Thermo-Hygral Case-Study on Full Scale RC Building under Corrosive Environment and Seismic Actions

This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the m...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 13; no. 10; pp. 465 - 478
Main Authors Chijiwa, Nobuhiro, Maekawa, Koichi
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 23.10.2015
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1346-8014
1347-3913
1347-3913
DOI10.3151/jact.13.465

Cover

Abstract This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the multi-scale modeling is experimentally checked by using corroded RC columns under high axial compression. Second, the steel corrosion is computationally reproduced to a multi-story RC building under long-term fictitious ambient conditions. The seismic ground motion is subsequently applied to the corrosion damaged mockup. Beforehand, the effect of drying shrinkage, which is inevitable for structural concrete in air, is discussed so as to clarify the pure corrosion impact to the whole structural system. The steel corrosion deteriorates the ductility of seismic resistant members, but as a global influence, steel corrosion is validated to reduce the base-shear input of floors owing to the decayed stiffness by corrosion. Through these case-studies, the authors raise the points of discussion to take into account the local and global effects of corrosion all at once for seismic performance assessment, and that the knowledge solely on the capacity of corroded RC members cannot lead to an engineering solution.
AbstractList This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the multi-scale modeling is experimentally checked by using corroded RC columns under high axial compression. Second, the steel corrosion is computationally reproduced to a multi-story RC building under long-term fictitious ambient conditions. The seismic ground motion is subsequently applied to the corrosion damaged mockup. Beforehand, the effect of drying shrinkage, which is inevitable for structural concrete in air, is discussed so as to clarify the pure corrosion impact to the whole structural system. The steel corrosion deteriorates the ductility of seismic resistant members, but as a global influence, steel corrosion is validated to reduce the base-shear input of floors owing to the decayed stiffness by corrosion. Through these case-studies, the authors raise the points of discussion to take into account the local and global effects of corrosion all at once for seismic performance assessment, and that the knowledge solely on the capacity of corroded RC members cannot lead to an engineering solution.
Author Chijiwa, Nobuhiro
Maekawa, Koichi
Author_xml – sequence: 1
  fullname: Chijiwa, Nobuhiro
  organization: Department of Civil Engineering, Tokyo Institute of Technology, Japan
– sequence: 1
  fullname: Maekawa, Koichi
  organization: Department of Civil Engineering, The University of Tokyo, Japan
BookMark eNqFkMFq3DAQhk1JoUnaU19A0Euh9VZjybL3VBKTNIVAoZuezVgeb7TI0laSU_bt663LHgKlpxmY759hvovszHlHWfYW-EpACZ92qNMKxEqq8kV2DkJWuViDOPvTq7zmIF9lFzHuOBeVqKrzrHt4pDD6_O6wDWhZg5HyTZr6A_OO3U7Wso1GS-x7w64nY3vjtmxyPQXW-BB8NE_EbtyTCd6N5BJD17MNmTgaza50Mt7F19nLAW2kN3_rZfbj9uahucvvv3352lzd57pc1ymXIFSnJHUlSaER-76oYRDdGoZuQF52RVGCkp0GUZCse65IV6Sk6LnuUIC4zD4ueye3x8MvtLbdBzNiOLTA26Of9uinBdHOfmb8_YLvg_85UUztaKIma9GRn2ILVa1AgSiLGX33DN35Kbj5mZkqZal4LfhMfVgoPXuJgYb_nIdntDYJj8JSQGP_kfm8ZHYx4ZZO-zEkoy2d2Dm7JE4T_YihJSd-AzM3q6g
CitedBy_id crossref_primary_10_3151_jact_16_210
crossref_primary_10_3151_jact_16_1
crossref_primary_10_1617_s11527_020_01552_2
crossref_primary_10_3151_jact_15_381
crossref_primary_10_1007_s43452_023_00705_8
crossref_primary_10_1016_j_engstruct_2022_113987
crossref_primary_10_1016_j_conbuildmat_2019_116908
crossref_primary_10_1016_j_conbuildmat_2021_124706
crossref_primary_10_2208_jscejj_22_00365
crossref_primary_10_1016_j_matpr_2020_12_453
crossref_primary_10_3390_app12031079
crossref_primary_10_1016_j_dibe_2022_100083
crossref_primary_10_1016_j_istruc_2024_106051
Cites_doi 10.1061/(ASCE)0887-3828(2006)20:4(384)
10.2208/jscejmcs.67.160
10.1016/j.corsci.2006.03.007
10.3151/jact.8.145
10.3130/aijs.63.43_2
10.2208/jsceje.62.444
10.2472/jsms.56.684
10.1016/j.engstruct.2007.07.011
10.2208/jsceje.66.179
10.3151/jact.1.91
10.3151/jact.12.363
10.1061/(ASCE)0733-9445(2009)135:4(376)
10.1007/BF02472805
10.1016/0958-9465(95)00043-7
10.3151/jact.4.301
10.1016/j.corsci.2010.03.025
10.1201/9781482288599
10.1007/978-94-007-0677-4_18
10.3151/jact.3.107
10.3151/jact.9.73
ContentType Journal Article
Copyright 2015 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2015
Copyright_xml – notice: 2015 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2015
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7SE
7SM
ADTOC
UNPAY
DOI 10.3151/jact.13.465
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Corrosion Abstracts
Earthquake Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
Earthquake Engineering Abstracts
Corrosion Abstracts
DatabaseTitleList Earthquake Engineering Abstracts
Materials Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 478
ExternalDocumentID 10.3151/jact.13.465
3914955791
10_3151_jact_13_465
article_jact_13_10_13_465_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7SE
7SM
ADTOC
TKC
UNPAY
ZY4
ID FETCH-LOGICAL-c598t-4136b64eb5e43caadd281f3b91fbfa05b225164bc132e48d06ec7e643d0cba313
IEDL.DBID UNPAY
ISSN 1346-8014
1347-3913
IngestDate Wed Oct 01 15:06:38 EDT 2025
Thu Jul 10 18:15:21 EDT 2025
Mon Jun 30 10:01:26 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 01:31:04 EDT 2025
Wed Sep 03 06:29:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-4136b64eb5e43caadd281f3b91fbfa05b225164bc132e48d06ec7e643d0cba313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_pdf
PQID 1754560830
PQPubID 1996343
PageCount 14
ParticipantIDs unpaywall_primary_10_3151_jact_13_465
proquest_miscellaneous_1786161352
proquest_journals_1754560830
crossref_primary_10_3151_jact_13_465
crossref_citationtrail_10_3151_jact_13_465
jstage_primary_article_jact_13_10_13_465_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015/10/23
PublicationDateYYYYMMDD 2015-10-23
PublicationDate_xml – month: 10
  year: 2015
  text: 2015/10/23
  day: 23
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2015
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 8) Gebreyouhannes, E., Yoneda, T., Ishida, T. and Maekawa, K., (2014a). “Multi-scale based simulation of shear critical reinforced concrete beams subjected to drying.” Journal of Advanced Concrete Technology, 12(10), 363-377.
24) Oh, B. H., Kim, K. H. and Jang, B. S., (2009). “Critical corrosion amount to cause cracking of reinforced concrete structures.” ACI Material Journal, 106(4), 333-339.
4) Asamoto, S., Ishida, T. and Maekawa, K., (2006). “Time-dependent constitutive model of solidifying concrete based on thermodynamic state of moisture in fine pores.” Journal of Advanced Concrete Technology, 4(2), 301-323.
26) Takaya, S., Nakamura, S., Yamamoto, T. and Miyagawa, T., (2013). “Influence of steel corrosion products in concrete on crack opening weight loss of corrosion.” Journal of JSCE, 69(2), 154-165. (in Japanese
2) Andrade, C. and Alonso, C., (1993). “Cover cracking as a function of bar corrosion: Part I-Experimental test.” Materials and Structures, 26, 453-464.
5) Cabrera, J. G., (1996). “Deterioration of concrete due to reinforcement steel corrosion.” Cement and Concrete Composites, 18, 47-59.
12) Japan Society of civil Engineers, (2012). “Standard Specification of Concrete Structures (design).” (in Japanese
3) Arasato, Y., Yamakawa, T., Morishita, Y. and Tamaki, Y., (2003). “Experimental study on the seismic performance of RC columns damaged under natural exposure.” Proceedings of JCI, 25(2), 259-264. (in Japanese
7) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2011). “Effect of strengthening at expected damaging zone of an RC member with damaged anchorage.” Journal of JSCE (E2), 67(2), 160-165. (in Japanese
27) Toongoenthong, K. and Maekawa, K., (2005). “Multi-mechanical approach to structural performance assessment of corroded RC member in shear.” Journal of Advanced Concrete Technology, 3(1), 107-122.
25) Shimomura, T., Saito, S., Takahashi, R. and Shiba, A., (2011). “Modelling and nonlinear FE analysis of deteriorated existing concrete structures based on inspection.” Modelling of Corroding Concrete Structures, RILEM Bookseries, 5, 259-272.
10) Gebreyouhannes, E. and Maekawa, K., (2011). “Numerical simulation on shear capacity and post-peak ductility of reinforced high-strength concrete coupled with autogenous shrinkage.” Journal of Advanced Concrete Technology, 9(1), 73-88.
15) Maekawa, K., Ishida, T. and Kishi, T., (2003). “Multi-scale modeling of concrete performance -Integrated material and structural mechanics-.” Journal of Advanced Concrete Technology, 1(2), 91-126.
20) Sato, Y., Yamamoto, T., Hattori, A. and Miyagawa, T. (2003). “Shear behavior of RC member with corroded shear and longitudinal reinforcing steels.” Proceedings of the JCI, 25(1), 821-826. (in Japanese
21) Sawabe, S., Ueda, N., Nakamura, H. and Kunieda, M. (2006). “Shear failure behavior analysis of RC beam with unbonded region and decreased bond strength in stirrups.” Journal of Materials, Concrete Structures and Pavements, JSCE, 62(2), 444-461. (in Japanese
30) Xue, X. and Seki, H., (2010). “Influence of longitudinal bar corrosion on shear behavior of RC beams.” Journal of Advanced Concrete Technology, 8(2), 145-156.
16) Maekawa, K., Ishida, T. and Kishi, T., (2008). “Multi-scale modeling of structural concrete.” Taylor and Francis.
29) Wong, H. S., Zhao, Y. X., Karimi, A. R., Buenfeld, N. R. and Jin, W. L., (2010). “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion.” Corrosion Science, 52, 2469-2480.
19) Funaki, H., Yamakawa, T., Yamada, Y. and Nakata, K., (2008). “Horizontal cyclic loading test on the real-scale RC columns deteriorated under natural exposure in Okinawa.” Proceedings of JCI, 30(3), 139-144. (in Japanese
31) Yamamoto, T. and Miyagawa, T., (2007). “Mechanical performance of RC structural material and member deteriorated by corrosion of reinforcing steel.” Journal of the Society of Materials Science, 56(8), 684-693. (in Japanese
1) Abruzzo, J., Matta, A. and Panariello, G., (2006). “Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building.” Journal of Performance of Construction Facilities, 20, Special Issue: Mitigating the potential for progressive disproportionate structural collapse, 384-390.
22) Okada, K., Kobayashi, K. and Miyagawa, T., (1988). “Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members.” ACI Structural Journal, 85(2), 134-140.
14) Matsumori, T., Kabeyazawa, T., Shirai, K. and Igarashi, K., (2008). “Shaking table test on a full-scale, six-story R/C building structure, Special project for earthquake disasters mitigation in urban areas in 2005, improvement of seismic performance of structures by E-Defense.” Technical Note of the National Research Institute for Earth Science and Disaster Prevention, No.321.
13) Lee, H. S., Noguchi, T. and Tomosawa, F., (1998). “Fundamental study on evaluation of structural performance of reinforced concrete beam damaged by corrosion of longitudinal tensile main rebar by finite element method.” Transactions of AIJ, 506, 43-50. (in Japanese
6) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2010). “The effect of strengthening the damage expected zone in a RC member with damaged anchorage.” Journal of JSCE (E), 66(2), 179-192.
23) Ouglova, A., Berthaud, Y., Francois, M. and Foct, F., (2006). “Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures.” Corrosion Science, 48, 3988-4000.
9) Gebreyouhannes, E., Takahashi, Y., Maekawa, K., (2014b). “A poro-mechanical approach for assessing the structural impacts of corrosion in reinforced concrete members.” Proc. of the 1st Ageing of Materials & Structures, (Amsterdam), 354-362.
18) Stang, H. and Thybo, A. A. (2013). “Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations.” Cement and Concrete Composites, 47, 75-86.
17) Maeshima, T., Koda, Y., Tsuchiya, S. and Iwaki, I., (2014). “Influence of corrosion of rebars caused by chloride induced determination on fatigue resistance in road bridge deck.” Journal of Japan Society of Civil Engineers, Ser.E2, 70(4), 208-225. (in Japanese
11) Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A., (2008). “Progressive collapse of multi-story buildings due to sudden column loss - Part I: Simplified assessment framework.” Engineering Structures, 30(5), 1308-1318.
28) Val, D. V., Chernin, L. and Stewart, M. G., (2009). “Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures.” Journal of Structural Engineering, ASCE, 135, 376-385.
22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 24) Oh, B. H., Kim, K. H. and Jang, B. S., (2009). “Critical corrosion amount to cause cracking of reinforced concrete structures.” ACI Material Journal, 106(4), 333-339.
– reference: 21) Sawabe, S., Ueda, N., Nakamura, H. and Kunieda, M. (2006). “Shear failure behavior analysis of RC beam with unbonded region and decreased bond strength in stirrups.” Journal of Materials, Concrete Structures and Pavements, JSCE, 62(2), 444-461. (in Japanese)
– reference: 18) Stang, H. and Thybo, A. A. (2013). “Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations.” Cement and Concrete Composites, 47, 75-86.
– reference: 31) Yamamoto, T. and Miyagawa, T., (2007). “Mechanical performance of RC structural material and member deteriorated by corrosion of reinforcing steel.” Journal of the Society of Materials Science, 56(8), 684-693. (in Japanese)
– reference: 13) Lee, H. S., Noguchi, T. and Tomosawa, F., (1998). “Fundamental study on evaluation of structural performance of reinforced concrete beam damaged by corrosion of longitudinal tensile main rebar by finite element method.” Transactions of AIJ, 506, 43-50. (in Japanese)
– reference: 6) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2010). “The effect of strengthening the damage expected zone in a RC member with damaged anchorage.” Journal of JSCE (E), 66(2), 179-192.
– reference: 12) Japan Society of civil Engineers, (2012). “Standard Specification of Concrete Structures (design).” (in Japanese)
– reference: 15) Maekawa, K., Ishida, T. and Kishi, T., (2003). “Multi-scale modeling of concrete performance -Integrated material and structural mechanics-.” Journal of Advanced Concrete Technology, 1(2), 91-126.
– reference: 25) Shimomura, T., Saito, S., Takahashi, R. and Shiba, A., (2011). “Modelling and nonlinear FE analysis of deteriorated existing concrete structures based on inspection.” Modelling of Corroding Concrete Structures, RILEM Bookseries, 5, 259-272.
– reference: 7) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2011). “Effect of strengthening at expected damaging zone of an RC member with damaged anchorage.” Journal of JSCE (E2), 67(2), 160-165. (in Japanese)
– reference: 30) Xue, X. and Seki, H., (2010). “Influence of longitudinal bar corrosion on shear behavior of RC beams.” Journal of Advanced Concrete Technology, 8(2), 145-156.
– reference: 3) Arasato, Y., Yamakawa, T., Morishita, Y. and Tamaki, Y., (2003). “Experimental study on the seismic performance of RC columns damaged under natural exposure.” Proceedings of JCI, 25(2), 259-264. (in Japanese)
– reference: 4) Asamoto, S., Ishida, T. and Maekawa, K., (2006). “Time-dependent constitutive model of solidifying concrete based on thermodynamic state of moisture in fine pores.” Journal of Advanced Concrete Technology, 4(2), 301-323.
– reference: 27) Toongoenthong, K. and Maekawa, K., (2005). “Multi-mechanical approach to structural performance assessment of corroded RC member in shear.” Journal of Advanced Concrete Technology, 3(1), 107-122.
– reference: 14) Matsumori, T., Kabeyazawa, T., Shirai, K. and Igarashi, K., (2008). “Shaking table test on a full-scale, six-story R/C building structure, Special project for earthquake disasters mitigation in urban areas in 2005, improvement of seismic performance of structures by E-Defense.” Technical Note of the National Research Institute for Earth Science and Disaster Prevention, No.321.
– reference: 19) Funaki, H., Yamakawa, T., Yamada, Y. and Nakata, K., (2008). “Horizontal cyclic loading test on the real-scale RC columns deteriorated under natural exposure in Okinawa.” Proceedings of JCI, 30(3), 139-144. (in Japanese)
– reference: 2) Andrade, C. and Alonso, C., (1993). “Cover cracking as a function of bar corrosion: Part I-Experimental test.” Materials and Structures, 26, 453-464.
– reference: 5) Cabrera, J. G., (1996). “Deterioration of concrete due to reinforcement steel corrosion.” Cement and Concrete Composites, 18, 47-59.
– reference: 10) Gebreyouhannes, E. and Maekawa, K., (2011). “Numerical simulation on shear capacity and post-peak ductility of reinforced high-strength concrete coupled with autogenous shrinkage.” Journal of Advanced Concrete Technology, 9(1), 73-88.
– reference: 20) Sato, Y., Yamamoto, T., Hattori, A. and Miyagawa, T. (2003). “Shear behavior of RC member with corroded shear and longitudinal reinforcing steels.” Proceedings of the JCI, 25(1), 821-826. (in Japanese)
– reference: 22) Okada, K., Kobayashi, K. and Miyagawa, T., (1988). “Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members.” ACI Structural Journal, 85(2), 134-140.
– reference: 1) Abruzzo, J., Matta, A. and Panariello, G., (2006). “Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building.” Journal of Performance of Construction Facilities, 20, Special Issue: Mitigating the potential for progressive disproportionate structural collapse, 384-390.
– reference: 26) Takaya, S., Nakamura, S., Yamamoto, T. and Miyagawa, T., (2013). “Influence of steel corrosion products in concrete on crack opening weight loss of corrosion.” Journal of JSCE, 69(2), 154-165. (in Japanese)
– reference: 11) Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A., (2008). “Progressive collapse of multi-story buildings due to sudden column loss - Part I: Simplified assessment framework.” Engineering Structures, 30(5), 1308-1318.
– reference: 8) Gebreyouhannes, E., Yoneda, T., Ishida, T. and Maekawa, K., (2014a). “Multi-scale based simulation of shear critical reinforced concrete beams subjected to drying.” Journal of Advanced Concrete Technology, 12(10), 363-377.
– reference: 9) Gebreyouhannes, E., Takahashi, Y., Maekawa, K., (2014b). “A poro-mechanical approach for assessing the structural impacts of corrosion in reinforced concrete members.” Proc. of the 1st Ageing of Materials & Structures, (Amsterdam), 354-362.
– reference: 23) Ouglova, A., Berthaud, Y., Francois, M. and Foct, F., (2006). “Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures.” Corrosion Science, 48, 3988-4000.
– reference: 16) Maekawa, K., Ishida, T. and Kishi, T., (2008). “Multi-scale modeling of structural concrete.” Taylor and Francis.
– reference: 29) Wong, H. S., Zhao, Y. X., Karimi, A. R., Buenfeld, N. R. and Jin, W. L., (2010). “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion.” Corrosion Science, 52, 2469-2480.
– reference: 28) Val, D. V., Chernin, L. and Stewart, M. G., (2009). “Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures.” Journal of Structural Engineering, ASCE, 135, 376-385.
– reference: 17) Maeshima, T., Koda, Y., Tsuchiya, S. and Iwaki, I., (2014). “Influence of corrosion of rebars caused by chloride induced determination on fatigue resistance in road bridge deck.” Journal of Japan Society of Civil Engineers, Ser.E2, 70(4), 208-225. (in Japanese)
– ident: 18
– ident: 1
  doi: 10.1061/(ASCE)0887-3828(2006)20:4(384)
– ident: 7
  doi: 10.2208/jscejmcs.67.160
– ident: 12
– ident: 14
– ident: 23
  doi: 10.1016/j.corsci.2006.03.007
– ident: 30
  doi: 10.3151/jact.8.145
– ident: 13
  doi: 10.3130/aijs.63.43_2
– ident: 21
  doi: 10.2208/jsceje.62.444
– ident: 31
  doi: 10.2472/jsms.56.684
– ident: 24
– ident: 11
  doi: 10.1016/j.engstruct.2007.07.011
– ident: 9
– ident: 20
– ident: 26
– ident: 22
– ident: 17
– ident: 3
– ident: 6
  doi: 10.2208/jsceje.66.179
– ident: 15
  doi: 10.3151/jact.1.91
– ident: 8
  doi: 10.3151/jact.12.363
– ident: 28
  doi: 10.1061/(ASCE)0733-9445(2009)135:4(376)
– ident: 19
– ident: 2
  doi: 10.1007/BF02472805
– ident: 5
  doi: 10.1016/0958-9465(95)00043-7
– ident: 4
  doi: 10.3151/jact.4.301
– ident: 29
  doi: 10.1016/j.corsci.2010.03.025
– ident: 16
  doi: 10.1201/9781482288599
– ident: 25
  doi: 10.1007/978-94-007-0677-4_18
– ident: 27
  doi: 10.3151/jact.3.107
– ident: 10
  doi: 10.3151/jact.9.73
SSID ssj0037377
Score 2.1232905
Snippet This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465
SubjectTerms Construction
Corrosion
Corrosion resistant steels
Earthquake construction
Mathematical models
Reinforced concrete
Reinforcing steels
Structural steels
Title Thermo-Hygral Case-Study on Full Scale RC Building under Corrosive Environment and Seismic Actions
URI https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_article/-char/en
https://www.proquest.com/docview/1754560830
https://www.proquest.com/docview/1786161352
https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_pdf
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2015/10/23, Vol.13(10), pp.465-478
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1347-3913
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037377
  issn: 1346-8014
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tHRLwwPgxRGCbjDRekJLGteMk4qmrNlUgJmBUGhJSZDtOtdIlVZoKlb-ec5JmBSGEeEke_CmxfT7fd_LdGeCExzJTapC6sQwzlwumUOdS44oo9jN0NyiVNsH5_YUYT_jbq-BqB95scmFsWOUMedHU2Jc3LbzZot9OYn8mddWnDDUdnwkXQT9ZpNku7IkAiXgP9iYXH4ZfaheL2zK7tLnSlqMaxZQ12XkMTVz9IY8yj1ubsmWP7jS__oVt3l3lC7n-LufzLcNzvg9fN11u4k2-eatKefrHb9Uc_3NMD-FBS0jJsAE-gh2TP4b7W2UKn4DCtVTeFO54PS0ROkLD59r4wzUpcmJ9WHKJkjbk04ictrdsE5ubVpJRUeKocUMlZ7cJdUTmKbk018uba02GdV7F8gAm52efR2O3vZvB1UEcVS7aPqEENyownGmJu-QgohlTMc1UJv1A4T6BnpjS6O0aHqW-MDo0SH9SXyvJKHsKvbzIzTMgXOtYS5MaWws-DLREn3MQ2liuIFVhJBx4vZFQotvC5fb-jHmCDowVZ2LnMGlmz4GTDrxo6nX8GRY1EulArTw6UH3SZ6Fdi02Dw73EgcPN4khafV8mSMKQiSKd9R142TWjptrjF5mbYmUxkUB-jYzXgVfdovpbL5__I-4F3EMeV1eUHbBD6FXlyhwhV6rUMey--xgdt5rxEx2EFeA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7adND2YT876q0bGnQvBTtWJMs2e8pCSxisjHWBDgZGkuXQLLWD41Cyv34n2_GyUcbYi_2gD1vS6XTfobsTwCmPZabUIHVjGWYuF0yhzqXGFVHsZ-huUCptgvPHSzGe8A_XwfUOvNvkwtiwyhnyoqmxL29aeLNFv53E_kzqqk8Zajo-Ey6CfrJIs13YEwES8R7sTS4_Db_WLha3ZXZpc6UtRzWKKWuy8xiauPpDHmUetzZlyx49aH79G9vcX-ULub6T8_mW4bl4BN82XW7iTb57q0p5-scf1Rz_c0yP4WFLSMmwAT6BHZM_hcOtMoXPQOFaKm8Ld7yelggdoeFzbfzhmhQ5sT4suUJJG_J5RN63t2wTm5tWklFR4qhxQyXnvxLqiMxTcmVulrc3mgzrvIrlEUwuzr-Mxm57N4OrgziqXLR9QgluVGA40xJ3yUFEM6ZimqlM-oHCfQI9MaXR2zU8Sn1hdGiQ_qS-VpJR9hx6eZGbYyBc61hLkxpbCz4MtESfcxDaWK4gVWEkHDjbSCjRbeFye3_GPEEHxoozsXOYNLPnwGkHXjT1Ou6HRY1EOlArjw5Un_RZaNdi0-BwL3HgZLM4klbflwmSMGSiSGd9B950zaip9vhF5qZYWUwkkF8j43Xgbbeo_tbLF_-IewkHyOPqirIDdgK9qlyZV8iVKvW61Ymfn_AU6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermo-Hygral+Case-Study+on+Full+Scale+RC+Building+under+Corrosive+Environment+and+Seismic+Actions&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Chijiwa%2C+Nobuhiro&rft.au=Maekawa%2C+Koichi&rft.date=2015-10-23&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=13&rft.issue=10&rft.spage=465&rft.epage=478&rft_id=info:doi/10.3151%2Fjact.13.465&rft.externalDocID=article_jact_13_10_13_465_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon