混流式水轮机内特性模型改进及在外特性曲线拓展中的应用

混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展。目前常用的拓展方法其原理均是根据水轮机综合特性曲线中各参数的变化趋势并结合飞逸特性曲线等约束进行的拓展,没能充分考虑水轮机内在规律,拓展结果过度依赖个人经验,具有较大的随意性。该文通过分析水轮机各部件的能量损失建立了水轮机能量平衡关系式,结合流量调节方程对水轮机内特性模型进行了改进。针对改进后的内特性模型特点设计了一种遗传算法与最小二乘法相结合的参数辨识方法,采用水轮机综合特性曲线及飞逸特性曲线对模型参数进行了辨识,采用辨识后的水轮机模型绘制了较大...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 7; pp. 58 - 66
Main Author 门闯社 南海鹏
Format Journal Article
LanguageChinese
Published 西安理工大学水利水电学院,西安,710048 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.07.008

Cover

Abstract 混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展。目前常用的拓展方法其原理均是根据水轮机综合特性曲线中各参数的变化趋势并结合飞逸特性曲线等约束进行的拓展,没能充分考虑水轮机内在规律,拓展结果过度依赖个人经验,具有较大的随意性。该文通过分析水轮机各部件的能量损失建立了水轮机能量平衡关系式,结合流量调节方程对水轮机内特性模型进行了改进。针对改进后的内特性模型特点设计了一种遗传算法与最小二乘法相结合的参数辨识方法,采用水轮机综合特性曲线及飞逸特性曲线对模型参数进行了辨识,采用辨识后的水轮机模型绘制了较大范围的水轮机特性曲线并与实测特性曲线进行了比对,并结合实测结果对误差来源及误差对过渡过程影响进行了分析。结果表明改进后的混流式水轮机内特性模型能够正确描述水轮机特性,采用最小二乘法与遗传算法相结合的方法能够辨识模型中的参数,将该模型应用在水轮机外特性曲线拓展及过渡过程仿真中,机组过渡过程中最大转速上升率相对误差从2.11%降低到0.54%,最大压力上升率相对误差从10.70%降低到9.52%,说明该模型能够减小仿真误差、减小传统方法中对个人经验的依赖,对过渡过程计算提供了参考。
AbstractList 混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展。目前常用的拓展方法其原理均是根据水轮机综合特性曲线中各参数的变化趋势并结合飞逸特性曲线等约束进行的拓展,没能充分考虑水轮机内在规律,拓展结果过度依赖个人经验,具有较大的随意性。该文通过分析水轮机各部件的能量损失建立了水轮机能量平衡关系式,结合流量调节方程对水轮机内特性模型进行了改进。针对改进后的内特性模型特点设计了一种遗传算法与最小二乘法相结合的参数辨识方法,采用水轮机综合特性曲线及飞逸特性曲线对模型参数进行了辨识,采用辨识后的水轮机模型绘制了较大范围的水轮机特性曲线并与实测特性曲线进行了比对,并结合实测结果对误差来源及误差对过渡过程影响进行了分析。结果表明改进后的混流式水轮机内特性模型能够正确描述水轮机特性,采用最小二乘法与遗传算法相结合的方法能够辨识模型中的参数,将该模型应用在水轮机外特性曲线拓展及过渡过程仿真中,机组过渡过程中最大转速上升率相对误差从2.11%降低到0.54%,最大压力上升率相对误差从10.70%降低到9.52%,说明该模型能够减小仿真误差、减小传统方法中对个人经验的依赖,对过渡过程计算提供了参考。
TK73; 混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展.目前常用的拓展方法其原理均是根据水轮机综合特性曲线中各参数的变化趋势并结合飞逸特性曲线等约束进行的拓展,没能充分考虑水轮机内在规律,拓展结果过度依赖个人经验,具有较大的随意性.该文通过分析水轮机各部件的能量损失建立了水轮机能量平衡关系式,结合流量调节方程对水轮机内特性模型进行了改进.针对改进后的内特性模型特点设计了一种遗传算法与最小二乘法相结合的参数辨识方法,采用水轮机综合特性曲线及飞逸特性曲线对模型参数进行了辨识,采用辨识后的水轮机模型绘制了较大范围的水轮机特性曲线并与实测特性曲线进行了比对,并结合实测结果对误差来源及误差对过渡过程影响进行了分析.结果表明改进后的混流式水轮机内特性模型能够正确描述水轮机特性,采用最小二乘法与遗传算法相结合的方法能够辨识模型中的参数,将该模型应用在水轮机外特性曲线拓展及过渡过程仿真中,机组过渡过程中最大转速上升率相对误差从2.11%降低到0.54%,最大压力上升率相对误差从10.70%降低到9.52%,说明该模型能够减小仿真误差、减小传统方法中对个人经验的依赖,对过渡过程计算提供了参考.
Abstract_FL The combined characteristic curve of Francis turbine shows the performance of turbine working in the high efficiency area. But it isn't sufficient for simulating the system transmit process in a large area, such as turbine working in the low efficiency area and negative area in the rejection transient process. Therefore, expanding the combined characteristic curve of turbine to low efficiency and negative efficiency areas is necessary before the simulation. In general, the combined characteristic curve expanding methods, such as frequently used methods of back propagation of artificial neural network method and radial basis function neural network method, are based on the trend of each parameter in the high efficiency area. But the inherent laws in the turbine are not considered in those methods, and the expanding results are relying largely on personal experience. In this paper, the energy loss formulas on each component of turbine, such as guide vane inlet, blade inlet, blade outlet and so on, were obtained by velocity triangle analysis. According to the turbine flow regulation equation combined with the energy balance equation, the Francis turbine internal characteristic model was obtained. For the complex style and more parameters features of the model, a parameter identification method which combined the genetic algorithm and the least square algorithm was designed to avoid the remaining local optimum only by genetic algorithm or can't be solved only by the least square algorithm. It was proved that the algorithm was effective through contrast of the measurements and the simulation of turbine HLN574 in the case. The Francis turbine internal characteristic model agreed well with measurements in most area, except the area of large unit speed area. The cause of error in the large unit speed area was analyzed for complex flow state in the large unit speed area and the assumed conditions can't be satisfied. For obtaining the effect of model error on transient process simulation result, a rejection transient was simulated each time by Francis turbine internal characteristic model and measurement curve and the simulated result showed that this effect was small. Therefore, we concluded: 1) Energy loss as conditions charge should be considered in the Francis internal characteristic model and the energy balance equation and flow regulation equation should be also considered; 2) The designed parameter identification method was effective in the internal characteristic model parameters ensure; 3) The model error would increase in large unit speed area but it can be ignored in the simulation of transient process. The application of this model in the combined characteristic curve expanding could reduce the randomness of traditional methods. The model has important value in the calculation of transient process.
Author 门闯社 南海鹏
AuthorAffiliation 西安理工大学水利水电学院,西安710048
AuthorAffiliation_xml – name: 西安理工大学水利水电学院,西安,710048
Author_FL Nan Haipeng
Men Chuangshe
Author_FL_xml – sequence: 1
  fullname: Men Chuangshe
– sequence: 2
  fullname: Nan Haipeng
Author_xml – sequence: 1
  fullname: 门闯社 南海鹏
BookMark eNo9j09LAkEYh-dgkJVfIohOu72zszuzewzpH0hdvMvsuGtKjeUS5a2ggvLgIeuQEgRBXoqKwpTCL9PM-jHaUIIXfvD-Ht6XZwalZFUGCC1gMDH2mLNUMctRJE0MYBnUxZ5pAWYmJANuCqX_99MoE0VlHxxMGICN02hT93r640R9NfXL--j7WXcG6vwsvujr40fdvVd3Dd3qj4Zt1bxUna56uJlU7bd4MNSNK_V6_fP5FN-eqkErbnXn0FTId6IgM8lZlF9dyWfXjdzW2kZ2OWcIx3MN6mEa-CQICfgWDbjtCOFQG9uhx4BQSphwCbV8UaRF4XIAgX2beJyxELhn2WQWLY7PHnIZclkqVKoHNZk8LMh6SRz5f_qQGLoJOT8mxXZVlvbLCbtXK-_yWr1AmYWpQ1xKfgEPJHvC
ClassificationCodes TK73
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.07.008
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Improvement of Francis turbine internal characteristic model and its expanding application on outer characteristic
DocumentTitle_FL Improvement of Francis turbine internal characteristic model and its expanding application on outer characteristic
EndPage 66
ExternalDocumentID nygcxb201707008
672165386
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 国家自然科学基金资助项目
  funderid: (51479166); (51339005)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c598-6916eb3ef30b26ea45cc56414f97036637c8362bcd6dc8a00c1b439a77f0a9243
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:03:11 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords models
algorithms
特性曲线
模型
参数辨识
transient process
算法
characteristic curve
过渡过程
混流式水轮机
computer simulation
Francis turbine
计算机仿真
parameter identification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c598-6916eb3ef30b26ea45cc56414f97036637c8362bcd6dc8a00c1b439a77f0a9243
Notes The combined characteristic curve of Francis turbine shows the performance of turbine working in the high efficiency area. But it isn't sufficient for simulating the system transmit process in a large area, such as turbine working in the low efficiency area and negative area in the rejection transient process. Therefore, expanding the combined characteristic curve of turbine to low efficiency and negative efficiency areas is necessary before the simulation. In general, the combined characteristic curve expanding methods, such as frequently used methods of back propagation of artificial neural network method and radial basis function neural network method, are based on the trend of each parameter in the high efficiency area. But the inherent laws in the turbine are not considered in those methods, and the expanding results are relying largely on personal experience. In this paper, the energy loss formulas on each component of turbine, such as guide vane inlet, blade inlet, blade outlet and so on, were obtained
PageCount 9
ParticipantIDs wanfang_journals_nygcxb201707008
chongqing_primary_672165386
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 西安理工大学水利水电学院,西安,710048
Publisher_xml – name: 西安理工大学水利水电学院,西安,710048
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1774185
Snippet 混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展。目前常用的拓展...
TK73; 混流式水轮机综合特性曲线反映了水轮机高效率区域的特性,但不满足水轮机大范围内过渡过程仿真需求,在仿真前需要对水轮机低效率及负效率区域的特性进行拓展.目前常用...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 58
SubjectTerms 参数辨识
模型
混流式水轮机
特性曲线
算法
计算机仿真
过渡过程
Title 混流式水轮机内特性模型改进及在外特性曲线拓展中的应用
URI http://lib.cqvip.com/qk/90712X/201707/672165386.html
https://d.wanfangdata.com.cn/periodical/nygcxb201707008
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1BdGD-Im1Kj04x9R8zExmjpPdLEWwpwq9LUk22Z5WrS1oT4ofoD30YPVgiyAI9qKoKLVF6T9jsv0zfG8y3Q1a_IIQhpk37_3mvWTeyzDzYlmXMjeHIDsRdgDO2aZMxHbsp7nNgixOhN-RboKnka_O8Olr9Mocmxs5dL-2a2lpMZlKlw88V_I_VoU6sCuekv0Hyw6YQgWUwb5wBwvD_a9sTCJOwgAvLDCICknESNggoqVrHBJSEgkSNomKsEY2SKiQRnAiGIkCIiQJJTYJhyjNRwmiNB8ZERHqXlTTAJ8WkaHu3iJC8wGGQA8FRYnkBzOELqGHTSA61MCArfQ1VJdIgAH8QWgTaaQiguomhXKxhoKIegxt8IPoqqPUSEAJSo8I8AgNEhgqrsUpaNp_skgkidRUptDSnYBTNCQBAU1srNSK-tWjEq36Ikl1GlQ_0KgckI6jY6hqUAIidxDnEJvWEuqkhs3YCAQCB1mr0QMPWY0Y4EqiPHgpDhDnNTCBEq07GfRCXBhXYbxQlQ7EvG1BzaVUme1NcFL9oeZXtycDpv0e8p8a8Medi4HOTeuIob8f7MLs3emmtxOkgXkfD8yPebioNWqNqbAZtoZRtYsLB4Np38PkCXz4lcpcH_-RMNhZhfsKmN5kYGActsg-yMu_g4jpTeav97o3IWjTZ-h6edzr1sK92ePWMfOdNqmql-6ENbI8f9I6qroLJldNdsqaKbe2ys_3iq-r5ftPe9_elRs7xaOH_cfb5d035ear4uVKuba9t7terD4pNjaL189N0_rH_s5uufK0-PDs-5e3_RcPip21_trmaWu2Fc02pm3zexI7ZVLYHD6sssTPct9JPJ7FlKUp49SlucSkdtwPUgHRYZJ2eCcVseOkbgLRfxwEuRNLj_pnrNHe9V521pp0YycLvDTPecelHcZlLDsJBZ3ThCVJEI9bEwPFtG9UWWjaHNNuQbjCx61Jo6q2mZtutX8y7bk_k0xYR7BcrS6et0YXF5ayCxBvLyYXzfPwA8xaqlM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B7%E6%B5%81%E5%BC%8F%E6%B0%B4%E8%BD%AE%E6%9C%BA%E5%86%85%E7%89%B9%E6%80%A7%E6%A8%A1%E5%9E%8B%E6%94%B9%E8%BF%9B%E5%8F%8A%E5%9C%A8%E5%A4%96%E7%89%B9%E6%80%A7%E6%9B%B2%E7%BA%BF%E6%8B%93%E5%B1%95%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%97%A8%E9%97%AF%E7%A4%BE&rft.au=%E5%8D%97%E6%B5%B7%E9%B9%8F&rft.date=2017&rft.pub=%E8%A5%BF%E5%AE%89%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E5%AD%A6%E9%99%A2%2C%E8%A5%BF%E5%AE%89%2C710048&rft.issn=1002-6819&rft.volume=33&rft.issue=7&rft.spage=58&rft.epage=66&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.07.008&rft.externalDocID=nygcxb201707008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg