Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction
Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data....
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 717 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-36745-x |
Cover
Abstract | Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice – American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available. |
---|---|
AbstractList | Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice – American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available. Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available. |
ArticleNumber | 717 |
Author | Feng, QiPing Denny, Joshua C. Wu, Patrick Wilke, Russell A. Wells, Quinn S. Zhao, Juan Lupu, Roxana A. Wei, Wei-Qi |
Author_xml | – sequence: 1 givenname: Juan surname: Zhao fullname: Zhao, Juan organization: Department of Biomedical Informatics, Vanderbilt University Medical Center – sequence: 2 givenname: QiPing surname: Feng fullname: Feng, QiPing organization: Division of Clinical Pharmacology, Vanderbilt University Medical Center – sequence: 3 givenname: Patrick surname: Wu fullname: Wu, Patrick organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, Medical Scientist Training Program, Vanderbilt University School of Medicine – sequence: 4 givenname: Roxana A. orcidid: 0000-0002-6316-1835 surname: Lupu fullname: Lupu, Roxana A. organization: Department of Medicine, University of South Dakota Sanford School of Medicine – sequence: 5 givenname: Russell A. surname: Wilke fullname: Wilke, Russell A. organization: Department of Medicine, University of South Dakota Sanford School of Medicine – sequence: 6 givenname: Quinn S. surname: Wells fullname: Wells, Quinn S. organization: Department of Medicine, Vanderbilt University Medical Center – sequence: 7 givenname: Joshua C. surname: Denny fullname: Denny, Joshua C. organization: Department of Biomedical Informatics, Vanderbilt University Medical Center, Department of Medicine, Vanderbilt University Medical Center – sequence: 8 givenname: Wei-Qi surname: Wei fullname: Wei, Wei-Qi email: wei-qi.wei@vumc.org organization: Department of Biomedical Informatics, Vanderbilt University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30679510$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kklvFDEQhS0URBbyBzggS1y4NHjrxRckNEwWaSQQgrPl2NUTR257sN2T8O9xMgmEHOKLLdX3Ss9V7xDthRgAoTeUfKCEDx-zoK0cGkKHhne9aJubF-iAkfpgnLG9R-99dJzzFamnZVJQ-Qrtc9L1sqXkAF2vQKfgwhqPKU54FcPaldm6oD3-oovGLuClB1NSDM7gM9C-XOLvYGKyWAeLTyFAqZU7uER8Pm1S3AJe6GRd3OpsZq8TXm4hFPwtgXWmuBheo5ej9hmO7-8j9PNk-WNx1qy-np4vPq8aU39Xmq63oAc-gh2tsXpgoyZGDvaCU9t2wlpgnJARTK0LEC0R3IIEymU3SitafoQ-7fpu5osJrKkukvZqk9yk028VtVP_V4K7VOu4VR0XrexIbfD-vkGKv2bIRU0uG_BeB4hzVoz2UvC-rqCi756gV3FOdZKV4kIw0glJK_X2saO_Vh52UoFhB5gUc04wKuOKvh1aNei8okTdJkDtEqBqAtRdAtRNlbIn0ofuz4r4TpQrHNaQ_tl-RvUHWxvGjw |
CitedBy_id | crossref_primary_10_1007_s41666_022_00119_w crossref_primary_10_1186_s12916_022_02250_2 crossref_primary_10_1093_ehjdh_ztad058 crossref_primary_10_1093_jamia_ocac130 crossref_primary_10_1002_cpt_1947 crossref_primary_10_1038_s41467_024_48568_8 crossref_primary_10_3390_app14135925 crossref_primary_10_1038_s41598_020_64123_z crossref_primary_10_1097_MOP_0000000000000963 crossref_primary_10_1016_j_cmet_2024_02_002 crossref_primary_10_1186_s12916_024_03273_7 crossref_primary_10_1161_JAHA_119_013924 crossref_primary_10_1016_j_cjco_2020_12_019 crossref_primary_10_1080_14779072_2023_2223978 crossref_primary_10_1200_CCI_23_00039 crossref_primary_10_1093_jamia_ocae049 crossref_primary_10_1016_j_arr_2024_102293 crossref_primary_10_1073_pnas_2202113119 crossref_primary_10_2196_19739 crossref_primary_10_3389_fradi_2024_1269023 crossref_primary_10_1016_j_avsg_2020_07_001 crossref_primary_10_1038_s41746_024_01418_9 crossref_primary_10_1016_j_ijmedinf_2024_105646 crossref_primary_10_1038_s41467_025_55879_x crossref_primary_10_2196_14325 crossref_primary_10_1016_j_jacadv_2023_100801 crossref_primary_10_1016_j_schres_2022_07_011 crossref_primary_10_1002_smr_2386 crossref_primary_10_1038_s41598_023_27493_8 crossref_primary_10_1097_MNH_0000000000001042 crossref_primary_10_3390_healthcare10112134 crossref_primary_10_1186_s12916_021_01940_7 crossref_primary_10_1016_j_rcl_2024_01_002 crossref_primary_10_1016_j_ecoenv_2024_117570 crossref_primary_10_1177_14604582241307839 crossref_primary_10_2196_29812 crossref_primary_10_3390_s22124310 crossref_primary_10_31590_ejosat_1082297 crossref_primary_10_1161_CIRCRESAHA_121_318106 crossref_primary_10_12688_wellcomeopenres_23009_2 crossref_primary_10_12688_wellcomeopenres_23009_1 crossref_primary_10_1016_j_xjidi_2022_100105 crossref_primary_10_1016_j_jbi_2023_104294 crossref_primary_10_1038_s41598_023_49552_w crossref_primary_10_31083_j_fbl2810248 crossref_primary_10_3390_life12020279 crossref_primary_10_1093_ehjdh_ztae080 crossref_primary_10_3389_frai_2023_985469 crossref_primary_10_2196_48320 crossref_primary_10_1001_jamacardio_2024_2912 crossref_primary_10_1080_08164622_2021_2022961 crossref_primary_10_1200_CCI_22_00123 crossref_primary_10_1161_JAHA_119_011969 crossref_primary_10_1111_ijcp_13391 crossref_primary_10_1145_3648105 crossref_primary_10_1016_j_jiph_2020_06_006 crossref_primary_10_1186_s12911_023_02264_7 crossref_primary_10_2196_46547 crossref_primary_10_1145_3712196 crossref_primary_10_1371_journal_pone_0314145 crossref_primary_10_1038_s41598_022_05822_7 crossref_primary_10_1093_ehjdh_ztab089 crossref_primary_10_35940_ijeat_A3212_1011121 crossref_primary_10_1016_j_aohep_2024_101528 crossref_primary_10_1186_s12874_022_01829_w crossref_primary_10_1016_j_cpcardiol_2023_101922 crossref_primary_10_1097_PCC_0000000000002560 crossref_primary_10_3389_fcvm_2022_840262 crossref_primary_10_1177_00045632241285528 crossref_primary_10_1016_j_tips_2019_06_001 crossref_primary_10_3390_electronics11233996 crossref_primary_10_1109_JBHI_2020_3000136 crossref_primary_10_57197_JDR_2024_0103 crossref_primary_10_1111_cts_12884 crossref_primary_10_1007_s41666_023_00143_4 crossref_primary_10_1016_j_rser_2022_112357 crossref_primary_10_1161_CIRCIMAGING_122_014533 crossref_primary_10_1016_j_ijmedinf_2023_105088 crossref_primary_10_1016_j_wneu_2024_04_136 crossref_primary_10_1016_j_dss_2023_113982 crossref_primary_10_1016_j_artmed_2020_101847 crossref_primary_10_1253_circj_CJ_21_0622 crossref_primary_10_1016_j_annepidem_2022_03_010 crossref_primary_10_3390_jpm13081268 crossref_primary_10_1016_j_jbi_2019_103270 crossref_primary_10_1038_s41598_020_73740_7 crossref_primary_10_1038_s41598_020_74399_w crossref_primary_10_1007_s00246_023_03130_z crossref_primary_10_1148_radiol_240516 crossref_primary_10_1007_s11886_021_01454_x crossref_primary_10_3390_ai4020024 crossref_primary_10_1016_j_semcancer_2021_04_013 crossref_primary_10_2196_46717 crossref_primary_10_3390_bioengineering11111080 crossref_primary_10_1016_j_jacc_2022_01_021 crossref_primary_10_1109_ACCESS_2021_3112608 |
Cites_doi | 10.1093/eurheartj/ehx250 10.1038/clpt.2012.66 10.1210/jc.2010-3011 10.1001/jamacardio.2018.0022 10.1371/journal.pone.0118432 10.1056/NEJMoa1605086 10.1136/bmj.39609.449676.25 10.1056/NEJMra0906948 10.1371/journal.pmed.1002546 10.1016/j.orcp.2010.03.001 10.1186/s13073-015-0166-y 10.1093/jamia/ocw112 10.1162/neco.1997.9.8.1735 10.1161/CIRCULATIONAHA.107.699579 10.1016/j.cyto.2017.05.013 10.1016/j.amjcard.2008.09.098 10.1161/01.STR.28.3.557 10.1109/TAI.1995.479783 10.1161/CIR.0000000000000485 10.1001/jama.290.7.898 10.1197/jamia.M3294 10.1111/jcpt.12527 10.1080/713827181 10.1038/nature14539 10.1136/amiajnl-2011-000597 10.1038/ng.3437 10.1016/j.jbi.2014.11.005 10.1109/TIP.2015.2423560 10.1016/j.jacl.2017.03.019 10.1007/s00439-016-1636-z 10.1136/heartjnl-2013-304474 10.1016/j.ijmedinf.2012.05.015 10.1161/CIRCULATIONAHA.117.031356 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-36745-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6345960 30679510 10_1038_s41598_018_36745_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: HL133786 funderid: https://doi.org/10.13039/100000050 – fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM) grantid: T15 LM007450; LM010685 funderid: https://doi.org/10.13039/100000092 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM120523; GM109145 funderid: https://doi.org/10.13039/100000057 – fundername: NIGMS NIH HHS grantid: RC2 GM092618 – fundername: NLM NIH HHS grantid: T15 LM007450 – fundername: NIGMS NIH HHS grantid: R01 GM120523 – fundername: NIGMS NIH HHS grantid: P50 GM115305 – fundername: NCATS NIH HHS grantid: UL1 TR000445 – fundername: NLM NIH HHS grantid: R01 LM010685 – fundername: NHLBI NIH HHS grantid: R01 HL133786 – fundername: American Heart Association-American Stroke Association grantid: 18AMTG34280063 – fundername: NIGMS NIH HHS grantid: R01 GM109145 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: ; grantid: HL133786 – fundername: ; grantid: T15 LM007450; LM010685 – fundername: ; grantid: GM120523; GM109145 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c598t-67dea83fedfdcda82fa0c98db31d564dde2300fecdfd4e45043de9e1396f9d453 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:24:01 EDT 2025 Fri Sep 05 06:58:36 EDT 2025 Sun Sep 07 07:10:50 EDT 2025 Mon Jul 21 05:36:05 EDT 2025 Tue Jul 01 00:58:28 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Fri Feb 21 02:38:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-67dea83fedfdcda82fa0c98db31d564dde2300fecdfd4e45043de9e1396f9d453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6316-1835 |
OpenAccessLink | https://www.nature.com/articles/s41598-018-36745-x |
PMID | 30679510 |
PQID | 2344206491 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6345960 proquest_miscellaneous_2179437674 proquest_journals_2344206491 pubmed_primary_30679510 crossref_citationtrail_10_1038_s41598_018_36745_x crossref_primary_10_1038_s41598_018_36745_x springer_journals_10_1038_s41598_018_36745_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-24 |
PublicationDateYYYYMMDD | 2019-01-24 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | WeiW-QLeibsonCLRansomJEKhoANChuteCGThe absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjectsInt J Med Inform20138223924710.1016/j.ijmedinf.2012.05.015 WHO | The top 10 causes of death. WHO (2018). Available at: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. BatistaGEAPAMonardMCAn analysis of four missing data treatment methods for supervised learningApplied Artificial Intelligence20031751953310.1080/713827181 KnowlesJWAshleyEACardiovascular disease: The rise of the genetic risk scorePLOS Medicine201815e100254610.1371/journal.pmed.1002546 LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 PedregosaFScikit-learn: Machine Learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 KheraAVGenetic Risk, Adherence to a Healthy Lifestyle, and Coronary DiseaseNew England Journal of Medicine2016375234923581:CAS:528:DC%2BC2sXhvVSgsQ%3D%3D10.1056/NEJMoa1605086 TillinTEthnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE–Southall And Brent REvisited)Heart2014100606710.1136/heartjnl-2013-304474 Wei, W. -Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med7 (2015). KhanUIRiederJCohenHWCoupeySMWildmanRPEffect of modest changes in BMI on cardiovascular disease risk markers in severely obese, minority adolescentsObes Res Clin Pract20104e16324610.1016/j.orcp.2010.03.001 Liu, H. & Setiono, R. Chi2: feature selection and discretization of numeric attributes. in Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence 388–391, https://doi.org/10.1109/TAI.1995.479783 (1995). BenjaminEJHeart Disease and Stroke Statistics—2017 Update: A Report From the American Heart AssociationCirculation2017135e146e60310.1161/CIR.0000000000000485 KannelWBVasanRSAdverse consequences of the 50% misconceptionAm J Cardiol2009103426710.1016/j.amjcard.2008.09.098 YackelTREmbiPJUnintended errors with EHR-based result management: a case seriesJ Am Med Inform Assoc20101710410710.1197/jamia.M3294 Ansari, W. M. et al. Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokinehttps://doi.org/10.1016/j.cyto.2017.05.013 (2017). HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979173517801:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735 Wei, W. -Q. et al. LPA Variants are Associated with Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, https://doi.org/10.1161/CIRCULATIONAHA.117.031356 (2018). PaquetteMPolygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemiaJournal of Clinical Lipidology201711725732.e510.1016/j.jacl.2017.03.019 Normalized names for clinical drugs: RxNorm at 6 years. Available at, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128404/ (Accessed: 18th May 2018) WeiW-QEvaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health recordPLOS ONE201712116 LaiKTLiuDChangSFChenMSLearning Sample Specific Weights for Late FusionIEEE Transactions on Image Processing201524277227832015ITIP...24.2772L335559010.1109/TIP.2015.2423560 SinghAIncorporating temporal EHR data in predictive models for risk stratification of renal function deteriorationJournal of Biomedical Informatics20155322022810.1016/j.jbi.2014.11.005 ReuschJEBWangCCLCardiovascular Disease in Diabetes: Where Does Glucose Fit In?J Clin Endocrinol Metab201196236723761:CAS:528:DC%2BC3MXhtVKhsLbL10.1210/jc.2010-3011 McCarthyMIGenomics, Type 2 Diabetes, and ObesityNew England Journal of Medicine2010363233923501:CAS:528:DC%2BC3cXhsFGkt7zO10.1056/NEJMra0906948 SaitoTRehmsmeierMThe Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced DatasetsPLOS ONE201510e011843210.1371/journal.pone.0118432 Hippisley-CoxJPredicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2BMJ20083361475148210.1136/bmj.39609.449676.25 KhanSSAssociation of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of MorbidityJAMA Cardiol2018328028710.1001/jamacardio.2018.0022 Vidal-PetiotEVisit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trialEur. Heart J.201738281328221:CAS:528:DC%2BC1cXit1WgsbjL10.1093/eurheartj/ehx250 MüllerBImproved prediction of complex diseases by common genetic markers: state of the art and further perspectivesHum Genet201613525927210.1007/s00439-016-1636-z ChoiESchuetzAStewartWFSunJUsing recurrent neural network models for early detection of heart failure onsetJournal of the American Medical Informatics Association20172436137027521897 Wannamethee, S. G., Shaper, A. G. & Perry, I. J. Serum Creatinine Concentration and Risk of Cardiovascular Disease. Stroke (1997). D’AgostinoRBGeneral Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart StudyCirculation200811774375310.1161/CIRCULATIONAHA.107.699579 GaultonKJGenetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility lociNat. Genet.201547141514251:CAS:528:DC%2BC2MXhvVSgt7bO10.1038/ng.3437 KhotUNPrevalence of Conventional Risk Factors in Patients With Coronary Heart DiseaseJAMA200329089810.1001/jama.290.7.898 TangX-YThe association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacementJ Clin Pharm Ther2017424384451:CAS:528:DC%2BC2sXhtFCktbrN10.1111/jcpt.12527 SchildcroutJSOptimizing drug outcomes through pharmacogenetics: A case for preemptive genotypingClin Pharmacol Ther2012922352421:CAS:528:DC%2BC38XhtVOmtrfM10.1038/clpt.2012.66 WeiW-QImpact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitusJournal of the American Medical Informatics Association20121921922410.1136/amiajnl-2011-000597 WengSFRepsJKaiJGaribaldiJMQureshiNCan machine-learning improve cardiovascular risk prediction using routine clinical data?PLOS ONE201712114 GoffDC2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice GuidelinesCirculation20136329352959 DC Goff (36745_CR4) 2013; 63 JW Knowles (36745_CR25) 2018; 15 B Müller (36745_CR26) 2016; 135 F Pedregosa (36745_CR37) 2011; 12 X-Y Tang (36745_CR14) 2017; 42 RB D’Agostino (36745_CR3) 2008; 117 TR Yackel (36745_CR31) 2010; 17 W-Q Wei (36745_CR29) 2013; 82 T Tillin (36745_CR15) 2014; 100 JS Schildcrout (36745_CR27) 2012; 92 E Vidal-Petiot (36745_CR20) 2017; 38 GEAPA Batista (36745_CR32) 2003; 17 SF Weng (36745_CR11) 2017; 12 UI Khan (36745_CR19) 2010; 4 36745_CR30 A Singh (36745_CR10) 2015; 53 MI McCarthy (36745_CR22) 2010; 363 36745_CR12 36745_CR34 36745_CR13 UN Khot (36745_CR7) 2003; 290 KT Lai (36745_CR39) 2015; 24 36745_CR17 T Saito (36745_CR38) 2015; 10 M Paquette (36745_CR23) 2017; 11 W-Q Wei (36745_CR28) 2012; 19 AV Khera (36745_CR24) 2016; 375 S Hochreiter (36745_CR36) 1997; 9 Y LeCun (36745_CR35) 2015; 521 WB Kannel (36745_CR6) 2009; 103 J Hippisley-Cox (36745_CR5) 2008; 336 36745_CR1 E Choi (36745_CR9) 2017; 24 36745_CR8 KJ Gaulton (36745_CR21) 2015; 47 JEB Reusch (36745_CR18) 2011; 96 SS Khan (36745_CR16) 2018; 3 EJ Benjamin (36745_CR2) 2017; 135 W-Q Wei (36745_CR33) 2017; 12 |
References_xml | – reference: BenjaminEJHeart Disease and Stroke Statistics—2017 Update: A Report From the American Heart AssociationCirculation2017135e146e60310.1161/CIR.0000000000000485 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput19979173517801:STN:280:DyaK1c%2FhvVahsQ%3D%3D10.1162/neco.1997.9.8.1735 – reference: KhotUNPrevalence of Conventional Risk Factors in Patients With Coronary Heart DiseaseJAMA200329089810.1001/jama.290.7.898 – reference: Ansari, W. M. et al. Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokinehttps://doi.org/10.1016/j.cyto.2017.05.013 (2017). – reference: Liu, H. & Setiono, R. Chi2: feature selection and discretization of numeric attributes. in Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence 388–391, https://doi.org/10.1109/TAI.1995.479783 (1995). – reference: McCarthyMIGenomics, Type 2 Diabetes, and ObesityNew England Journal of Medicine2010363233923501:CAS:528:DC%2BC3cXhsFGkt7zO10.1056/NEJMra0906948 – reference: Hippisley-CoxJPredicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2BMJ20083361475148210.1136/bmj.39609.449676.25 – reference: ChoiESchuetzAStewartWFSunJUsing recurrent neural network models for early detection of heart failure onsetJournal of the American Medical Informatics Association20172436137027521897 – reference: BatistaGEAPAMonardMCAn analysis of four missing data treatment methods for supervised learningApplied Artificial Intelligence20031751953310.1080/713827181 – reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: PaquetteMPolygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemiaJournal of Clinical Lipidology201711725732.e510.1016/j.jacl.2017.03.019 – reference: SchildcroutJSOptimizing drug outcomes through pharmacogenetics: A case for preemptive genotypingClin Pharmacol Ther2012922352421:CAS:528:DC%2BC38XhtVOmtrfM10.1038/clpt.2012.66 – reference: WeiW-QLeibsonCLRansomJEKhoANChuteCGThe absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjectsInt J Med Inform20138223924710.1016/j.ijmedinf.2012.05.015 – reference: Wannamethee, S. G., Shaper, A. G. & Perry, I. J. Serum Creatinine Concentration and Risk of Cardiovascular Disease. Stroke (1997). – reference: Vidal-PetiotEVisit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trialEur. Heart J.201738281328221:CAS:528:DC%2BC1cXit1WgsbjL10.1093/eurheartj/ehx250 – reference: MüllerBImproved prediction of complex diseases by common genetic markers: state of the art and further perspectivesHum Genet201613525927210.1007/s00439-016-1636-z – reference: LaiKTLiuDChangSFChenMSLearning Sample Specific Weights for Late FusionIEEE Transactions on Image Processing201524277227832015ITIP...24.2772L335559010.1109/TIP.2015.2423560 – reference: ReuschJEBWangCCLCardiovascular Disease in Diabetes: Where Does Glucose Fit In?J Clin Endocrinol Metab201196236723761:CAS:528:DC%2BC3MXhtVKhsLbL10.1210/jc.2010-3011 – reference: KhanUIRiederJCohenHWCoupeySMWildmanRPEffect of modest changes in BMI on cardiovascular disease risk markers in severely obese, minority adolescentsObes Res Clin Pract20104e16324610.1016/j.orcp.2010.03.001 – reference: WengSFRepsJKaiJGaribaldiJMQureshiNCan machine-learning improve cardiovascular risk prediction using routine clinical data?PLOS ONE201712114 – reference: TangX-YThe association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacementJ Clin Pharm Ther2017424384451:CAS:528:DC%2BC2sXhtFCktbrN10.1111/jcpt.12527 – reference: GoffDC2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice GuidelinesCirculation20136329352959 – reference: YackelTREmbiPJUnintended errors with EHR-based result management: a case seriesJ Am Med Inform Assoc20101710410710.1197/jamia.M3294 – reference: WHO | The top 10 causes of death. WHO (2018). Available at: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. – reference: WeiW-QEvaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health recordPLOS ONE201712116 – reference: KannelWBVasanRSAdverse consequences of the 50% misconceptionAm J Cardiol2009103426710.1016/j.amjcard.2008.09.098 – reference: KnowlesJWAshleyEACardiovascular disease: The rise of the genetic risk scorePLOS Medicine201815e100254610.1371/journal.pmed.1002546 – reference: KhanSSAssociation of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of MorbidityJAMA Cardiol2018328028710.1001/jamacardio.2018.0022 – reference: WeiW-QImpact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitusJournal of the American Medical Informatics Association20121921922410.1136/amiajnl-2011-000597 – reference: SinghAIncorporating temporal EHR data in predictive models for risk stratification of renal function deteriorationJournal of Biomedical Informatics20155322022810.1016/j.jbi.2014.11.005 – reference: TillinTEthnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE–Southall And Brent REvisited)Heart2014100606710.1136/heartjnl-2013-304474 – reference: PedregosaFScikit-learn: Machine Learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 – reference: SaitoTRehmsmeierMThe Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced DatasetsPLOS ONE201510e011843210.1371/journal.pone.0118432 – reference: Wei, W. -Q. et al. LPA Variants are Associated with Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, https://doi.org/10.1161/CIRCULATIONAHA.117.031356 (2018). – reference: GaultonKJGenetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility lociNat. Genet.201547141514251:CAS:528:DC%2BC2MXhvVSgt7bO10.1038/ng.3437 – reference: Wei, W. -Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med7 (2015). – reference: KheraAVGenetic Risk, Adherence to a Healthy Lifestyle, and Coronary DiseaseNew England Journal of Medicine2016375234923581:CAS:528:DC%2BC2sXhvVSgsQ%3D%3D10.1056/NEJMoa1605086 – reference: Normalized names for clinical drugs: RxNorm at 6 years. Available at, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128404/ (Accessed: 18th May 2018) – reference: D’AgostinoRBGeneral Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart StudyCirculation200811774375310.1161/CIRCULATIONAHA.107.699579 – volume: 38 start-page: 2813 year: 2017 ident: 36745_CR20 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehx250 – volume: 92 start-page: 235 year: 2012 ident: 36745_CR27 publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2012.66 – volume: 96 start-page: 2367 year: 2011 ident: 36745_CR18 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-3011 – volume: 3 start-page: 280 year: 2018 ident: 36745_CR16 publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2018.0022 – volume: 10 start-page: e0118432 year: 2015 ident: 36745_CR38 publication-title: PLOS ONE doi: 10.1371/journal.pone.0118432 – volume: 375 start-page: 2349 year: 2016 ident: 36745_CR24 publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa1605086 – volume: 336 start-page: 1475 year: 2008 ident: 36745_CR5 publication-title: BMJ doi: 10.1136/bmj.39609.449676.25 – volume: 363 start-page: 2339 year: 2010 ident: 36745_CR22 publication-title: New England Journal of Medicine doi: 10.1056/NEJMra0906948 – ident: 36745_CR1 – volume: 15 start-page: e1002546 year: 2018 ident: 36745_CR25 publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1002546 – volume: 4 start-page: e163 year: 2010 ident: 36745_CR19 publication-title: Obes Res Clin Pract doi: 10.1016/j.orcp.2010.03.001 – ident: 36745_CR8 doi: 10.1186/s13073-015-0166-y – volume: 24 start-page: 361 year: 2017 ident: 36745_CR9 publication-title: Journal of the American Medical Informatics Association doi: 10.1093/jamia/ocw112 – volume: 12 start-page: 1 year: 2017 ident: 36745_CR33 publication-title: PLOS ONE – volume: 9 start-page: 1735 year: 1997 ident: 36745_CR36 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 117 start-page: 743 year: 2008 ident: 36745_CR3 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.699579 – ident: 36745_CR12 doi: 10.1016/j.cyto.2017.05.013 – volume: 103 start-page: 426 year: 2009 ident: 36745_CR6 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2008.09.098 – ident: 36745_CR17 doi: 10.1161/01.STR.28.3.557 – ident: 36745_CR30 doi: 10.1109/TAI.1995.479783 – volume: 135 start-page: e146 year: 2017 ident: 36745_CR2 publication-title: Circulation doi: 10.1161/CIR.0000000000000485 – volume: 290 start-page: 898 year: 2003 ident: 36745_CR7 publication-title: JAMA doi: 10.1001/jama.290.7.898 – ident: 36745_CR34 – volume: 17 start-page: 104 year: 2010 ident: 36745_CR31 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M3294 – volume: 42 start-page: 438 year: 2017 ident: 36745_CR14 publication-title: J Clin Pharm Ther doi: 10.1111/jcpt.12527 – volume: 17 start-page: 519 year: 2003 ident: 36745_CR32 publication-title: Applied Artificial Intelligence doi: 10.1080/713827181 – volume: 521 start-page: 436 year: 2015 ident: 36745_CR35 publication-title: Nature doi: 10.1038/nature14539 – volume: 19 start-page: 219 year: 2012 ident: 36745_CR28 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2011-000597 – volume: 12 start-page: 2825 year: 2011 ident: 36745_CR37 publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 1415 year: 2015 ident: 36745_CR21 publication-title: Nat. Genet. doi: 10.1038/ng.3437 – volume: 53 start-page: 220 year: 2015 ident: 36745_CR10 publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2014.11.005 – volume: 24 start-page: 2772 year: 2015 ident: 36745_CR39 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2423560 – volume: 12 start-page: 1 year: 2017 ident: 36745_CR11 publication-title: PLOS ONE – volume: 11 start-page: 725 year: 2017 ident: 36745_CR23 publication-title: Journal of Clinical Lipidology doi: 10.1016/j.jacl.2017.03.019 – volume: 135 start-page: 259 year: 2016 ident: 36745_CR26 publication-title: Hum Genet doi: 10.1007/s00439-016-1636-z – volume: 100 start-page: 60 year: 2014 ident: 36745_CR15 publication-title: Heart doi: 10.1136/heartjnl-2013-304474 – volume: 82 start-page: 239 year: 2013 ident: 36745_CR29 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2012.05.015 – volume: 63 start-page: 2935 year: 2013 ident: 36745_CR4 publication-title: Circulation – ident: 36745_CR13 doi: 10.1161/CIRCULATIONAHA.117.031356 |
SSID | ssj0000529419 |
Score | 2.6046634 |
Snippet | Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 717 |
SubjectTerms | 639/705/1042 692/308/409 692/699/75 Adult Algorithms Cardiovascular diseases Cardiovascular Diseases - diagnosis Cardiovascular Diseases - epidemiology Cardiovascular Diseases - etiology Case-Control Studies Cross-Sectional Studies Deep Learning Electronic Health Records - statistics & numerical data Electronic medical records Female Genetic Variation Humanities and Social Sciences Humans Learning algorithms Long short-term memory Longitudinal Studies Machine Learning Male multidisciplinary Neural networks Neural Networks, Computer Risk Factors Science Science (multidisciplinary) United States - epidemiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5Rqkq9IOgzhSJX6q21SGI7jxNCdBFCtOqhSHuL7NhukaoE2KxK_31nYm_QFsEtkicPZ2zPjGf8fQAfpUEbkCrNBbZz2bYl10ZanFe1KrXKvXCU0f36rTi9kGdzNY8bbotYVrlaE8eF2vYt7ZEf5ELKHO1nnR1eXXNijaLsaqTQeAJPM_REiLqhnJfTHgtlsWRWx7MyqagOFmiv6ExZVnFRlFLx23V7dM_JvF8r-V_CdLRDJ9uwFR1IdhQ0vgMbrnsBzwKl5N-X8CcCpv5kdHCEnffER7S0xH3FvuhBs8uOzSbqGxZOIbEQhDLdWUY41PjoIDz0LOw6OHa8VrjKZlQnyb7fUJ6HdPsKLk5mP45PeSRX4C3-gYEXpXW6Et5Zb1urq9zrtK0ra0RmVSFx1cPgJPWuxXbpJAGdWVc7dBgLX1upxGvY7PrOvQUma5-imDeVKaSrvMZrJY3RmXNKO5NAtvrFTRuRx4kA43czZsBF1QS1NKiWZlRLc5vAp-meq4C78aj03kpzTZyDi-ZuxCTwYWrG2UMpEd25fokyI0AeARol8CYoenodBVPkfyZQrg2BSYCQuddbustfI0J3IaTC0DCBz6vBcvdZD_fi3eO92IXn6K1RdRvP5R5sDjdL9x49osHsj8P-H2k7DdI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBflymAvo91num54sLfNLIntxHk82ivl6MZgK_Qt2LG9FUqutDna_veT4iTj1m3Qt4DlxLEsS7aknwDeS4s6IFWGC2znsmlKbqx0KFeVKo3Kg_Dk0f38pTg-lcszdbYF-ZgL0wft95CW_TY9Rod9ukZFQ8lgmeaiKKXiaDdu6xK33xlsz-fLb8vpZoV8VzKrhgyZVOi_dN7UQvdMy_sRkn-4SXvtc7QDTwazkc3jQHdhy7dP4VEsJHn3DG4GmNQfjNJF2MmKqhCtHVW8YoemM-y8ZYup4A2LuUcsHj2ZaR0j9Gl8dSTuVizeNXh2sBGuyhYUHcm-XpF3hzj6HE6PFt8PjvlQUoE3OAMdL0rnjRbBu-AaZ3QeTNpU2lmROVVI3OvwSJIG32C79JLgzZyvPJqJRaicVOIFzNpV618Bk1VIkSxYbQvpdTD4rKS1JvNeGW8TyMYprpsBb5zKXlzUvd9b6DqypUa21D1b6tsEPkx9LiPaxn-p90fO1YPkXde5kDJHO6vKEng3NaPMkCPEtH61RpoeFo9gjBJ4GRk9fY6OUGR1JlBuLIGJgPC4N1va8589LnchpMIDYQIfx8Xye1j__ou9h5G_hsdos1GMG8_lPsy6q7V_g3ZRZ98OgvAL1RkNrw priority: 102 providerName: Springer Nature |
Title | Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction |
URI | https://link.springer.com/article/10.1038/s41598-018-36745-x https://www.ncbi.nlm.nih.gov/pubmed/30679510 https://www.proquest.com/docview/2344206491 https://www.proquest.com/docview/2179437674 https://pubmed.ncbi.nlm.nih.gov/PMC6345960 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8IL4JjMpIvIGhSex8PCBUSqepgmkCKvUtsmN7TJpS6FKx_ffc2UlQ2UDiKVF8-fLZ8e9yd78DeCE0rgFjqXiK7VzUdc6VFgbnVSlzJROXWvLofjrKDhdivpTLHejLHXUdeH6taUf1pBbrs9cXPy7f4YR_G1LGizfnuAhRolhc8DTLheSIKfe8v4hC-Tq4H7i-k1L4Wh9Ews4RTCRdHs31l9leq64A0KtxlH84U_0adXAHbnfgkk3CaLgLO7a5BzdDucnL-_CzI1M9YZRUwj6uqFbRxlBdLPZBtYqdNmw2lMVhIUOJBQOVqcYw4qjGSwfhdsXCHwnLpltBrWxGMZTseE0-INL7A1gczL5OD3lXeIHX2AMtz3JjVZE6a5ypjSoSp8Z1WRidxkZmAr-IaLiMna2xXVhBJGjGlhbBZOZKI2T6EHabVWMfAxOlG6OY04XOhC2cwn0ptFaxtVJZHUHcd3FVd6zkVBzjrPLe8bSogloqVEvl1VJdRPByOOd74OT4p_R-r7mqH15VkgqRIBor4wieD804s8hdohq72qCMJ88jsqMIHgVFD7cjQ4uwaQT51hAYBIi1e7ulOf3m2buzVEg0GyN41Q-W34_197d48l_v_BRuIbCjQDieiH3Ybdcb-wzBU6tHcCNf5iPYm0zmX-a4fT87Ov6MR6fZdOR_SIz8nPkF-p8dLg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN6kFDASnMBqHnbiHCoE7VZbul1VqJV6C3bsQKUqKd2s2v45fhszeVVLRW-9rWQn2WRmPGPPzPcBvBcGfYAvNY9wnIs8T7g2wqJdpTLRMiwiRxnd_Vk8ORLfjuXxCvzpe2GorLJfE5uF2lY5nZFvhJEQIfrPNPh89psTaxRlV3sKDd1RK9jNBmKsa-zYc1cXuIWbb-5uo7w_hOHO-HBrwjuWAZ7LVNU8TqzTKiqcLWxutQoL7eepsiYKrIwFmj9G6X7hchwXThDil3Wpw8gpLlIriDUCXcCqoAOUEax-Hc8Ovg-nPJRHE0Hadev4kdqYo8ekrrZA8ShOhOSXyx7xRph7s1rzn5Rt4wl3HsHDLoRlX1qdewwrrnwC91pSy6uncNFBtv5k1LrCphUxIi0ssW-xbV1rdlKy8UC-w9o-KNZug5kuLSMkbLx1O7muWHvu4djWUuksG1OlJjs4p0wTadczOLqTD_8cRmVVupfARFr4OK0wysTCqULjbymM0YFzUjvjQdB_4izvsM-JguM0a3LwkcpasWQolqwRS3bpwcfhmrMW-ePW2eu95LJuFZhn1zrrwbthGO2XkjK6dNUC5zQQfQSp5MGLVtDD42g7RxGwB8mSCgwTCBt8eaQ8-dVghMeRkLg59eBTryzXf-v_b7F2-1u8hfuTw_1pNt2d7b2CBxg7Uq0dD8U6jOrzhXuN8Vlt3nRGwODHXdvdX1lBVEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqViAuiDcpBQYJTjDaPGbyOFQIurtqaVmtEJV6C5PMDFSqktLNqu1f5FdhJ5NUS0Vvva00TrKJ7bE9tj8DvBUF2gBfKh7hOhdlmXBVCI16lclEydBGhjK6X2fx7qH4ciSP1uBP3wtDZZX9nthu1Lou6Yx8FEZChGg_s2BkXVnEfDz9ePqb0wQpyrT24zSUG7Ogt1u4MdfksW8uzzGcW2zvjZH378JwOvm-s8vdxAFeyixteJxoo9LIGm11qVUaWuWXWaqLKNAyFrgVoMfuW1PiujCC0L-0yQx6UbHNtKAJEmgONhK0-hgIbnyezObfhhMfyqmJIHOdO36UjhZoPanDLUh5FCdC8otV63jN5b1euflP-ra1itMHcN-5s-xTJ38PYc1Uj-BON-Dy8jGcO_jWn4zaWNhBTdORlpomcbGxahQ7rthkGMTDup4o1oXETFWaESo23rojbmrWnYEYtrNSRssmVLXJ5meUdSJJewKHt_Lhn8J6VVfmOTCRWR_JbJEWsTCpVfhbiqJQgTFSmcKDoP_Eeelw0Gkcx0ne5uOjNO_YkiNb8pYt-YUH74drTjsUkBupt3rO5W5HWORX8uvBm2EZdZkSNKoy9RJpWrg-glfy4FnH6OFxFNqRN-xBsiICAwHhhK-uVMe_WrzwOBISA1UPPvTCcvW3_v8Wmze_xWu4i_qXH-zN9l_APXQjqeyOh2IL1puzpXmJrlpTvHI6wODHbavdXwwZWIY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+Longitudinal+Data+in+Electronic+Health+Record+and+Genetic+Data+to+Improve+Cardiovascular+Event+Prediction&rft.jtitle=Scientific+reports&rft.au=Zhao%2C+Juan&rft.au=Feng%2C+QiPing&rft.au=Wu%2C+Patrick&rft.au=Lupu%2C+Roxana+A.&rft.date=2019-01-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-36745-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_36745_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |