
AbstractList Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice – American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.
Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.
ArticleNumber 717
Author Feng, QiPing
Denny, Joshua C.
Wu, Patrick
Wilke, Russell A.
Wells, Quinn S.
Zhao, Juan
Lupu, Roxana A.
Wei, Wei-Qi
Author_xml – sequence: 1
  givenname: Juan
  surname: Zhao
  fullname: Zhao, Juan
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center
– sequence: 2
  givenname: QiPing
  surname: Feng
  fullname: Feng, QiPing
  organization: Division of Clinical Pharmacology, Vanderbilt University Medical Center
– sequence: 3
  givenname: Patrick
  surname: Wu
  fullname: Wu, Patrick
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, Medical Scientist Training Program, Vanderbilt University School of Medicine
– sequence: 4
  givenname: Roxana A.
  orcidid: 0000-0002-6316-1835
  surname: Lupu
  fullname: Lupu, Roxana A.
  organization: Department of Medicine, University of South Dakota Sanford School of Medicine
– sequence: 5
  givenname: Russell A.
  surname: Wilke
  fullname: Wilke, Russell A.
  organization: Department of Medicine, University of South Dakota Sanford School of Medicine
– sequence: 6
  givenname: Quinn S.
  surname: Wells
  fullname: Wells, Quinn S.
  organization: Department of Medicine, Vanderbilt University Medical Center
– sequence: 7
  givenname: Joshua C.
  surname: Denny
  fullname: Denny, Joshua C.
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, Department of Medicine, Vanderbilt University Medical Center
– sequence: 8
  givenname: Wei-Qi
  surname: Wei
  fullname: Wei, Wei-Qi
  email: wei-qi.wei@vumc.org
  organization: Department of Biomedical Informatics, Vanderbilt University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30679510$$D View this record in MEDLINE/PubMed
BookMark eNp9kklvFDEQhS0URBbyBzggS1y4NHjrxRckNEwWaSQQgrPl2NUTR257sN2T8O9xMgmEHOKLLdX3Ss9V7xDthRgAoTeUfKCEDx-zoK0cGkKHhne9aJubF-iAkfpgnLG9R-99dJzzFamnZVJQ-Qrtc9L1sqXkAF2vQKfgwhqPKU54FcPaldm6oD3-oovGLuClB1NSDM7gM9C-XOLvYGKyWAeLTyFAqZU7uER8Pm1S3AJe6GRd3OpsZq8TXm4hFPwtgXWmuBheo5ej9hmO7-8j9PNk-WNx1qy-np4vPq8aU39Xmq63oAc-gh2tsXpgoyZGDvaCU9t2wlpgnJARTK0LEC0R3IIEymU3SitafoQ-7fpu5osJrKkukvZqk9yk028VtVP_V4K7VOu4VR0XrexIbfD-vkGKv2bIRU0uG_BeB4hzVoz2UvC-rqCi756gV3FOdZKV4kIw0glJK_X2saO_Vh52UoFhB5gUc04wKuOKvh1aNei8okTdJkDtEqBqAtRdAtRNlbIn0ofuz4r4TpQrHNaQ_tl-RvUHWxvGjw
CitedBy_id crossref_primary_10_1007_s41666_022_00119_w
crossref_primary_10_1186_s12916_022_02250_2
crossref_primary_10_1093_ehjdh_ztad058
crossref_primary_10_1093_jamia_ocac130
crossref_primary_10_1002_cpt_1947
crossref_primary_10_1038_s41467_024_48568_8
crossref_primary_10_3390_app14135925
crossref_primary_10_1038_s41598_020_64123_z
crossref_primary_10_1097_MOP_0000000000000963
crossref_primary_10_1016_j_cmet_2024_02_002
crossref_primary_10_1186_s12916_024_03273_7
crossref_primary_10_1161_JAHA_119_013924
crossref_primary_10_1016_j_cjco_2020_12_019
crossref_primary_10_1080_14779072_2023_2223978
crossref_primary_10_1200_CCI_23_00039
crossref_primary_10_1093_jamia_ocae049
crossref_primary_10_1016_j_arr_2024_102293
crossref_primary_10_1073_pnas_2202113119
crossref_primary_10_2196_19739
crossref_primary_10_3389_fradi_2024_1269023
crossref_primary_10_1016_j_avsg_2020_07_001
crossref_primary_10_1038_s41746_024_01418_9
crossref_primary_10_1016_j_ijmedinf_2024_105646
crossref_primary_10_1038_s41467_025_55879_x
crossref_primary_10_2196_14325
crossref_primary_10_1016_j_jacadv_2023_100801
crossref_primary_10_1016_j_schres_2022_07_011
crossref_primary_10_1002_smr_2386
crossref_primary_10_1038_s41598_023_27493_8
crossref_primary_10_1097_MNH_0000000000001042
crossref_primary_10_3390_healthcare10112134
crossref_primary_10_1186_s12916_021_01940_7
crossref_primary_10_1016_j_rcl_2024_01_002
crossref_primary_10_1016_j_ecoenv_2024_117570
crossref_primary_10_1177_14604582241307839
crossref_primary_10_2196_29812
crossref_primary_10_3390_s22124310
crossref_primary_10_31590_ejosat_1082297
crossref_primary_10_1161_CIRCRESAHA_121_318106
crossref_primary_10_12688_wellcomeopenres_23009_2
crossref_primary_10_12688_wellcomeopenres_23009_1
crossref_primary_10_1016_j_xjidi_2022_100105
crossref_primary_10_1016_j_jbi_2023_104294
crossref_primary_10_1038_s41598_023_49552_w
crossref_primary_10_31083_j_fbl2810248
crossref_primary_10_3390_life12020279
crossref_primary_10_1093_ehjdh_ztae080
crossref_primary_10_3389_frai_2023_985469
crossref_primary_10_2196_48320
crossref_primary_10_1001_jamacardio_2024_2912
crossref_primary_10_1080_08164622_2021_2022961
crossref_primary_10_1200_CCI_22_00123
crossref_primary_10_1161_JAHA_119_011969
crossref_primary_10_1111_ijcp_13391
crossref_primary_10_1145_3648105
crossref_primary_10_1016_j_jiph_2020_06_006
crossref_primary_10_1186_s12911_023_02264_7
crossref_primary_10_2196_46547
crossref_primary_10_1145_3712196
crossref_primary_10_1371_journal_pone_0314145
crossref_primary_10_1038_s41598_022_05822_7
crossref_primary_10_1093_ehjdh_ztab089
crossref_primary_10_35940_ijeat_A3212_1011121
crossref_primary_10_1016_j_aohep_2024_101528
crossref_primary_10_1186_s12874_022_01829_w
crossref_primary_10_1016_j_cpcardiol_2023_101922
crossref_primary_10_1097_PCC_0000000000002560
crossref_primary_10_3389_fcvm_2022_840262
crossref_primary_10_1177_00045632241285528
crossref_primary_10_1016_j_tips_2019_06_001
crossref_primary_10_3390_electronics11233996
crossref_primary_10_1109_JBHI_2020_3000136
crossref_primary_10_57197_JDR_2024_0103
crossref_primary_10_1111_cts_12884
crossref_primary_10_1007_s41666_023_00143_4
crossref_primary_10_1016_j_rser_2022_112357
crossref_primary_10_1161_CIRCIMAGING_122_014533
crossref_primary_10_1016_j_ijmedinf_2023_105088
crossref_primary_10_1016_j_wneu_2024_04_136
crossref_primary_10_1016_j_dss_2023_113982
crossref_primary_10_1016_j_artmed_2020_101847
crossref_primary_10_1253_circj_CJ_21_0622
crossref_primary_10_1016_j_annepidem_2022_03_010
crossref_primary_10_3390_jpm13081268
crossref_primary_10_1016_j_jbi_2019_103270
crossref_primary_10_1038_s41598_020_73740_7
crossref_primary_10_1038_s41598_020_74399_w
crossref_primary_10_1007_s00246_023_03130_z
crossref_primary_10_1148_radiol_240516
crossref_primary_10_1007_s11886_021_01454_x
crossref_primary_10_3390_ai4020024
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_2196_46717
crossref_primary_10_3390_bioengineering11111080
crossref_primary_10_1016_j_jacc_2022_01_021
crossref_primary_10_1109_ACCESS_2021_3112608
Cites_doi 10.1093/eurheartj/ehx250
10.1038/clpt.2012.66
10.1210/jc.2010-3011
10.1001/jamacardio.2018.0022
10.1371/journal.pone.0118432
10.1056/NEJMoa1605086
10.1136/bmj.39609.449676.25
10.1056/NEJMra0906948
10.1371/journal.pmed.1002546
10.1016/j.orcp.2010.03.001
10.1186/s13073-015-0166-y
10.1093/jamia/ocw112
10.1162/neco.1997.9.8.1735
10.1161/CIRCULATIONAHA.107.699579
10.1016/j.cyto.2017.05.013
10.1016/j.amjcard.2008.09.098
10.1161/01.STR.28.3.557
10.1109/TAI.1995.479783
10.1161/CIR.0000000000000485
10.1001/jama.290.7.898
10.1197/jamia.M3294
10.1111/jcpt.12527
10.1080/713827181
10.1038/nature14539
10.1136/amiajnl-2011-000597
10.1038/ng.3437
10.1016/j.jbi.2014.11.005
10.1109/TIP.2015.2423560
10.1016/j.jacl.2017.03.019
10.1007/s00439-016-1636-z
10.1136/heartjnl-2013-304474
10.1016/j.ijmedinf.2012.05.015
10.1161/CIRCULATIONAHA.117.031356
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-018-36745-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6345960
30679510
10_1038_s41598_018_36745_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: HL133786
  funderid: https://doi.org/10.13039/100000050
– fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
  grantid: T15 LM007450; LM010685
  funderid: https://doi.org/10.13039/100000092
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM120523; GM109145
  funderid: https://doi.org/10.13039/100000057
– fundername: NIGMS NIH HHS
  grantid: RC2 GM092618
– fundername: NLM NIH HHS
  grantid: T15 LM007450
– fundername: NIGMS NIH HHS
  grantid: R01 GM120523
– fundername: NIGMS NIH HHS
  grantid: P50 GM115305
– fundername: NCATS NIH HHS
  grantid: UL1 TR000445
– fundername: NLM NIH HHS
  grantid: R01 LM010685
– fundername: NHLBI NIH HHS
  grantid: R01 HL133786
– fundername: American Heart Association-American Stroke Association
  grantid: 18AMTG34280063
– fundername: NIGMS NIH HHS
  grantid: R01 GM109145
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
– fundername: ;
  grantid: HL133786
– fundername: ;
  grantid: T15 LM007450; LM010685
– fundername: ;
  grantid: GM120523; GM109145
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c598t-67dea83fedfdcda82fa0c98db31d564dde2300fecdfd4e45043de9e1396f9d453
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:24:01 EDT 2025
Fri Sep 05 06:58:36 EDT 2025
Sun Sep 07 07:10:50 EDT 2025
Mon Jul 21 05:36:05 EDT 2025
Tue Jul 01 00:58:28 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Fri Feb 21 02:38:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-67dea83fedfdcda82fa0c98db31d564dde2300fecdfd4e45043de9e1396f9d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6316-1835
OpenAccessLink https://www.nature.com/articles/s41598-018-36745-x
PMID 30679510
PQID 2344206491
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6345960
proquest_miscellaneous_2179437674
proquest_journals_2344206491
pubmed_primary_30679510
crossref_citationtrail_10_1038_s41598_018_36745_x
crossref_primary_10_1038_s41598_018_36745_x
springer_journals_10_1038_s41598_018_36745_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-24
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References WeiW-QLeibsonCLRansomJEKhoANChuteCGThe absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjectsInt J Med Inform20138223924710.1016/j.ijmedinf.2012.05.015
WHO | The top 10 causes of death. WHO (2018). Available at: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.
BatistaGEAPAMonardMCAn analysis of four missing data treatment methods for supervised learningApplied Artificial Intelligence20031751953310.1080/713827181
KnowlesJWAshleyEACardiovascular disease: The rise of the genetic risk scorePLOS Medicine201815e100254610.1371/journal.pmed.1002546
LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
PedregosaFScikit-learn: Machine Learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
KheraAVGenetic Risk, Adherence to a Healthy Lifestyle, and Coronary DiseaseNew England Journal of Medicine2016375234923581:CAS:528:DC%2BC2sXhvVSgsQ%3D%3D10.1056/NEJMoa1605086
TillinTEthnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE–Southall And Brent REvisited)Heart2014100606710.1136/heartjnl-2013-304474
Wei, W. -Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med7 (2015).
KhanUIRiederJCohenHWCoupeySMWildmanRPEffect of modest changes in BMI on cardiovascular disease risk markers in severely obese, minority adolescentsObes Res Clin Pract20104e16324610.1016/j.orcp.2010.03.001
Liu, H. & Setiono, R. Chi2: feature selection and discretization of numeric attributes. in Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence 388–391, https://doi.org/10.1109/TAI.1995.479783 (1995).
BenjaminEJHeart Disease and Stroke Statistics—2017 Update: A Report From the American Heart AssociationCirculation2017135e146e60310.1161/CIR.0000000000000485
KannelWBVasanRSAdverse consequences of the 50% misconceptionAm J Cardiol2009103426710.1016/j.amjcard.2008.09.098
YackelTREmbiPJUnintended errors with EHR-based result management: a case seriesJ Am Med Inform Assoc20101710410710.1197/jamia.M3294
Ansari, W. M. et al. Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokinehttps://doi.org/10.1016/j.cyto.2017.05.013 (2017).
HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979173517801:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735
Wei, W. -Q. et al. LPA Variants are Associated with Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, https://doi.org/10.1161/CIRCULATIONAHA.117.031356 (2018).
PaquetteMPolygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemiaJournal of Clinical Lipidology201711725732.e510.1016/j.jacl.2017.03.019
Normalized names for clinical drugs: RxNorm at 6 years. Available at, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128404/ (Accessed: 18th May 2018)
WeiW-QEvaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health recordPLOS ONE201712116
LaiKTLiuDChangSFChenMSLearning Sample Specific Weights for Late FusionIEEE Transactions on Image Processing201524277227832015ITIP...24.2772L335559010.1109/TIP.2015.2423560
SinghAIncorporating temporal EHR data in predictive models for risk stratification of renal function deteriorationJournal of Biomedical Informatics20155322022810.1016/j.jbi.2014.11.005
ReuschJEBWangCCLCardiovascular Disease in Diabetes: Where Does Glucose Fit In?J Clin Endocrinol Metab201196236723761:CAS:528:DC%2BC3MXhtVKhsLbL10.1210/jc.2010-3011
McCarthyMIGenomics, Type 2 Diabetes, and ObesityNew England Journal of Medicine2010363233923501:CAS:528:DC%2BC3cXhsFGkt7zO10.1056/NEJMra0906948
SaitoTRehmsmeierMThe Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced DatasetsPLOS ONE201510e011843210.1371/journal.pone.0118432
Hippisley-CoxJPredicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2BMJ20083361475148210.1136/bmj.39609.449676.25
KhanSSAssociation of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of MorbidityJAMA Cardiol2018328028710.1001/jamacardio.2018.0022
Vidal-PetiotEVisit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trialEur. Heart J.201738281328221:CAS:528:DC%2BC1cXit1WgsbjL10.1093/eurheartj/ehx250
MüllerBImproved prediction of complex diseases by common genetic markers: state of the art and further perspectivesHum Genet201613525927210.1007/s00439-016-1636-z
ChoiESchuetzAStewartWFSunJUsing recurrent neural network models for early detection of heart failure onsetJournal of the American Medical Informatics Association20172436137027521897
Wannamethee, S. G., Shaper, A. G. & Perry, I. J. Serum Creatinine Concentration and Risk of Cardiovascular Disease. Stroke (1997).
D’AgostinoRBGeneral Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart StudyCirculation200811774375310.1161/CIRCULATIONAHA.107.699579
GaultonKJGenetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility lociNat. Genet.201547141514251:CAS:528:DC%2BC2MXhvVSgt7bO10.1038/ng.3437
KhotUNPrevalence of Conventional Risk Factors in Patients With Coronary Heart DiseaseJAMA200329089810.1001/jama.290.7.898
TangX-YThe association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacementJ Clin Pharm Ther2017424384451:CAS:528:DC%2BC2sXhtFCktbrN10.1111/jcpt.12527
SchildcroutJSOptimizing drug outcomes through pharmacogenetics: A case for preemptive genotypingClin Pharmacol Ther2012922352421:CAS:528:DC%2BC38XhtVOmtrfM10.1038/clpt.2012.66
WeiW-QImpact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitusJournal of the American Medical Informatics Association20121921922410.1136/amiajnl-2011-000597
WengSFRepsJKaiJGaribaldiJMQureshiNCan machine-learning improve cardiovascular risk prediction using routine clinical data?PLOS ONE201712114
GoffDC2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice GuidelinesCirculation20136329352959
DC Goff (36745_CR4) 2013; 63
JW Knowles (36745_CR25) 2018; 15
B Müller (36745_CR26) 2016; 135
F Pedregosa (36745_CR37) 2011; 12
X-Y Tang (36745_CR14) 2017; 42
RB D’Agostino (36745_CR3) 2008; 117
TR Yackel (36745_CR31) 2010; 17
W-Q Wei (36745_CR29) 2013; 82
T Tillin (36745_CR15) 2014; 100
JS Schildcrout (36745_CR27) 2012; 92
E Vidal-Petiot (36745_CR20) 2017; 38
GEAPA Batista (36745_CR32) 2003; 17
SF Weng (36745_CR11) 2017; 12
UI Khan (36745_CR19) 2010; 4
36745_CR30
A Singh (36745_CR10) 2015; 53
MI McCarthy (36745_CR22) 2010; 363
36745_CR12
36745_CR34
36745_CR13
UN Khot (36745_CR7) 2003; 290
KT Lai (36745_CR39) 2015; 24
36745_CR17
T Saito (36745_CR38) 2015; 10
M Paquette (36745_CR23) 2017; 11
W-Q Wei (36745_CR28) 2012; 19
AV Khera (36745_CR24) 2016; 375
S Hochreiter (36745_CR36) 1997; 9
Y LeCun (36745_CR35) 2015; 521
WB Kannel (36745_CR6) 2009; 103
J Hippisley-Cox (36745_CR5) 2008; 336
36745_CR1
E Choi (36745_CR9) 2017; 24
36745_CR8
KJ Gaulton (36745_CR21) 2015; 47
JEB Reusch (36745_CR18) 2011; 96
SS Khan (36745_CR16) 2018; 3
EJ Benjamin (36745_CR2) 2017; 135
W-Q Wei (36745_CR33) 2017; 12
References_xml – reference: BenjaminEJHeart Disease and Stroke Statistics—2017 Update: A Report From the American Heart AssociationCirculation2017135e146e60310.1161/CIR.0000000000000485
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979173517801:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735
– reference: KhotUNPrevalence of Conventional Risk Factors in Patients With Coronary Heart DiseaseJAMA200329089810.1001/jama.290.7.898
– reference: Ansari, W. M. et al. Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokinehttps://doi.org/10.1016/j.cyto.2017.05.013 (2017).
– reference: Liu, H. & Setiono, R. Chi2: feature selection and discretization of numeric attributes. in Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence 388–391, https://doi.org/10.1109/TAI.1995.479783 (1995).
– reference: McCarthyMIGenomics, Type 2 Diabetes, and ObesityNew England Journal of Medicine2010363233923501:CAS:528:DC%2BC3cXhsFGkt7zO10.1056/NEJMra0906948
– reference: Hippisley-CoxJPredicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2BMJ20083361475148210.1136/bmj.39609.449676.25
– reference: ChoiESchuetzAStewartWFSunJUsing recurrent neural network models for early detection of heart failure onsetJournal of the American Medical Informatics Association20172436137027521897
– reference: BatistaGEAPAMonardMCAn analysis of four missing data treatment methods for supervised learningApplied Artificial Intelligence20031751953310.1080/713827181
– reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: PaquetteMPolygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemiaJournal of Clinical Lipidology201711725732.e510.1016/j.jacl.2017.03.019
– reference: SchildcroutJSOptimizing drug outcomes through pharmacogenetics: A case for preemptive genotypingClin Pharmacol Ther2012922352421:CAS:528:DC%2BC38XhtVOmtrfM10.1038/clpt.2012.66
– reference: WeiW-QLeibsonCLRansomJEKhoANChuteCGThe absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjectsInt J Med Inform20138223924710.1016/j.ijmedinf.2012.05.015
– reference: Wannamethee, S. G., Shaper, A. G. & Perry, I. J. Serum Creatinine Concentration and Risk of Cardiovascular Disease. Stroke (1997).
– reference: Vidal-PetiotEVisit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trialEur. Heart J.201738281328221:CAS:528:DC%2BC1cXit1WgsbjL10.1093/eurheartj/ehx250
– reference: MüllerBImproved prediction of complex diseases by common genetic markers: state of the art and further perspectivesHum Genet201613525927210.1007/s00439-016-1636-z
– reference: LaiKTLiuDChangSFChenMSLearning Sample Specific Weights for Late FusionIEEE Transactions on Image Processing201524277227832015ITIP...24.2772L335559010.1109/TIP.2015.2423560
– reference: ReuschJEBWangCCLCardiovascular Disease in Diabetes: Where Does Glucose Fit In?J Clin Endocrinol Metab201196236723761:CAS:528:DC%2BC3MXhtVKhsLbL10.1210/jc.2010-3011
– reference: KhanUIRiederJCohenHWCoupeySMWildmanRPEffect of modest changes in BMI on cardiovascular disease risk markers in severely obese, minority adolescentsObes Res Clin Pract20104e16324610.1016/j.orcp.2010.03.001
– reference: WengSFRepsJKaiJGaribaldiJMQureshiNCan machine-learning improve cardiovascular risk prediction using routine clinical data?PLOS ONE201712114
– reference: TangX-YThe association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacementJ Clin Pharm Ther2017424384451:CAS:528:DC%2BC2sXhtFCktbrN10.1111/jcpt.12527
– reference: GoffDC2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice GuidelinesCirculation20136329352959
– reference: YackelTREmbiPJUnintended errors with EHR-based result management: a case seriesJ Am Med Inform Assoc20101710410710.1197/jamia.M3294
– reference: WHO | The top 10 causes of death. WHO (2018). Available at: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.
– reference: WeiW-QEvaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health recordPLOS ONE201712116
– reference: KannelWBVasanRSAdverse consequences of the 50% misconceptionAm J Cardiol2009103426710.1016/j.amjcard.2008.09.098
– reference: KnowlesJWAshleyEACardiovascular disease: The rise of the genetic risk scorePLOS Medicine201815e100254610.1371/journal.pmed.1002546
– reference: KhanSSAssociation of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of MorbidityJAMA Cardiol2018328028710.1001/jamacardio.2018.0022
– reference: WeiW-QImpact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitusJournal of the American Medical Informatics Association20121921922410.1136/amiajnl-2011-000597
– reference: SinghAIncorporating temporal EHR data in predictive models for risk stratification of renal function deteriorationJournal of Biomedical Informatics20155322022810.1016/j.jbi.2014.11.005
– reference: TillinTEthnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE–Southall And Brent REvisited)Heart2014100606710.1136/heartjnl-2013-304474
– reference: PedregosaFScikit-learn: Machine Learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
– reference: SaitoTRehmsmeierMThe Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced DatasetsPLOS ONE201510e011843210.1371/journal.pone.0118432
– reference: Wei, W. -Q. et al. LPA Variants are Associated with Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, https://doi.org/10.1161/CIRCULATIONAHA.117.031356 (2018).
– reference: GaultonKJGenetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility lociNat. Genet.201547141514251:CAS:528:DC%2BC2MXhvVSgt7bO10.1038/ng.3437
– reference: Wei, W. -Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med7 (2015).
– reference: KheraAVGenetic Risk, Adherence to a Healthy Lifestyle, and Coronary DiseaseNew England Journal of Medicine2016375234923581:CAS:528:DC%2BC2sXhvVSgsQ%3D%3D10.1056/NEJMoa1605086
– reference: Normalized names for clinical drugs: RxNorm at 6 years. Available at, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128404/ (Accessed: 18th May 2018)
– reference: D’AgostinoRBGeneral Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart StudyCirculation200811774375310.1161/CIRCULATIONAHA.107.699579
– volume: 38
  start-page: 2813
  year: 2017
  ident: 36745_CR20
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx250
– volume: 92
  start-page: 235
  year: 2012
  ident: 36745_CR27
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2012.66
– volume: 96
  start-page: 2367
  year: 2011
  ident: 36745_CR18
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-3011
– volume: 3
  start-page: 280
  year: 2018
  ident: 36745_CR16
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2018.0022
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 36745_CR38
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0118432
– volume: 375
  start-page: 2349
  year: 2016
  ident: 36745_CR24
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1605086
– volume: 336
  start-page: 1475
  year: 2008
  ident: 36745_CR5
  publication-title: BMJ
  doi: 10.1136/bmj.39609.449676.25
– volume: 363
  start-page: 2339
  year: 2010
  ident: 36745_CR22
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMra0906948
– ident: 36745_CR1
– volume: 15
  start-page: e1002546
  year: 2018
  ident: 36745_CR25
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002546
– volume: 4
  start-page: e163
  year: 2010
  ident: 36745_CR19
  publication-title: Obes Res Clin Pract
  doi: 10.1016/j.orcp.2010.03.001
– ident: 36745_CR8
  doi: 10.1186/s13073-015-0166-y
– volume: 24
  start-page: 361
  year: 2017
  ident: 36745_CR9
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocw112
– volume: 12
  start-page: 1
  year: 2017
  ident: 36745_CR33
  publication-title: PLOS ONE
– volume: 9
  start-page: 1735
  year: 1997
  ident: 36745_CR36
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 117
  start-page: 743
  year: 2008
  ident: 36745_CR3
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
– ident: 36745_CR12
  doi: 10.1016/j.cyto.2017.05.013
– volume: 103
  start-page: 426
  year: 2009
  ident: 36745_CR6
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2008.09.098
– ident: 36745_CR17
  doi: 10.1161/01.STR.28.3.557
– ident: 36745_CR30
  doi: 10.1109/TAI.1995.479783
– volume: 135
  start-page: e146
  year: 2017
  ident: 36745_CR2
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000485
– volume: 290
  start-page: 898
  year: 2003
  ident: 36745_CR7
  publication-title: JAMA
  doi: 10.1001/jama.290.7.898
– ident: 36745_CR34
– volume: 17
  start-page: 104
  year: 2010
  ident: 36745_CR31
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3294
– volume: 42
  start-page: 438
  year: 2017
  ident: 36745_CR14
  publication-title: J Clin Pharm Ther
  doi: 10.1111/jcpt.12527
– volume: 17
  start-page: 519
  year: 2003
  ident: 36745_CR32
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/713827181
– volume: 521
  start-page: 436
  year: 2015
  ident: 36745_CR35
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 19
  start-page: 219
  year: 2012
  ident: 36745_CR28
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2011-000597
– volume: 12
  start-page: 2825
  year: 2011
  ident: 36745_CR37
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 1415
  year: 2015
  ident: 36745_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3437
– volume: 53
  start-page: 220
  year: 2015
  ident: 36745_CR10
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2014.11.005
– volume: 24
  start-page: 2772
  year: 2015
  ident: 36745_CR39
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2423560
– volume: 12
  start-page: 1
  year: 2017
  ident: 36745_CR11
  publication-title: PLOS ONE
– volume: 11
  start-page: 725
  year: 2017
  ident: 36745_CR23
  publication-title: Journal of Clinical Lipidology
  doi: 10.1016/j.jacl.2017.03.019
– volume: 135
  start-page: 259
  year: 2016
  ident: 36745_CR26
  publication-title: Hum Genet
  doi: 10.1007/s00439-016-1636-z
– volume: 100
  start-page: 60
  year: 2014
  ident: 36745_CR15
  publication-title: Heart
  doi: 10.1136/heartjnl-2013-304474
– volume: 82
  start-page: 239
  year: 2013
  ident: 36745_CR29
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2012.05.015
– volume: 63
  start-page: 2935
  year: 2013
  ident: 36745_CR4
  publication-title: Circulation
– ident: 36745_CR13
  doi: 10.1161/CIRCULATIONAHA.117.031356
SSID ssj0000529419
Score 2.6046634
Snippet Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 717
SubjectTerms 639/705/1042
692/308/409
692/699/75
Adult
Algorithms
Cardiovascular diseases
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - etiology
Case-Control Studies
Cross-Sectional Studies
Deep Learning
Electronic Health Records - statistics & numerical data
Electronic medical records
Female
Genetic Variation
Humanities and Social Sciences
Humans
Learning algorithms
Long short-term memory
Longitudinal Studies
Machine Learning
Male
multidisciplinary
Neural networks
Neural Networks, Computer
Risk Factors
Science
Science (multidisciplinary)
United States - epidemiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5Rqkq9IOgzhSJX6q21SGI7jxNCdBFCtOqhSHuL7NhukaoE2KxK_31nYm_QFsEtkicPZ2zPjGf8fQAfpUEbkCrNBbZz2bYl10ZanFe1KrXKvXCU0f36rTi9kGdzNY8bbotYVrlaE8eF2vYt7ZEf5ELKHO1nnR1eXXNijaLsaqTQeAJPM_REiLqhnJfTHgtlsWRWx7MyqagOFmiv6ExZVnFRlFLx23V7dM_JvF8r-V_CdLRDJ9uwFR1IdhQ0vgMbrnsBzwKl5N-X8CcCpv5kdHCEnffER7S0xH3FvuhBs8uOzSbqGxZOIbEQhDLdWUY41PjoIDz0LOw6OHa8VrjKZlQnyb7fUJ6HdPsKLk5mP45PeSRX4C3-gYEXpXW6Et5Zb1urq9zrtK0ra0RmVSFx1cPgJPWuxXbpJAGdWVc7dBgLX1upxGvY7PrOvQUma5-imDeVKaSrvMZrJY3RmXNKO5NAtvrFTRuRx4kA43czZsBF1QS1NKiWZlRLc5vAp-meq4C78aj03kpzTZyDi-ZuxCTwYWrG2UMpEd25fokyI0AeARol8CYoenodBVPkfyZQrg2BSYCQuddbustfI0J3IaTC0DCBz6vBcvdZD_fi3eO92IXn6K1RdRvP5R5sDjdL9x49osHsj8P-H2k7DdI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBflymAvo91num54sLfNLIntxHk82ivl6MZgK_Qt2LG9FUqutDna_veT4iTj1m3Qt4DlxLEsS7aknwDeS4s6IFWGC2znsmlKbqx0KFeVKo3Kg_Dk0f38pTg-lcszdbYF-ZgL0wft95CW_TY9Rod9ukZFQ8lgmeaiKKXiaDdu6xK33xlsz-fLb8vpZoV8VzKrhgyZVOi_dN7UQvdMy_sRkn-4SXvtc7QDTwazkc3jQHdhy7dP4VEsJHn3DG4GmNQfjNJF2MmKqhCtHVW8YoemM-y8ZYup4A2LuUcsHj2ZaR0j9Gl8dSTuVizeNXh2sBGuyhYUHcm-XpF3hzj6HE6PFt8PjvlQUoE3OAMdL0rnjRbBu-AaZ3QeTNpU2lmROVVI3OvwSJIG32C79JLgzZyvPJqJRaicVOIFzNpV618Bk1VIkSxYbQvpdTD4rKS1JvNeGW8TyMYprpsBb5zKXlzUvd9b6DqypUa21D1b6tsEPkx9LiPaxn-p90fO1YPkXde5kDJHO6vKEng3NaPMkCPEtH61RpoeFo9gjBJ4GRk9fY6OUGR1JlBuLIGJgPC4N1va8589LnchpMIDYQIfx8Xye1j__ou9h5G_hsdos1GMG8_lPsy6q7V_g3ZRZ98OgvAL1RkNrw
  priority: 102
  providerName: Springer Nature
Title Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction
URI https://link.springer.com/article/10.1038/s41598-018-36745-x
https://www.ncbi.nlm.nih.gov/pubmed/30679510
https://www.proquest.com/docview/2344206491
https://www.proquest.com/docview/2179437674
https://pubmed.ncbi.nlm.nih.gov/PMC6345960
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8IL4JjMpIvIGhSex8PCBUSqepgmkCKvUtsmN7TJpS6FKx_ffc2UlQ2UDiKVF8-fLZ8e9yd78DeCE0rgFjqXiK7VzUdc6VFgbnVSlzJROXWvLofjrKDhdivpTLHejLHXUdeH6taUf1pBbrs9cXPy7f4YR_G1LGizfnuAhRolhc8DTLheSIKfe8v4hC-Tq4H7i-k1L4Wh9Ews4RTCRdHs31l9leq64A0KtxlH84U_0adXAHbnfgkk3CaLgLO7a5BzdDucnL-_CzI1M9YZRUwj6uqFbRxlBdLPZBtYqdNmw2lMVhIUOJBQOVqcYw4qjGSwfhdsXCHwnLpltBrWxGMZTseE0-INL7A1gczL5OD3lXeIHX2AMtz3JjVZE6a5ypjSoSp8Z1WRidxkZmAr-IaLiMna2xXVhBJGjGlhbBZOZKI2T6EHabVWMfAxOlG6OY04XOhC2cwn0ptFaxtVJZHUHcd3FVd6zkVBzjrPLe8bSogloqVEvl1VJdRPByOOd74OT4p_R-r7mqH15VkgqRIBor4wieD804s8hdohq72qCMJ88jsqMIHgVFD7cjQ4uwaQT51hAYBIi1e7ulOf3m2buzVEg0GyN41Q-W34_197d48l_v_BRuIbCjQDieiH3Ybdcb-wzBU6tHcCNf5iPYm0zmX-a4fT87Ov6MR6fZdOR_SIz8nPkF-p8dLg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN6kFDASnMBqHnbiHCoE7VZbul1VqJV6C3bsQKUqKd2s2v45fhszeVVLRW-9rWQn2WRmPGPPzPcBvBcGfYAvNY9wnIs8T7g2wqJdpTLRMiwiRxnd_Vk8ORLfjuXxCvzpe2GorLJfE5uF2lY5nZFvhJEQIfrPNPh89psTaxRlV3sKDd1RK9jNBmKsa-zYc1cXuIWbb-5uo7w_hOHO-HBrwjuWAZ7LVNU8TqzTKiqcLWxutQoL7eepsiYKrIwFmj9G6X7hchwXThDil3Wpw8gpLlIriDUCXcCqoAOUEax-Hc8Ovg-nPJRHE0Hadev4kdqYo8ekrrZA8ShOhOSXyx7xRph7s1rzn5Rt4wl3HsHDLoRlX1qdewwrrnwC91pSy6uncNFBtv5k1LrCphUxIi0ssW-xbV1rdlKy8UC-w9o-KNZug5kuLSMkbLx1O7muWHvu4djWUuksG1OlJjs4p0wTadczOLqTD_8cRmVVupfARFr4OK0wysTCqULjbymM0YFzUjvjQdB_4izvsM-JguM0a3LwkcpasWQolqwRS3bpwcfhmrMW-ePW2eu95LJuFZhn1zrrwbthGO2XkjK6dNUC5zQQfQSp5MGLVtDD42g7RxGwB8mSCgwTCBt8eaQ8-dVghMeRkLg59eBTryzXf-v_b7F2-1u8hfuTw_1pNt2d7b2CBxg7Uq0dD8U6jOrzhXuN8Vlt3nRGwODHXdvdX1lBVEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqViAuiDcpBQYJTjDaPGbyOFQIurtqaVmtEJV6C5PMDFSqktLNqu1f5FdhJ5NUS0Vvva00TrKJ7bE9tj8DvBUF2gBfKh7hOhdlmXBVCI16lclEydBGhjK6X2fx7qH4ciSP1uBP3wtDZZX9nthu1Lou6Yx8FEZChGg_s2BkXVnEfDz9ePqb0wQpyrT24zSUG7Ogt1u4MdfksW8uzzGcW2zvjZH378JwOvm-s8vdxAFeyixteJxoo9LIGm11qVUaWuWXWaqLKNAyFrgVoMfuW1PiujCC0L-0yQx6UbHNtKAJEmgONhK0-hgIbnyezObfhhMfyqmJIHOdO36UjhZoPanDLUh5FCdC8otV63jN5b1euflP-ra1itMHcN-5s-xTJ38PYc1Uj-BON-Dy8jGcO_jWn4zaWNhBTdORlpomcbGxahQ7rthkGMTDup4o1oXETFWaESo23rojbmrWnYEYtrNSRssmVLXJ5meUdSJJewKHt_Lhn8J6VVfmOTCRWR_JbJEWsTCpVfhbiqJQgTFSmcKDoP_Eeelw0Gkcx0ne5uOjNO_YkiNb8pYt-YUH74drTjsUkBupt3rO5W5HWORX8uvBm2EZdZkSNKoy9RJpWrg-glfy4FnH6OFxFNqRN-xBsiICAwHhhK-uVMe_WrzwOBISA1UPPvTCcvW3_v8Wmze_xWu4i_qXH-zN9l_APXQjqeyOh2IL1puzpXmJrlpTvHI6wODHbavdXwwZWIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+Longitudinal+Data+in+Electronic+Health+Record+and+Genetic+Data+to+Improve+Cardiovascular+Event+Prediction&rft.jtitle=Scientific+reports&rft.au=Zhao%2C+Juan&rft.au=Feng%2C+QiPing&rft.au=Wu%2C+Patrick&rft.au=Lupu%2C+Roxana+A.&rft.date=2019-01-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-36745-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_36745_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon