Risk stratification for progression of IgA nephropathy using a decision tree induction algorithm

Background. Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult. Methods. To develop a practical and user-friendly scheme for r...

Full description

Saved in:
Bibliographic Details
Published inNephrology, dialysis, transplantation Vol. 24; no. 4; pp. 1242 - 1247
Main Authors Goto, Masashi, Kawamura, Takashi, Wakai, Kenji, Ando, Masahiko, Endoh, Masayuki, Tomino, Yasuhiko
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2009
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0931-0509
1460-2385
1460-2385
DOI10.1093/ndt/gfn610

Cover

Abstract Background. Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult. Methods. To develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm. Results. Recursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777–0.883) versus 0.808 (95% confidence interval, 0.754–0.861)]. Conclusion. Risk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.
AbstractList Background. Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult. Methods. To develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm. Results. Recursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777–0.883) versus 0.808 (95% confidence interval, 0.754–0.861)]. Conclusion. Risk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.
Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult.BACKGROUNDImmunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult.To develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm.METHODSTo develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm.Recursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777-0.883) versus 0.808 (95% confidence interval, 0.754-0.861)].RESULTSRecursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777-0.883) versus 0.808 (95% confidence interval, 0.754-0.861)].Risk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.CONCLUSIONRisk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.
Background. Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult. Methods. To develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm. Results. Recursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777-0.883) versus 0.808 (95% confidence interval, 0.754-0.861)]. Conclusion. Risk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.
Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However, prediction of the renal outcome in individual patients remains difficult. To develop a practical and user-friendly scheme for risk stratification of IgAN patients, data were extracted from a prospective cohort study conducted in 97 clinical units in Japan from 1995. Specifically, we examined deterioration in renal function, defined as doubling of serum creatinine, within 10 years of follow-up in 790 adult IgAN patients without substantial renal dysfunction at baseline using a decision tree induction algorithm. Recursive partitioning indicated that the best single predictor of renal deterioration was severe proteinuria on urine dipstick testing, followed by hypoalbuminaemia and the presence of mild haematuria for patients with and without severe proteinuria, respectively. Serum total protein levels, diastolic blood pressure and histological grade were placed in the third tier of the decision tree model. With these six variables, patients can be readily stratified into seven risk groups whose incidence of renal deterioration within 10-year follow-up ranges from 1.0% to 51.4%. Logistic regression also identified severe proteinuria, hypoalbuminaemia and mild haematuria as significant predictors of deterioration. Areas under the receiver-operating characteristic curve for the prediction were comparable between the decision tree model and the logistic regression model [0.830 (95% confidence interval, 0.777-0.883) versus 0.808 (95% confidence interval, 0.754-0.861)]. Risk of substantial renal deterioration in IgAN patients can be validly estimated using six predictors obtained from clinical routine.
Author Endoh, Masayuki
Kawamura, Takashi
Goto, Masashi
Wakai, Kenji
Ando, Masahiko
Tomino, Yasuhiko
AuthorAffiliation 1 Kyoto University Health Service, Kyoto
4 Division of Nephrology, Department of Internal Medicine , Juntendo University School of Medicine , Tokyo , Japan
2 Department of Preventive Medicine/Biostatistics and Medical Decision Making , Nagoya University Graduate School of Medicine , Nagoya
3 Division of Nephrology and Metabolism, Department of Internal Medicine , Tokai University School of Medicine , Isehara
AuthorAffiliation_xml – name: 2 Department of Preventive Medicine/Biostatistics and Medical Decision Making , Nagoya University Graduate School of Medicine , Nagoya
– name: 1 Kyoto University Health Service, Kyoto
– name: 3 Division of Nephrology and Metabolism, Department of Internal Medicine , Tokai University School of Medicine , Isehara
– name: 4 Division of Nephrology, Department of Internal Medicine , Juntendo University School of Medicine , Tokyo , Japan
Author_xml – sequence: 1
  givenname: Masashi
  surname: Goto
  fullname: Goto, Masashi
  organization: Kyoto University Health Service, Kyoto
– sequence: 2
  givenname: Takashi
  surname: Kawamura
  fullname: Kawamura, Takashi
  organization: Kyoto University Health Service, Kyoto
– sequence: 3
  givenname: Kenji
  surname: Wakai
  fullname: Wakai, Kenji
  organization: Department of Preventive Medicine/Biostatistics and Medical Decision Making, Nagoya University Graduate School of Medicine, Nagoya
– sequence: 4
  givenname: Masahiko
  surname: Ando
  fullname: Ando, Masahiko
  organization: Kyoto University Health Service, Kyoto
– sequence: 5
  givenname: Masayuki
  surname: Endoh
  fullname: Endoh, Masayuki
  organization: Division of Nephrology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara
– sequence: 6
  givenname: Yasuhiko
  surname: Tomino
  fullname: Tomino, Yasuhiko
  organization: Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21309477$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19017674$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7LZ64w-QQdALZWw-ZibJjVBa3RaKgvRCvInZTDKbdjYZk4x2_73Z3aHVIvUmIZwnL-c85wDsOe80AM8RfIcgJ0euTUedcQ2Cj8AMVQ0sMWH1HpjlIiphDfk-OIjxCkLIMaVPwD7iENGGVjPw_YuN10VMQSZrrMqnd4XxoRiC74KOcfP2pjjvjgunh2Xwg0zLdTFG67pCFq1WdsukoHVhXTuqbYTsOx9sWq6egsdG9lE_m-5DcPnxw-XJWXnxeX5-cnxRqpqzVBJDNMLEMMUl1YyZGre4paSVC9MsDOctktgwLY1ua0wRYxAtKqkqTXitDDkEb3exoxvk-pfsezEEu5JhLRAUG00iaxI7TZl-v6OHcbHSrdIuC7j74aUVf1ecXYrO_xS4qRklJAe8ngKC_zHqmMTKRqX7XjrtxygaCmvMKfwviPN6COZ1Bl_eA6_8GFxWJjBiqKkYohl68WffdyNO-8zAqwmQUcneBOnyfm45jAjkFd0EwR2ngo8xaCOUTdvl53Ft_29nb-59eVDw1Icfh4e5csfZmPTNLSnDdVZIaC3Ovn4TtEHzCs1PxSfyGwL37hw
CODEN NDTREA
CitedBy_id crossref_primary_10_3389_fmed_2022_952050
crossref_primary_10_1080_0886022X_2024_2313174
crossref_primary_10_1016_j_cca_2010_11_020
crossref_primary_10_3390_jcm11226785
crossref_primary_10_15171_jnp_2016_12
crossref_primary_10_1001_jamainternmed_2019_0600
crossref_primary_10_1016_j_clinbiochem_2013_01_017
crossref_primary_10_1007_s10157_016_1239_y
crossref_primary_10_1016_j_heliyon_2024_e33090
crossref_primary_10_1007_s00467_015_3119_1
crossref_primary_10_1016_j_ekir_2020_07_036
crossref_primary_10_1681_ASN_2010040355
crossref_primary_10_1371_journal_pone_0232885
crossref_primary_10_1016_j_ekir_2022_03_016
crossref_primary_10_1053_j_ajkd_2012_02_326
crossref_primary_10_3390_biomedicines12030568
crossref_primary_10_1016_j_ebiom_2020_102657
crossref_primary_10_1080_10919392_2013_807712
crossref_primary_10_1089_gtmb_2016_0070
crossref_primary_10_1159_000520039
crossref_primary_10_1007_s10157_012_0746_8
crossref_primary_10_1097_MNH_0000000000000405
crossref_primary_10_1371_journal_pone_0128575
crossref_primary_10_1371_journal_pmed_1001344
crossref_primary_10_1080_0886022X_2021_1879852
crossref_primary_10_3389_fmed_2022_778464
crossref_primary_10_1007_s10157_012_0613_7
crossref_primary_10_1016_j_kint_2022_02_042
crossref_primary_10_1186_s12882_021_02496_7
crossref_primary_10_1093_ndt_gft398
crossref_primary_10_1038_ki_2015_322
crossref_primary_10_1111_j_1440_1797_2010_01307_x
crossref_primary_10_1007_s10157_021_02069_w
crossref_primary_10_1007_s10157_022_02226_9
crossref_primary_10_1093_ndt_gfr339
crossref_primary_10_1016_j_transproceed_2010_03_062
crossref_primary_10_1038_s41598_021_82967_x
crossref_primary_10_1287_isre_1120_0437
crossref_primary_10_1016_j_transproceed_2010_03_061
crossref_primary_10_1093_ndt_gfz181
crossref_primary_10_1097_CM9_0000000000000121
crossref_primary_10_1186_s12911_022_01951_1
crossref_primary_10_36485_1561_6274_2021_25_2_52_59
crossref_primary_10_1007_s10157_019_01735_4
crossref_primary_10_2215_CJN_16021219
crossref_primary_10_1093_ckj_sfad232
Cites_doi 10.1016/S0272-6386(97)90456-X
10.1053/ajkd.2000.8966
10.1111/j.1523-1755.2004.00837.x
10.1093/ndt/gfl342
10.1016/S0895-4356(01)00341-9
10.1053/ajkd.2001.27689
10.7326/0003-4819-130-6-199903160-00002
10.1016/S0046-8177(82)80221-9
10.1111/j.1523-1755.2004.00834.x
10.1681/ASN.2005020134
10.1001/jama.293.5.572
10.1007/s10157-006-0453-4
ContentType Journal Article
Copyright Oxford University Press © The Author [2008]. 2008
2009 INIST-CNRS
The Author [2008].
The Author [2008]. 2008 Oxford University Press
Copyright_xml – notice: Oxford University Press © The Author [2008]. 2008
– notice: 2009 INIST-CNRS
– notice: The Author [2008].
– notice: The Author [2008]. 2008 Oxford University Press
DBID BSCLL
TOX
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
H94
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/ndt/gfn610
DatabaseName Istex
Oxford Journals Open Access Collection
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

AIDS and Cancer Research Abstracts

MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate M. Goto et al.Progression risk of IgA nephropathy
M. Goto et al
EISSN 1460-2385
EndPage 1247
ExternalDocumentID 10.1093/ndt/gfn610
PMC2658733
1667727461
19017674
21309477
10_1093_ndt_gfn610
ark_67375_HXZ_761G41GD_N
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
123
18M
1TH
29M
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAHTB
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABNGD
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BSCLL
BTRTY
BVRKM
BZKNY
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SDH
TCURE
TEORI
TJX
TMA
TR2
W8F
WH7
WOQ
X7H
X7M
YAYTL
YKOAZ
YXANX
ZGI
ZKX
ZXP
~91
6.Y
AASNB
ABJNI
ABQTQ
ABSAR
ACMRT
ADJQC
ADRIX
AFXEN
KC5
M49
TOX
AAYXX
CITATION
AGORE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
H94
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c598t-3f3e123f8c9a7e88f52d2d73dabf6bf99d1a2f8eafed52718801b4ac4e395cf3
IEDL.DBID UNPAY
ISSN 0931-0509
1460-2385
IngestDate Wed Oct 29 11:50:38 EDT 2025
Tue Sep 30 15:41:08 EDT 2025
Thu Oct 02 19:39:55 EDT 2025
Thu Oct 02 09:43:01 EDT 2025
Mon Oct 06 17:11:59 EDT 2025
Thu May 22 04:42:28 EDT 2025
Mon Jul 21 09:14:43 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Wed Oct 01 03:12:07 EDT 2025
Wed Aug 28 03:24:56 EDT 2024
Sat Sep 20 11:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cohort studies
risk factors
IgA nephropathy
disease progression
prognosis
Kidney disease
IgA
Urinary system disease
Prognosis
Hemodialysis
Algorithm
Decision tree
Extrarenal dialysis
Nephropathy
Cohort study
Risk factor
Renal failure
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-3f3e123f8c9a7e88f52d2d73dabf6bf99d1a2f8eafed52718801b4ac4e395cf3
Notes ark:/67375/HXZ-761G41GD-N
istex:9958BD227D9E4DD372BA0E4E88B435D96CE0340C
ArticleID:gfn610
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/ndt/article-pdf/24/4/1242/7632603/gfn610.pdf
PMID 19017674
PQID 218164817
PQPubID 30216
PageCount 6
ParticipantIDs unpaywall_primary_10_1093_ndt_gfn610
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2658733
proquest_miscellaneous_67052970
proquest_miscellaneous_20503295
proquest_journals_218164817
pubmed_primary_19017674
pascalfrancis_primary_21309477
crossref_citationtrail_10_1093_ndt_gfn610
crossref_primary_10_1093_ndt_gfn610
oup_primary_10_1093_ndt_gfn610
istex_primary_ark_67375_HXZ_761G41GD_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Eynsham
PublicationTitle Nephrology, dialysis, transplantation
PublicationTitleAbbrev Nephrol Dial Transplant
PublicationTitleAlternate Nephrol Dial Transplant
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References (4_18956631) 2005; 16
D'Amico (5_10417564) 2000; 36
(6_22348511) 2006; 21
(12_28723652) 1986; 1
(8_24419794) 1995; 37
Li (2_18300567) 2004; 66
Steyerberg (15_11250598) 2001; 54
(10_32646706) 1996; 45
Berger (1_7646180) 1968; 74
Lee (18_8650218) 1982; 13
Imai (9_27981413) 2007; 11
Fonarow (13_18657327) 2005; 293
Bartosik (17_11337030) 2001; 38
Levey (7_10742031) 1999; 130
Haas (19_16812012) 1997; 29
Simon (3_18300564) 2004; 66
7076216 - Hum Pathol. 1982 Apr;13(4):314-22
17384997 - Clin Exp Nephrol. 2007 Mar;11(1):41-50
16822793 - Nephrol Dial Transplant. 2006 Oct;21(10):2800-8
9186068 - Am J Kidney Dis. 1997 Jun;29(6):829-42
11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
15327382 - Kidney Int. 2004 Sep;66(3):920-3
15687312 - JAMA. 2005 Feb 2;293(5):572-80
4180586 - J Urol Nephrol (Paris). 1968 Sep;74(9):694-5
10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70
10922300 - Am J Kidney Dis. 2000 Aug;36(2):227-37
7563948 - Nihon Jinzo Gakkai Shi. 1995 Aug;37(8):417-21
15930092 - J Am Soc Nephrol. 2005 Jul;16(7):2088-97
11576875 - Am J Kidney Dis. 2001 Oct;38(4):728-35
15327379 - Kidney Int. 2004 Sep;66(3):905-8
References_xml – volume: 45
  start-page: 162
  year: 1996
  ident: 10_32646706
  publication-title: IGAKUKENSA
– volume: 29
  start-page: 829
  issn: 0272-6386
  issue: 6
  year: 1997
  ident: 19_16812012
  publication-title: American journal of kidney diseases : the official journal of the National Kidney Foundation
  doi: 10.1016/S0272-6386(97)90456-X
– volume: 36
  start-page: 227
  issn: 0272-6386
  issue: 2
  year: 2000
  ident: 5_10417564
  publication-title: American journal of kidney diseases : the official journal of the National Kidney Foundation
  doi: 10.1053/ajkd.2000.8966
– volume: 74
  start-page: 694
  issn: 0021-8200
  issue: 9
  year: 1968
  ident: 1_7646180
  publication-title: Journal d'urologie et de n  phrologie
– volume: 37
  start-page: 417
  year: 1995
  ident: 8_24419794
  publication-title: JPN J NEPHROL
– volume: 66
  start-page: 920
  issn: 0085-2538
  issue: 3
  year: 2004
  ident: 2_18300567
  publication-title: Kidney international
  doi: 10.1111/j.1523-1755.2004.00837.x
– volume: 1
  start-page: 81
  year: 1986
  ident: 12_28723652
  publication-title: MACHINE LEARN
– volume: 21
  start-page: 2800
  issn: 0931-0509
  issue: 10
  year: 2006
  ident: 6_22348511
  publication-title: Nephrology Dialysis Transplantation
  doi: 10.1093/ndt/gfl342
– volume: 54
  start-page: 774
  issn: 0895-4356
  issue: 8
  year: 2001
  ident: 15_11250598
  publication-title: Journal of clinical epidemiology
  doi: 10.1016/S0895-4356(01)00341-9
– volume: 38
  start-page: 728
  issn: 0272-6386
  issue: 4
  year: 2001
  ident: 17_11337030
  publication-title: American journal of kidney diseases : the official journal of the National Kidney Foundation
  doi: 10.1053/ajkd.2001.27689
– volume: 130
  start-page: 461
  issn: 0003-4819
  issue: 6
  year: 1999
  ident: 7_10742031
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-130-6-199903160-00002
– volume: 13
  start-page: 314
  issn: 0046-8177
  issue: 4
  year: 1982
  ident: 18_8650218
  publication-title: Human pathology
  doi: 10.1016/S0046-8177(82)80221-9
– volume: 66
  start-page: 905
  issn: 0085-2538
  issue: 3
  year: 2004
  ident: 3_18300564
  publication-title: Kidney international
  doi: 10.1111/j.1523-1755.2004.00834.x
– volume: 16
  start-page: 2088
  issn: 1046-6673
  issue: 7
  year: 2005
  ident: 4_18956631
  publication-title: Journal of the American Society of Nephrology
  doi: 10.1681/ASN.2005020134
– volume: 293
  start-page: 572
  issn: 0098-7484
  issue: 5
  year: 2005
  ident: 13_18657327
  publication-title: JAMA
  doi: 10.1001/jama.293.5.572
– volume: 11
  start-page: 41
  issn: 1342-1751
  issue: 1
  year: 2007
  ident: 9_27981413
  publication-title: Clinical and experimental nephrology
  doi: 10.1007/s10157-006-0453-4
– reference: 15687312 - JAMA. 2005 Feb 2;293(5):572-80
– reference: 11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
– reference: 16822793 - Nephrol Dial Transplant. 2006 Oct;21(10):2800-8
– reference: 15327382 - Kidney Int. 2004 Sep;66(3):920-3
– reference: 9186068 - Am J Kidney Dis. 1997 Jun;29(6):829-42
– reference: 10922300 - Am J Kidney Dis. 2000 Aug;36(2):227-37
– reference: 4180586 - J Urol Nephrol (Paris). 1968 Sep;74(9):694-5
– reference: 15930092 - J Am Soc Nephrol. 2005 Jul;16(7):2088-97
– reference: 7076216 - Hum Pathol. 1982 Apr;13(4):314-22
– reference: 17384997 - Clin Exp Nephrol. 2007 Mar;11(1):41-50
– reference: 10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70
– reference: 7563948 - Nihon Jinzo Gakkai Shi. 1995 Aug;37(8):417-21
– reference: 11576875 - Am J Kidney Dis. 2001 Oct;38(4):728-35
– reference: 15327379 - Kidney Int. 2004 Sep;66(3):905-8
SSID ssj0009277
Score 2.1516666
Snippet Background. Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression....
Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis, and many patients are at risk of at least slow progression. However,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1242
SubjectTerms Adult
Algorithms
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
Clinical Nephrology
cohort studies
Decision Trees
Disease Progression
Emergency and intensive care: renal failure. Dialysis management
Female
Glomerulonephritis
Glomerulonephritis, IGA - diagnosis
Humans
IgA nephropathy
Intensive care medicine
Male
Medical sciences
Nephrology. Urinary tract diseases
Nephropathies. Renovascular diseases. Renal failure
Prognosis
Risk Assessment
risk factors
ROC Curve
Young Adult
Title Risk stratification for progression of IgA nephropathy using a decision tree induction algorithm
URI https://api.istex.fr/ark:/67375/HXZ-761G41GD-N/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19017674
https://www.proquest.com/docview/218164817
https://www.proquest.com/docview/20503295
https://www.proquest.com/docview/67052970
https://pubmed.ncbi.nlm.nih.gov/PMC2658733
https://academic.oup.com/ndt/article-pdf/24/4/1242/7632603/gfn610.pdf
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2385
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009277
  issn: 1460-2385
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2385
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009277
  issn: 1460-2385
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2385
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009277
  issn: 1460-2385
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2VgIkxPdHGBRLTEg8pKkTO44fK9hakFYQ6qTCS-bEdle1pFWbCsZfzzlfUBgTEi958cVyzmffL77z7xA6lBx8DlHc7aUJcykgfFcmWrq2phVVRIKJ2QP9k1E4PKXvJmyyh47quzCyygrv1lcaMpV7lRLdlTKeTz3qgVPyPVgZAMYDb2oywABdaNxH7ZABJG-h9unoQ_9TwbMXwO8yK1I9YFPoueCiWE1TKoKi-7KDHcfUtjr-Vl96u7mSG9CYKUtdXIZF_0ypvL7NVvLiq1wsfvFXx7fLvJJNQXNo01Tm3W2edNPvv5FA_rcq7qBbFaLF_fKVu2hPZ_fQtZMqZn8fnX2cbea4pOc11QkhBqiMi9SwkhYELw1-O-3jTK9s2QZApRfYZuRPscSqqgKEbfwczzJV8t1iuZgu17P8_MsDND4-Gr8eulVdBzdlIsrdwAQaHKaJUiG5jiLDfOUrHiiZmDAxQoCN-CbS0mjFfG4Z40hCZUp1IFhqgoeolS0z_RhhkoRKEG04_DVSoXuJMJKGKk24NoRFqYNe1XMapxXnuS29sYjL2HsQg07jUmsOetHIrkqmj0ulXham0YjI9dzmxnEWDyefYx6SASWDN_HIQR2Ytyt76uyYVSPqA6wQlHMHHdR2Flcbyya2iCykEYHW500r7Ag2zCMzvdyCiKX48QX7u0TIbXyXwxAelVb7c5gADy29k4P4jj03ApaNfLclm50XrOQ-YFkeBA46bCz_iq9_8m9iB-hGHb7rkaeola-3-hmgwDzpoP3BhMBz_H7Sqdb7D_S_YCA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGKwES4vsjDIYlJiQe0jSxHcePFWwrSKsQ2qTCS-bEdle1pFWbCsZfzzlOAoUxIfHsi-Wcz76ffeffIbQvOficUHG_n2fMp4DwfZlp6duaVlSFEkzMXugfj-LhKX0_ZuMddNC8hZF1VnivedJQqDKolegvlQkiGtAAnFIUwMoAME6CiSkAA_Sg8RrqxgwgeQd1T0cfBp8qnj0Cx2VWpXrAptD3wUWxhqZUkKp718GWY-paHX9rHr3dWso1aMy4UheXYdE_UypvbIqlvPgq5_Nf_NXhHZdXsq5oDm2ayqy3KbNe_v03Esj_VsVddLtGtHjgPrmHdnRxH10_rmP2D9DZx-l6hh09r6lvCDFAZVylhjlaELww-N1kgAu9tGUbAJVeYJuRP8ESq7oKELbxczwtlOO7xXI-Waym5fmXh-jk8ODkzdCv6zr4ORNJ6RNDNDhMk-RCcp0khkUqUpwomZk4M0KAjUQm0dJoxSJuGePCjMqcaiJYbsgj1CkWhX6CcJjFSoTacDg1UqH7mTCSxirPuDYhS3IPvW7mNM1rznNbemOeutg7SUGnqdOah162skvH9HGp1KvKNFoRuZrZ3DjO0uH4c8rj8IiGR2_TkYf2YN6u7Glvy6xa0QhghaCce2i3sbO03ljWqUVkMU1CaH3RtsKOYMM8stCLDYhYip9IsL9LxNzGdzkM4bGz2p_DBHho6Z08xLfsuRWwbOTbLcX0vGIljwDLckI8tN9a_hV___TfxHbRzSZ81w-foU652ujngALLbK9e4z8AhKleEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+stratification+for+progression+of+IgA+nephropathy+using+a+decision+tree+induction+algorithm&rft.jtitle=Nephrology%2C+dialysis%2C+transplantation&rft.au=Goto%2C+Masashi&rft.au=Kawamura%2C+Takashi&rft.au=Wakai%2C+Kenji&rft.au=Ando%2C+Masahiko&rft.date=2009-04-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0931-0509&rft.eissn=1460-2385&rft.volume=24&rft.issue=4&rft.spage=1242&rft_id=info:doi/10.1093%2Fndt%2Fgfn610&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1667727461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-0509&client=summon