利用照片重建技术生成坡面侵蚀沟三维模型

该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 1; pp. 125 - 132
Main Author 李俊利 李斌兵 柳方明 李占斌
Format Journal Article
LanguageChinese
Published 武警工程大学研究生管理大队,西安,710086%武警工程大学信息工程系,西安,710086%西安理工大学水利水电学院,西安,710048 2015
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2015.01.018

Cover

Abstract 该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,BA)进行非线性优化,确保误差的均匀分布和模型的精确;再使用基于面片的多视图立体视觉算法(patch-based multi-view stereo,PMVS),在局部光度一致性和全局可见性约束下,以SFM生成的稀疏点云为种子面片开始扩散,完成点云稠密重建。将照片快速重建方法获取的点云与地面激光扫描仪(terrestrial laser scanner, TLS)获取的点云及实测数据进行比较,结果表明,照片重建方法生成的点云稠密且能够完整展示侵蚀沟的发育形态,与 TLS点云间的平均距离为0.0034 m,照片重建与三维激光扫描方法对侵蚀量的估算相对误差为8.054%,提取的特征线匹配率达89.592%。研究结果为侵蚀沟监测提供了参考依据。
AbstractList TP391; 该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,BA)进行非线性优化,确保误差的均匀分布和模型的精确;再使用基于面片的多视图立体视觉算法(patch-based multi-view stereo,PMVS),在局部光度一致性和全局可见性约束下,以SFM生成的稀疏点云为种子面片开始扩散,完成点云稠密重建。将照片快速重建方法获取的点云与地面激光扫描仪(terrestrial laser scanner, TLS)获取的点云及实测数据进行比较,结果表明,照片重建方法生成的点云稠密且能够完整展示侵蚀沟的发育形态,与 TLS点云间的平均距离为0.0034 m,照片重建与三维激光扫描方法对侵蚀量的估算相对误差为8.054%,提取的特征线匹配率达89.592%。研究结果为侵蚀沟监测提供了参考依据。
该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄的照片采用尺度不变特征变换(scale-invariant feature transform,SIFT)完成特征点的提取与描述,随机采样一致性算法(random sample and consensus,RANSAC)过滤掉最近邻匹配(nearest neighbor,NN)产生的误匹配点;然后通过SFM方法,迭代求解出相机矩阵和三维点坐标,用光束法平差(bundle adjustment,BA)进行非线性优化,确保误差的均匀分布和模型的精确;再使用基于面片的多视图立体视觉算法(patch-based multi-view stereo,PMVS),在局部光度一致性和全局可见性约束下,以SFM生成的稀疏点云为种子面片开始扩散,完成点云稠密重建。将照片快速重建方法获取的点云与地面激光扫描仪(terrestrial laser scanner, TLS)获取的点云及实测数据进行比较,结果表明,照片重建方法生成的点云稠密且能够完整展示侵蚀沟的发育形态,与 TLS点云间的平均距离为0.0034 m,照片重建与三维激光扫描方法对侵蚀量的估算相对误差为8.054%,提取的特征线匹配率达89.592%。研究结果为侵蚀沟监测提供了参考依据。
Abstract_FL Based on Structure from Motion(SFM) and Multi-View Stereo(MVS) techniques, this paper proposed a rapid 3d reconstruction method of slope eroded gully. Firstly, feature points were extracted and described by using the Scale-Invariant Feature Transform(SIFT), and then Random Sample and Consensus(RANSAC) algorithm was applied to filter inaccurate matching points generated by Nearest Neighbor(NN) algorithm; Secondly, in the condition that there were no camera parameters and scenario-based three-dimensional information, SFM was used because it provided a solution to iterate and get camera matrix and 3d point coordinates. During the iterating process, Bundle Adjustment(BA) algorithm was used for nonlinear optimizing and to ensure symmetrical distribution of the error in order to keep precision of the reconstructed model;After that, with the constraints of local photometric consistency and global visibility, Patch-Based Multi-View Stereo(PMVS) algorithm was adopted to expand sparse point cloud generated by SFM. Thus far the dense reconstruction of point cloud had finished. In order to validate the rationality and accuracy of using this method to monitor gully erosion, indoor runoff scouring experiment was conducted in“hydrology and water resources”laboratory at Xi’an University of Technology. Photos used in the reconstruction were taken by Canon 550d SLR camera. Because modeling process relied on tracking with the oriented point on the subject to determine the final 3d model of point set, so two adjacent photos’ differential seat angle can’t be too large, in case of losing trace points. Reasonable selection of photo shooting location, trajectory and angle should be considered according to the experimental environment and conditions. This paper used the VisualSFM software to complete detecting and matching of feature points, sparse reconstructing of point cloud as well as self-calibrating of camera;used CMVS and PMVS2 tools to finish dense reconstruction, and Meshlab to achieve visualization. After the finish of procedures mentioned above, three-dimensional model of slope eroded gully was built. At the same time, Trimble TX5 Terrestrial Laser Scanner(TLS) was used to obtain a referential point cloud data of the eroded gully in the experiment. After the preprocessing, point clouds obtained by SFM-MVS technique and terrestrial laser scanner were segmented the same area of gully head and reduced the point number to ten thousand. Comparing reconstructed point cloud with point cloud obtained by terrestrial laser scanner and measured data showed that, dense point cloud generated by photo reconstruction method can completely show the developing form of the gully, especially can achieve a better result in the wall, ridge and rolling area than point cloud obtained by laser scanner. Calculation and analysis showed that average distance between scanned and reconstructed point cloud was 0.0034m. Respectively generated digital elevation models for two point clouds by Kriging interpolation method, and computing results indicated that the relative error of erosion estimating was 8.054%. Based on the slope map generated by DEM, characteristic lines were extracted, of which the matching rate was 89.592%. The influence of Pixel value on reconstructing process and result was discussed at the end of the paper. The results of the study provided a reference for monitoring gully erosion.
Author 李俊利 李斌兵 柳方明 李占斌
AuthorAffiliation 武警工程大学研究生管理大队,西安710086 武警工程大学信息工程系,西安710086 西安理工大学水利水电学院,西安710048
AuthorAffiliation_xml – name: 武警工程大学研究生管理大队,西安,710086%武警工程大学信息工程系,西安,710086%西安理工大学水利水电学院,西安,710048
Author_FL Li Junli
Liu Fangming
Li Binbing
Li Zhanbin
Author_FL_xml – sequence: 1
  fullname: Li Junli
– sequence: 2
  fullname: Li Binbing
– sequence: 3
  fullname: Liu Fangming
– sequence: 4
  fullname: Li Zhanbin
Author_xml – sequence: 1
  fullname: 李俊利 李斌兵 柳方明 李占斌
BookMark eNo9j0tLw0AAhPdQwVr7J0TwlLiP7GZzlOILCl56D7ubhym60QbR3nqRtorgoSexlnqxngRREAv-miax_8JIRRgYGD5mmBVQ0rH2AVhH0CQOczabZpQk2kQQYoNx5JgYImpCVIiXQPk_XwbVJIkkpIjYEFqoDJy095wPJvnlU97vzrs36fQzu-pk9y_5YJT1btPheD58nH29f991stfR7KOfT9-yyTh9uF4FS4E4Svzqn1dAY2e7Udsz6ge7-7WtuqGoww1kicBiiknpYQmFUgGxqVIe8SSyPce3uOczyQmVwpO4AIRPkIACIoxoIDCpgI1F7bnQgdCh24zPWroYdHU7VBfy9ylExc-CXFuQ6jDW4WlUsCet6Fi02i5jlEDMbU5-ANqabYQ
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2015.01.018
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Generating 3D model of slope eroded gully based on photo reconstruction technique
DocumentTitle_FL Generating 3D model of slope eroded gully based on photo reconstruction technique
EndPage 132
ExternalDocumentID nygcxb201501018
665302878
GrantInformation_xml – fundername: 国家自然科学基金项目“黄土丘陵区切沟侵蚀过程的三维数值模拟研究”; 水利部黄土高原水土流失过程与控制重点试验室开放课题基金项目“黄土沟壑区切沟沟岸侵蚀监测及不确定性研究”
  funderid: (41171224)”; (201402)”
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c598-14af46c6bbd2b0accf375ccd3db17d9e48de6b835badb20acae31a0a01215fa23
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:30:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords lasers
侵蚀
机器视觉
激光
点云
冲刷试验
照片重建
computer vision
erosion
point cloud
photo reconstruction
scouring experiment
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c598-14af46c6bbd2b0accf375ccd3db17d9e48de6b835badb20acae31a0a01215fa23
Notes Li Junli, Li Binbing, Liu Fangming, Li Zhanbin (1. Graduate Management Group, Engineering University of CAPF, Xi 'an 710086, China; 2. Department of lnformation Engineering, Engineering University of CAPF, Xi 'an 710086, China; 3. College of grater Resources and Hydro-electric Engineering, Xi 'an University of Technology, Xi 'an 710048, China)
11-2047/S
erosion;computer vision;lasers;photo reconstruction;point cloud;scouring experiment
Based on Structure from Motion(SFM) and Multi-View Stereo(MVS) techniques, this paper proposed a rapid 3d reconstruction method of slope eroded gully. Firstly, feature points were extracted and described by using the Scale-Invariant Feature Transform(SIFT), and then Random Sample and Consensus(RANSAC) algorithm was applied to filter inaccurate matching points generated by Nearest Neighbor(NN) algorithm; Secondly, in the condition that there were no camera parameters and scenario-based three-dimensional information, SFM was used because it provided a solution to iterate and get cam
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201501018
chongqing_primary_665302878
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 武警工程大学研究生管理大队,西安,710086%武警工程大学信息工程系,西安,710086%西安理工大学水利水电学院,西安,710048
Publisher_xml – name: 武警工程大学研究生管理大队,西安,710086%武警工程大学信息工程系,西安,710086%西安理工大学水利水电学院,西安,710048
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0974498
Snippet 该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相机拍摄...
TP391; 该文利用运动恢复结构(structure from motion,SFM)、多视图立体视觉(multi-view stereo,MVS)技术,提出了一种坡面侵蚀沟三维模型的快速重建方法。首先对普通相...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 125
SubjectTerms 侵蚀
冲刷试验
机器视觉
激光
点云
照片重建
Title 利用照片重建技术生成坡面侵蚀沟三维模型
URI http://lib.cqvip.com/qk/90712X/201501/665302878.html
https://d.wanfangdata.com.cn/periodical/nygcxb201501018
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNKwtiB7ET6xV2UNzkqk7H8kkx0x3liLoqUJvy2Q-tqet1ha0p16krSJ46EmspV6sJ0EUxIL_xFt31_4L38uk01GkqJfwyMv7IC-TvGTyXgiZ8oJCFLCwOzrLcwcGhXCSQOdOot2UpTorwhYGCt-9x2fvB3fm2Xyj8b12a2llWU-nq3-MK_kfq0Id2BWjZP_BshVTqAAY7AslWBjKv7IxjRkVgipJ45DKgCqBgGBUhQaQFLb6sSlFGxtHEY0UjTkVCq84ACBnqOpYctkxKEFlCxvLNlUukiPg0TigUUwjRmNocEQeeYYKUALFAR8UESAKlEFy4BNTEdWdYKO2EV0SAjfULaSKIQcgFBHWKJDLrbaKHQ0No3WbithQdxB51A23ajgAgHDG4IA5K3EdGvkWF0kDgLC4Tsewq1SrYlA_FilDQu0cjpM8F3YmtpO8XWrqg7mcsd0y7tou_m552Pr7uuJLLs26ggKmKwF4M7DM-mrXkF8zd3OOTzKJUJwi414IjtAYGVdRO-oc-6subsmrCdXFxwzc40BmD9MU8OP9IHN9fI2gusOEf_CZ-Z1vFTpNpqy2t0_SFfOILCz2ew_BOzLBav0i6fdqftXceXLOboiaqhzdF0hjdeEiOat6SzYpTH6JyMHG-9HW3ujpu9Hm-uH6i8H-1-GzteHrD6OtneHGy8H27uH224Nvn3-8Wht-3Dn4sjna_zTc2x28eX6ZzHXiuZlZxz754aRMCscNkiLgKdc683QrSdPCD1maZn6m3TCTeSCynGvYNOgk0x40SHLfTVoJJiZkReL5V8hYf7GfXyVNPwRPWqdZwHkYgJumRSE084ALkLa0O0Emqz7oPigzu3Qri02Qpu2Vrv3eH3X7T3rpY43diHkZxbUTGUySM9iyPKy7TsaWl1byG-C-LuubdhD8BO7GeB8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%88%A9%E7%94%A8%E7%85%A7%E7%89%87%E9%87%8D%E5%BB%BA%E6%8A%80%E6%9C%AF%E7%94%9F%E6%88%90%E5%9D%A1%E9%9D%A2%E4%BE%B5%E8%9A%80%E6%B2%9F%E4%B8%89%E7%BB%B4%E6%A8%A1%E5%9E%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E4%BF%8A%E5%88%A9+%E6%9D%8E%E6%96%8C%E5%85%B5+%E6%9F%B3%E6%96%B9%E6%98%8E+%E6%9D%8E%E5%8D%A0%E6%96%8C&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=1&rft.spage=125&rft.epage=132&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2015.01.018&rft.externalDocID=665302878
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg