Thermo-Hygral Case-Study on Full Scale RC Building under Corrosive Environment and Seismic Actions
This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the m...
Saved in:
| Published in | Journal of Advanced Concrete Technology Vol. 13; no. 10; pp. 465 - 478 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Tokyo
Japan Concrete Institute
23.10.2015
Japan Science and Technology Agency |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1346-8014 1347-3913 1347-3913 |
| DOI | 10.3151/jact.13.465 |
Cover
| Abstract | This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the multi-scale modeling is experimentally checked by using corroded RC columns under high axial compression. Second, the steel corrosion is computationally reproduced to a multi-story RC building under long-term fictitious ambient conditions. The seismic ground motion is subsequently applied to the corrosion damaged mockup. Beforehand, the effect of drying shrinkage, which is inevitable for structural concrete in air, is discussed so as to clarify the pure corrosion impact to the whole structural system. The steel corrosion deteriorates the ductility of seismic resistant members, but as a global influence, steel corrosion is validated to reduce the base-shear input of floors owing to the decayed stiffness by corrosion. Through these case-studies, the authors raise the points of discussion to take into account the local and global effects of corrosion all at once for seismic performance assessment, and that the knowledge solely on the capacity of corroded RC members cannot lead to an engineering solution. |
|---|---|
| AbstractList | This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic actions. The authors also aim to dissolve numerical difficulty for full-scale performance assessment of huge degree-of-freedom. First, the multi-scale modeling is experimentally checked by using corroded RC columns under high axial compression. Second, the steel corrosion is computationally reproduced to a multi-story RC building under long-term fictitious ambient conditions. The seismic ground motion is subsequently applied to the corrosion damaged mockup. Beforehand, the effect of drying shrinkage, which is inevitable for structural concrete in air, is discussed so as to clarify the pure corrosion impact to the whole structural system. The steel corrosion deteriorates the ductility of seismic resistant members, but as a global influence, steel corrosion is validated to reduce the base-shear input of floors owing to the decayed stiffness by corrosion. Through these case-studies, the authors raise the points of discussion to take into account the local and global effects of corrosion all at once for seismic performance assessment, and that the knowledge solely on the capacity of corroded RC members cannot lead to an engineering solution. |
| Author | Chijiwa, Nobuhiro Maekawa, Koichi |
| Author_xml | – sequence: 1 fullname: Chijiwa, Nobuhiro organization: Department of Civil Engineering, Tokyo Institute of Technology, Japan – sequence: 1 fullname: Maekawa, Koichi organization: Department of Civil Engineering, The University of Tokyo, Japan |
| BookMark | eNqFkMFq3DAQhk1JoUnaU19A0Euh9VZjybL3VBKTNIVAoZuezVgeb7TI0laSU_bt663LHgKlpxmY759hvovszHlHWfYW-EpACZ92qNMKxEqq8kV2DkJWuViDOPvTq7zmIF9lFzHuOBeVqKrzrHt4pDD6_O6wDWhZg5HyTZr6A_OO3U7Wso1GS-x7w64nY3vjtmxyPQXW-BB8NE_EbtyTCd6N5BJD17MNmTgaza50Mt7F19nLAW2kN3_rZfbj9uahucvvv3352lzd57pc1ymXIFSnJHUlSaER-76oYRDdGoZuQF52RVGCkp0GUZCse65IV6Sk6LnuUIC4zD4ueye3x8MvtLbdBzNiOLTA26Of9uinBdHOfmb8_YLvg_85UUztaKIma9GRn2ILVa1AgSiLGX33DN35Kbj5mZkqZal4LfhMfVgoPXuJgYb_nIdntDYJj8JSQGP_kfm8ZHYx4ZZO-zEkoy2d2Dm7JE4T_YihJSd-AzM3q6g |
| CitedBy_id | crossref_primary_10_3151_jact_16_210 crossref_primary_10_3151_jact_16_1 crossref_primary_10_1617_s11527_020_01552_2 crossref_primary_10_3151_jact_15_381 crossref_primary_10_1007_s43452_023_00705_8 crossref_primary_10_1016_j_engstruct_2022_113987 crossref_primary_10_1016_j_conbuildmat_2019_116908 crossref_primary_10_1016_j_conbuildmat_2021_124706 crossref_primary_10_2208_jscejj_22_00365 crossref_primary_10_1016_j_matpr_2020_12_453 crossref_primary_10_3390_app12031079 crossref_primary_10_1016_j_dibe_2022_100083 crossref_primary_10_1016_j_istruc_2024_106051 |
| Cites_doi | 10.1061/(ASCE)0887-3828(2006)20:4(384) 10.2208/jscejmcs.67.160 10.1016/j.corsci.2006.03.007 10.3151/jact.8.145 10.3130/aijs.63.43_2 10.2208/jsceje.62.444 10.2472/jsms.56.684 10.1016/j.engstruct.2007.07.011 10.2208/jsceje.66.179 10.3151/jact.1.91 10.3151/jact.12.363 10.1061/(ASCE)0733-9445(2009)135:4(376) 10.1007/BF02472805 10.1016/0958-9465(95)00043-7 10.3151/jact.4.301 10.1016/j.corsci.2010.03.025 10.1201/9781482288599 10.1007/978-94-007-0677-4_18 10.3151/jact.3.107 10.3151/jact.9.73 |
| ContentType | Journal Article |
| Copyright | 2015 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2015 |
| Copyright_xml | – notice: 2015 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2015 |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7SE 7SM ADTOC UNPAY |
| DOI | 10.3151/jact.13.465 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Corrosion Abstracts Earthquake Engineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX Earthquake Engineering Abstracts Corrosion Abstracts |
| DatabaseTitleList | Earthquake Engineering Abstracts Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1347-3913 |
| EndPage | 478 |
| ExternalDocumentID | 10.3151/jact.13.465 3914955791 10_3151_jact_13_465 article_jact_13_10_13_465_article_char_en |
| GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7SE 7SM ADTOC TKC UNPAY ZY4 |
| ID | FETCH-LOGICAL-c598t-4136b64eb5e43caadd281f3b91fbfa05b225164bc132e48d06ec7e643d0cba313 |
| IEDL.DBID | UNPAY |
| ISSN | 1346-8014 1347-3913 |
| IngestDate | Wed Oct 01 15:06:38 EDT 2025 Thu Jul 10 18:15:21 EDT 2025 Mon Jun 30 10:01:26 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 01:31:04 EDT 2025 Wed Sep 03 06:29:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c598t-4136b64eb5e43caadd281f3b91fbfa05b225164bc132e48d06ec7e643d0cba313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_pdf |
| PQID | 1754560830 |
| PQPubID | 1996343 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_3151_jact_13_465 proquest_miscellaneous_1786161352 proquest_journals_1754560830 crossref_primary_10_3151_jact_13_465 crossref_citationtrail_10_3151_jact_13_465 jstage_primary_article_jact_13_10_13_465_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015/10/23 |
| PublicationDateYYYYMMDD | 2015-10-23 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015/10/23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of Advanced Concrete Technology |
| PublicationTitleAlternate | ACT |
| PublicationYear | 2015 |
| Publisher | Japan Concrete Institute Japan Science and Technology Agency |
| Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
| References | 8) Gebreyouhannes, E., Yoneda, T., Ishida, T. and Maekawa, K., (2014a). “Multi-scale based simulation of shear critical reinforced concrete beams subjected to drying.” Journal of Advanced Concrete Technology, 12(10), 363-377. 24) Oh, B. H., Kim, K. H. and Jang, B. S., (2009). “Critical corrosion amount to cause cracking of reinforced concrete structures.” ACI Material Journal, 106(4), 333-339. 4) Asamoto, S., Ishida, T. and Maekawa, K., (2006). “Time-dependent constitutive model of solidifying concrete based on thermodynamic state of moisture in fine pores.” Journal of Advanced Concrete Technology, 4(2), 301-323. 26) Takaya, S., Nakamura, S., Yamamoto, T. and Miyagawa, T., (2013). “Influence of steel corrosion products in concrete on crack opening weight loss of corrosion.” Journal of JSCE, 69(2), 154-165. (in Japanese 2) Andrade, C. and Alonso, C., (1993). “Cover cracking as a function of bar corrosion: Part I-Experimental test.” Materials and Structures, 26, 453-464. 5) Cabrera, J. G., (1996). “Deterioration of concrete due to reinforcement steel corrosion.” Cement and Concrete Composites, 18, 47-59. 12) Japan Society of civil Engineers, (2012). “Standard Specification of Concrete Structures (design).” (in Japanese 3) Arasato, Y., Yamakawa, T., Morishita, Y. and Tamaki, Y., (2003). “Experimental study on the seismic performance of RC columns damaged under natural exposure.” Proceedings of JCI, 25(2), 259-264. (in Japanese 7) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2011). “Effect of strengthening at expected damaging zone of an RC member with damaged anchorage.” Journal of JSCE (E2), 67(2), 160-165. (in Japanese 27) Toongoenthong, K. and Maekawa, K., (2005). “Multi-mechanical approach to structural performance assessment of corroded RC member in shear.” Journal of Advanced Concrete Technology, 3(1), 107-122. 25) Shimomura, T., Saito, S., Takahashi, R. and Shiba, A., (2011). “Modelling and nonlinear FE analysis of deteriorated existing concrete structures based on inspection.” Modelling of Corroding Concrete Structures, RILEM Bookseries, 5, 259-272. 10) Gebreyouhannes, E. and Maekawa, K., (2011). “Numerical simulation on shear capacity and post-peak ductility of reinforced high-strength concrete coupled with autogenous shrinkage.” Journal of Advanced Concrete Technology, 9(1), 73-88. 15) Maekawa, K., Ishida, T. and Kishi, T., (2003). “Multi-scale modeling of concrete performance -Integrated material and structural mechanics-.” Journal of Advanced Concrete Technology, 1(2), 91-126. 20) Sato, Y., Yamamoto, T., Hattori, A. and Miyagawa, T. (2003). “Shear behavior of RC member with corroded shear and longitudinal reinforcing steels.” Proceedings of the JCI, 25(1), 821-826. (in Japanese 21) Sawabe, S., Ueda, N., Nakamura, H. and Kunieda, M. (2006). “Shear failure behavior analysis of RC beam with unbonded region and decreased bond strength in stirrups.” Journal of Materials, Concrete Structures and Pavements, JSCE, 62(2), 444-461. (in Japanese 30) Xue, X. and Seki, H., (2010). “Influence of longitudinal bar corrosion on shear behavior of RC beams.” Journal of Advanced Concrete Technology, 8(2), 145-156. 16) Maekawa, K., Ishida, T. and Kishi, T., (2008). “Multi-scale modeling of structural concrete.” Taylor and Francis. 29) Wong, H. S., Zhao, Y. X., Karimi, A. R., Buenfeld, N. R. and Jin, W. L., (2010). “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion.” Corrosion Science, 52, 2469-2480. 19) Funaki, H., Yamakawa, T., Yamada, Y. and Nakata, K., (2008). “Horizontal cyclic loading test on the real-scale RC columns deteriorated under natural exposure in Okinawa.” Proceedings of JCI, 30(3), 139-144. (in Japanese 31) Yamamoto, T. and Miyagawa, T., (2007). “Mechanical performance of RC structural material and member deteriorated by corrosion of reinforcing steel.” Journal of the Society of Materials Science, 56(8), 684-693. (in Japanese 1) Abruzzo, J., Matta, A. and Panariello, G., (2006). “Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building.” Journal of Performance of Construction Facilities, 20, Special Issue: Mitigating the potential for progressive disproportionate structural collapse, 384-390. 22) Okada, K., Kobayashi, K. and Miyagawa, T., (1988). “Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members.” ACI Structural Journal, 85(2), 134-140. 14) Matsumori, T., Kabeyazawa, T., Shirai, K. and Igarashi, K., (2008). “Shaking table test on a full-scale, six-story R/C building structure, Special project for earthquake disasters mitigation in urban areas in 2005, improvement of seismic performance of structures by E-Defense.” Technical Note of the National Research Institute for Earth Science and Disaster Prevention, No.321. 13) Lee, H. S., Noguchi, T. and Tomosawa, F., (1998). “Fundamental study on evaluation of structural performance of reinforced concrete beam damaged by corrosion of longitudinal tensile main rebar by finite element method.” Transactions of AIJ, 506, 43-50. (in Japanese 6) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2010). “The effect of strengthening the damage expected zone in a RC member with damaged anchorage.” Journal of JSCE (E), 66(2), 179-192. 23) Ouglova, A., Berthaud, Y., Francois, M. and Foct, F., (2006). “Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures.” Corrosion Science, 48, 3988-4000. 9) Gebreyouhannes, E., Takahashi, Y., Maekawa, K., (2014b). “A poro-mechanical approach for assessing the structural impacts of corrosion in reinforced concrete members.” Proc. of the 1st Ageing of Materials & Structures, (Amsterdam), 354-362. 18) Stang, H. and Thybo, A. A. (2013). “Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations.” Cement and Concrete Composites, 47, 75-86. 17) Maeshima, T., Koda, Y., Tsuchiya, S. and Iwaki, I., (2014). “Influence of corrosion of rebars caused by chloride induced determination on fatigue resistance in road bridge deck.” Journal of Japan Society of Civil Engineers, Ser.E2, 70(4), 208-225. (in Japanese 11) Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A., (2008). “Progressive collapse of multi-story buildings due to sudden column loss - Part I: Simplified assessment framework.” Engineering Structures, 30(5), 1308-1318. 28) Val, D. V., Chernin, L. and Stewart, M. G., (2009). “Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures.” Journal of Structural Engineering, ASCE, 135, 376-385. 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – reference: 24) Oh, B. H., Kim, K. H. and Jang, B. S., (2009). “Critical corrosion amount to cause cracking of reinforced concrete structures.” ACI Material Journal, 106(4), 333-339. – reference: 21) Sawabe, S., Ueda, N., Nakamura, H. and Kunieda, M. (2006). “Shear failure behavior analysis of RC beam with unbonded region and decreased bond strength in stirrups.” Journal of Materials, Concrete Structures and Pavements, JSCE, 62(2), 444-461. (in Japanese) – reference: 18) Stang, H. and Thybo, A. A. (2013). “Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations.” Cement and Concrete Composites, 47, 75-86. – reference: 31) Yamamoto, T. and Miyagawa, T., (2007). “Mechanical performance of RC structural material and member deteriorated by corrosion of reinforcing steel.” Journal of the Society of Materials Science, 56(8), 684-693. (in Japanese) – reference: 13) Lee, H. S., Noguchi, T. and Tomosawa, F., (1998). “Fundamental study on evaluation of structural performance of reinforced concrete beam damaged by corrosion of longitudinal tensile main rebar by finite element method.” Transactions of AIJ, 506, 43-50. (in Japanese) – reference: 6) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2010). “The effect of strengthening the damage expected zone in a RC member with damaged anchorage.” Journal of JSCE (E), 66(2), 179-192. – reference: 12) Japan Society of civil Engineers, (2012). “Standard Specification of Concrete Structures (design).” (in Japanese) – reference: 15) Maekawa, K., Ishida, T. and Kishi, T., (2003). “Multi-scale modeling of concrete performance -Integrated material and structural mechanics-.” Journal of Advanced Concrete Technology, 1(2), 91-126. – reference: 25) Shimomura, T., Saito, S., Takahashi, R. and Shiba, A., (2011). “Modelling and nonlinear FE analysis of deteriorated existing concrete structures based on inspection.” Modelling of Corroding Concrete Structures, RILEM Bookseries, 5, 259-272. – reference: 7) Chijiwa, N., Kawanaka, I. and Makekawa, K., (2011). “Effect of strengthening at expected damaging zone of an RC member with damaged anchorage.” Journal of JSCE (E2), 67(2), 160-165. (in Japanese) – reference: 30) Xue, X. and Seki, H., (2010). “Influence of longitudinal bar corrosion on shear behavior of RC beams.” Journal of Advanced Concrete Technology, 8(2), 145-156. – reference: 3) Arasato, Y., Yamakawa, T., Morishita, Y. and Tamaki, Y., (2003). “Experimental study on the seismic performance of RC columns damaged under natural exposure.” Proceedings of JCI, 25(2), 259-264. (in Japanese) – reference: 4) Asamoto, S., Ishida, T. and Maekawa, K., (2006). “Time-dependent constitutive model of solidifying concrete based on thermodynamic state of moisture in fine pores.” Journal of Advanced Concrete Technology, 4(2), 301-323. – reference: 27) Toongoenthong, K. and Maekawa, K., (2005). “Multi-mechanical approach to structural performance assessment of corroded RC member in shear.” Journal of Advanced Concrete Technology, 3(1), 107-122. – reference: 14) Matsumori, T., Kabeyazawa, T., Shirai, K. and Igarashi, K., (2008). “Shaking table test on a full-scale, six-story R/C building structure, Special project for earthquake disasters mitigation in urban areas in 2005, improvement of seismic performance of structures by E-Defense.” Technical Note of the National Research Institute for Earth Science and Disaster Prevention, No.321. – reference: 19) Funaki, H., Yamakawa, T., Yamada, Y. and Nakata, K., (2008). “Horizontal cyclic loading test on the real-scale RC columns deteriorated under natural exposure in Okinawa.” Proceedings of JCI, 30(3), 139-144. (in Japanese) – reference: 2) Andrade, C. and Alonso, C., (1993). “Cover cracking as a function of bar corrosion: Part I-Experimental test.” Materials and Structures, 26, 453-464. – reference: 5) Cabrera, J. G., (1996). “Deterioration of concrete due to reinforcement steel corrosion.” Cement and Concrete Composites, 18, 47-59. – reference: 10) Gebreyouhannes, E. and Maekawa, K., (2011). “Numerical simulation on shear capacity and post-peak ductility of reinforced high-strength concrete coupled with autogenous shrinkage.” Journal of Advanced Concrete Technology, 9(1), 73-88. – reference: 20) Sato, Y., Yamamoto, T., Hattori, A. and Miyagawa, T. (2003). “Shear behavior of RC member with corroded shear and longitudinal reinforcing steels.” Proceedings of the JCI, 25(1), 821-826. (in Japanese) – reference: 22) Okada, K., Kobayashi, K. and Miyagawa, T., (1988). “Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members.” ACI Structural Journal, 85(2), 134-140. – reference: 1) Abruzzo, J., Matta, A. and Panariello, G., (2006). “Study of mitigation strategies for progressive collapse of a reinforced concrete commercial building.” Journal of Performance of Construction Facilities, 20, Special Issue: Mitigating the potential for progressive disproportionate structural collapse, 384-390. – reference: 26) Takaya, S., Nakamura, S., Yamamoto, T. and Miyagawa, T., (2013). “Influence of steel corrosion products in concrete on crack opening weight loss of corrosion.” Journal of JSCE, 69(2), 154-165. (in Japanese) – reference: 11) Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A., (2008). “Progressive collapse of multi-story buildings due to sudden column loss - Part I: Simplified assessment framework.” Engineering Structures, 30(5), 1308-1318. – reference: 8) Gebreyouhannes, E., Yoneda, T., Ishida, T. and Maekawa, K., (2014a). “Multi-scale based simulation of shear critical reinforced concrete beams subjected to drying.” Journal of Advanced Concrete Technology, 12(10), 363-377. – reference: 9) Gebreyouhannes, E., Takahashi, Y., Maekawa, K., (2014b). “A poro-mechanical approach for assessing the structural impacts of corrosion in reinforced concrete members.” Proc. of the 1st Ageing of Materials & Structures, (Amsterdam), 354-362. – reference: 23) Ouglova, A., Berthaud, Y., Francois, M. and Foct, F., (2006). “Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures.” Corrosion Science, 48, 3988-4000. – reference: 16) Maekawa, K., Ishida, T. and Kishi, T., (2008). “Multi-scale modeling of structural concrete.” Taylor and Francis. – reference: 29) Wong, H. S., Zhao, Y. X., Karimi, A. R., Buenfeld, N. R. and Jin, W. L., (2010). “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion.” Corrosion Science, 52, 2469-2480. – reference: 28) Val, D. V., Chernin, L. and Stewart, M. G., (2009). “Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures.” Journal of Structural Engineering, ASCE, 135, 376-385. – reference: 17) Maeshima, T., Koda, Y., Tsuchiya, S. and Iwaki, I., (2014). “Influence of corrosion of rebars caused by chloride induced determination on fatigue resistance in road bridge deck.” Journal of Japan Society of Civil Engineers, Ser.E2, 70(4), 208-225. (in Japanese) – ident: 18 – ident: 1 doi: 10.1061/(ASCE)0887-3828(2006)20:4(384) – ident: 7 doi: 10.2208/jscejmcs.67.160 – ident: 12 – ident: 14 – ident: 23 doi: 10.1016/j.corsci.2006.03.007 – ident: 30 doi: 10.3151/jact.8.145 – ident: 13 doi: 10.3130/aijs.63.43_2 – ident: 21 doi: 10.2208/jsceje.62.444 – ident: 31 doi: 10.2472/jsms.56.684 – ident: 24 – ident: 11 doi: 10.1016/j.engstruct.2007.07.011 – ident: 9 – ident: 20 – ident: 26 – ident: 22 – ident: 17 – ident: 3 – ident: 6 doi: 10.2208/jsceje.66.179 – ident: 15 doi: 10.3151/jact.1.91 – ident: 8 doi: 10.3151/jact.12.363 – ident: 28 doi: 10.1061/(ASCE)0733-9445(2009)135:4(376) – ident: 19 – ident: 2 doi: 10.1007/BF02472805 – ident: 5 doi: 10.1016/0958-9465(95)00043-7 – ident: 4 doi: 10.3151/jact.4.301 – ident: 29 doi: 10.1016/j.corsci.2010.03.025 – ident: 16 doi: 10.1201/9781482288599 – ident: 25 doi: 10.1007/978-94-007-0677-4_18 – ident: 27 doi: 10.3151/jact.3.107 – ident: 10 doi: 10.3151/jact.9.73 |
| SSID | ssj0037377 |
| Score | 2.1232905 |
| Snippet | This paper is to apply the multi-scale thermo-hygro-mechanistic modeling to full-scale RC structural systems under combined long-term ambient and short seismic... |
| SourceID | unpaywall proquest crossref jstage |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 465 |
| SubjectTerms | Construction Corrosion Corrosion resistant steels Earthquake construction Mathematical models Reinforced concrete Reinforcing steels Structural steels |
| Title | Thermo-Hygral Case-Study on Full Scale RC Building under Corrosive Environment and Seismic Actions |
| URI | https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_article/-char/en https://www.proquest.com/docview/1754560830 https://www.proquest.com/docview/1786161352 https://www.jstage.jst.go.jp/article/jact/13/10/13_465/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Advanced Concrete Technology, 2015/10/23, Vol.13(10), pp.465-478 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1347-3913 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037377 issn: 1346-8014 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tHRLwwPgxRGCbjDRekJLGteMk4qmrNlUgJmBUGhJSZDtOtdIlVZoKlb-ec5JmBSGEeEke_CmxfT7fd_LdGeCExzJTapC6sQwzlwumUOdS44oo9jN0NyiVNsH5_YUYT_jbq-BqB95scmFsWOUMedHU2Jc3LbzZot9OYn8mddWnDDUdnwkXQT9ZpNku7IkAiXgP9iYXH4ZfaheL2zK7tLnSlqMaxZQ12XkMTVz9IY8yj1ubsmWP7jS__oVt3l3lC7n-LufzLcNzvg9fN11u4k2-eatKefrHb9Uc_3NMD-FBS0jJsAE-gh2TP4b7W2UKn4DCtVTeFO54PS0ROkLD59r4wzUpcmJ9WHKJkjbk04ictrdsE5ubVpJRUeKocUMlZ7cJdUTmKbk018uba02GdV7F8gAm52efR2O3vZvB1UEcVS7aPqEENyownGmJu-QgohlTMc1UJv1A4T6BnpjS6O0aHqW-MDo0SH9SXyvJKHsKvbzIzTMgXOtYS5MaWws-DLREn3MQ2liuIFVhJBx4vZFQotvC5fb-jHmCDowVZ2LnMGlmz4GTDrxo6nX8GRY1EulArTw6UH3SZ6Fdi02Dw73EgcPN4khafV8mSMKQiSKd9R142TWjptrjF5mbYmUxkUB-jYzXgVfdovpbL5__I-4F3EMeV1eUHbBD6FXlyhwhV6rUMey--xgdt5rxEx2EFeA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7adND2YT876q0bGnQvBTtWJMs2e8pCSxisjHWBDgZGkuXQLLWD41Cyv34n2_GyUcbYi_2gD1vS6XTfobsTwCmPZabUIHVjGWYuF0yhzqXGFVHsZ-huUCptgvPHSzGe8A_XwfUOvNvkwtiwyhnyoqmxL29aeLNFv53E_kzqqk8Zajo-Ey6CfrJIs13YEwES8R7sTS4_Db_WLha3ZXZpc6UtRzWKKWuy8xiauPpDHmUetzZlyx49aH79G9vcX-ULub6T8_mW4bl4BN82XW7iTb57q0p5-scf1Rz_c0yP4WFLSMmwAT6BHZM_hcOtMoXPQOFaKm8Ld7yelggdoeFzbfzhmhQ5sT4suUJJG_J5RN63t2wTm5tWklFR4qhxQyXnvxLqiMxTcmVulrc3mgzrvIrlEUwuzr-Mxm57N4OrgziqXLR9QgluVGA40xJ3yUFEM6ZimqlM-oHCfQI9MaXR2zU8Sn1hdGiQ_qS-VpJR9hx6eZGbYyBc61hLkxpbCz4MtESfcxDaWK4gVWEkHDjbSCjRbeFye3_GPEEHxoozsXOYNLPnwGkHXjT1Ou6HRY1EOlArjw5Un_RZaNdi0-BwL3HgZLM4klbflwmSMGSiSGd9B950zaip9vhF5qZYWUwkkF8j43Xgbbeo_tbLF_-IewkHyOPqirIDdgK9qlyZV8iVKvW61Ymfn_AU6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermo-Hygral+Case-Study+on+Full+Scale+RC+Building+under+Corrosive+Environment+and+Seismic+Actions&rft.jtitle=Journal+of+Advanced+Concrete+Technology&rft.au=Chijiwa%2C+Nobuhiro&rft.au=Maekawa%2C+Koichi&rft.date=2015-10-23&rft.pub=Japan+Concrete+Institute&rft.eissn=1347-3913&rft.volume=13&rft.issue=10&rft.spage=465&rft.epage=478&rft_id=info:doi/10.3151%2Fjact.13.465&rft.externalDocID=article_jact_13_10_13_465_article_char_en |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |