Computational diagnosis and risk evaluation for canine lymphoma

The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select t...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 53; pp. 279 - 290
Main Authors Mirkes, E.M., Alexandrakis, I., Slater, K., Tuli, R., Gorban, A.N.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2014
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2014.08.006

Cover

Abstract The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. •Acute phase proteins, C-Reactive Protein and Haptoglobin, are used for the canine lymphoma blood test.•This test can be used for diagnostics, screening, and for remission monitoring.•We compare various decision trees, KNN (and advanced KNN) and algorithms for probability density evaluation.•For the differential diagnosis the best solution gives the sensitivity 83.5% and specificity 77%.
AbstractList The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.
The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and , respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.
The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and>99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.
The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. •Acute phase proteins, C-Reactive Protein and Haptoglobin, are used for the canine lymphoma blood test.•This test can be used for diagnostics, screening, and for remission monitoring.•We compare various decision trees, KNN (and advanced KNN) and algorithms for probability density evaluation.•For the differential diagnosis the best solution gives the sensitivity 83.5% and specificity 77%.
Abstract The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and > 99 % , respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.
Author Alexandrakis, I.
Tuli, R.
Gorban, A.N.
Mirkes, E.M.
Slater, K.
Author_xml – sequence: 1
  givenname: E.M.
  surname: Mirkes
  fullname: Mirkes, E.M.
  organization: Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
– sequence: 2
  givenname: I.
  surname: Alexandrakis
  fullname: Alexandrakis, I.
  organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK
– sequence: 3
  givenname: K.
  surname: Slater
  fullname: Slater, K.
  organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK
– sequence: 4
  givenname: R.
  surname: Tuli
  fullname: Tuli, R.
  organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK
– sequence: 5
  givenname: A.N.
  surname: Gorban
  fullname: Gorban, A.N.
  email: ag153@le.ac.uk
  organization: Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25194257$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhi1URLeFv4AiceGSMHbifFyAsuJLqsQBkLhZjj0Bbx17sZOi_fc4pKVSJUR7siW_82j8zJyQI-cdEpJRKCjQ-sWuUH7c98aPqAsGtCqgLQDqB2RD26bLgZfVEdkAUMirlvFjchLjDgAqKOEROWacdhXjzYa82ibQPMnJeCdtpo387nw0MZNOZ8HEiwwvpZ3_vGeDD5mSzjjM7GHc__CjfEweDtJGfHJ1npKv795-2X7Izz-9_7g9O88V75opb5isVKcbxKHhkjZ9o5mu6wGQal5SpnUlO5Syoy3tse15n-6clqBRlkNZlqekW7mz28vDL2mt2AczynAQFMQiRezEjRSxSBHQiiQl1T5fa_fB_5wxTmI0UaG10qGfo6A1YzWlNYX_R3ldlbxKJlP02a3ozs8hSVyAtIKu5sBS6ulVau6Xvq6bvp5ACrRrQAUfY8DhPv96eatUmXWSU5DG3gXwZgVgmtylwSCiMugUahNQTUJ7c48u_kKUNc4oaS_wgPFGiohMgPi8LOWyk0kRMGi_JcDrfwPu1sNvMVD1vg
CODEN CBMDAW
CitedBy_id crossref_primary_10_3389_fvets_2016_00087
crossref_primary_10_1038_srep33922
crossref_primary_10_1080_01652176_2016_1152633
crossref_primary_10_1111_jvim_17266
Cites_doi 10.1074/mcp.M600171-MCP200
10.1002/ajh.10017
10.1158/1078-0432.CCR-1167-3
10.1158/0008-5472.CAN-10-1319
10.1016/j.tvjl.2010.04.005
10.1186/1471-2407-9-164
10.1002/pmic.200300523
10.1073/pnas.1013699108
10.1002/pmic.200300521
10.1093/bioinformatics/btg210
10.1109/34.506411
10.1111/j.1469-1809.1936.tb02137.x
10.2460/ajvr.68.4.405
10.1111/j.1476-5829.2008.00171.x
10.1186/1471-2105-5-26
10.1093/bib/bbn005
10.1016/j.artmed.2004.03.006
10.2460/javma.230.4.522
10.1002/pmic.200300522
10.1111/j.1476-5829.2009.00165.x
10.1006/jcss.1997.1543
10.1093/biostatistics/4.3.449
10.1093/bioinformatics/btp558
10.1073/pnas.2033602100
10.1016/j.ygyno.2005.06.040
10.1158/1078-0432.CCR-06-2699
10.1371/journal.pone.0015003
10.1111/j.1476-5829.2012.00328.x
10.1142/S0129065710002383
10.2460/javma.1999.214.07.1023
10.1111/j.1939-1676.2008.0255.x
10.1245/ASO.2004.03.557
10.1002/pmic.200400857
10.1016/S0020-7373(87)80053-6
10.1002/pmic.200300516
10.1093/bioinformatics/bti494
10.1093/bioinformatics/18.3.395
10.1002/pmic.200300519
10.1016/j.camwa.2012.12.009
10.1016/S1741-8364(04)02416-3
10.1093/bioinformatics/btg1066
10.1186/1471-2105-10-259
10.1186/1477-5956-9-55
10.2460/javma.1993.203.08.1144
10.1016/j.tvjl.2006.05.018
10.1159/000084824
10.1111/j.1349-7006.2006.00339.x
10.1111/j.1939-1676.2005.tb02779.x
10.1093/bib/bbp012
10.1037/h0058700
10.1002/hon.2017
10.1016/j.neucom.2010.02.022
10.1016/j.tvjl.2013.01.006
10.2174/1570164053507808
10.1089/106652703322756159
10.1002/pmic.200300512
10.1016/j.tvjl.2012.12.010
10.1111/j.1939-1676.2007.tb01960.x
10.1613/jair.953
10.1109/34.67645
10.1016/j.tvjl.2010.04.003
10.1186/1471-2105-11-109
10.1016/j.jbi.2005.04.002
10.1038/sj.bjc.6605810
10.1385/CP:2:1:13
10.1080/01621459.1978.10480013
10.1093/bioinformatics/btg419
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Oct 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Oct 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2014.08.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Research Library Prep

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
EISSN 1879-0534
EndPage 290
ExternalDocumentID oai:lra.le.ac.uk:2381/40283
3465713641
25194257
10_1016_j_compbiomed_2014_08_006
S001048251400208X
1_s2_0_S001048251400208X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
ADTOC
UNPAY
ID FETCH-LOGICAL-c597t-72a4c9d7eef75a17b7d2d66f0e1d5312dd4a9eaa9181be8b5baa95130dea3f333
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 04:09:20 EDT 2025
Tue Oct 07 09:38:00 EDT 2025
Sat Sep 27 17:21:11 EDT 2025
Tue Oct 07 06:12:19 EDT 2025
Thu Apr 03 06:54:17 EDT 2025
Wed Oct 01 04:07:19 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Sun Feb 23 10:19:32 EST 2025
Tue Oct 14 19:33:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Advanced KNN
Data analysis
Radial basis functions
Risk evaluation
Classification
Cancer diagnosis
Decision tree
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-72a4c9d7eef75a17b7d2d66f0e1d5312dd4a9eaa9181be8b5baa95130dea3f333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2381/40283
PMID 25194257
PQID 1614096502
PQPubID 1226355
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2014_08_006
proquest_miscellaneous_1622611610
proquest_miscellaneous_1564354000
proquest_journals_1614096502
pubmed_primary_25194257
crossref_primary_10_1016_j_compbiomed_2014_08_006
crossref_citationtrail_10_1016_j_compbiomed_2014_08_006
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2014_08_006
elsevier_clinicalkeyesjournals_1_s2_0_S001048251400208X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2014_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Becker, Cazares, Watson, Lynch, Semmes, Drake, Laronga (bib9) 2004; 11
Kearns, Mansour (bib39) 1999; 58
Westerhoff, Hofmeyr (bib84) 2005; vol. 13
(bib24) 2008; vol. 58
Adam, Qu, Davis, Ward, Clements, Cazares, Semmes, Schellhammer, Yasui, Feng, Wright (bib1) 2002; 62
Rokach, Maimon (bib70) 2010
Rassnick, McEntee, Erb, Burke, Balkman, Flory, Kiselow, Autio, Gieger (bib26) 2007; 21
Kirmiz, Li, An, Clowers, Chew, Lam, Ferrige, Alecio, Borowsky, Sulaimon, Lebrilla, Miyamoto (bib40) 2007; 6
Atherton, Braceland, Fontaine, Waterston, Burchmore, Eadie, Eckersall, Morris (bib5) 2013; 196
Pastor, Chalvet-Monfray, Marchal, Keck, Magnol, Fournel-Fleury, Ponce (bib65) 2009; 23
Koopmann, Zhang, White, Rosenzweig, Fedarko, Jagannath, Canto, Yeo, Chan, Goggins (bib41) 2004; 10
Hilario, Kalousis, Muller, Pellegrini (bib33) 2003; 3
Asiago, Alvarado, Shanaiah, Gowda, Owusu-Sarfo, Ballas, Raftery (bib4) 2010; 70
Li, Liu, Ng, Wong (bib45) 2003; 19
Prados, Kalousis, Sanchez, Allard, Carrette, Hilario (bib66) 2004; 4
Hahn, Freeman, Barnhill, Stephen (bib28) 1999; 214
Guan, Zhou, Hampton, Benigno, DeEtte Walker, Gray, McDonald, Fernández (bib29) 2009; 10
Neville, Tan, Mann, Wolfinger (bib62) 2003; 3
Ogilvie, Walters, Greeley, Henkel, Salman (bib63) 1993; 203
Ball, Mian, Holding, Allibone, Lowe, Ali, Li, McCardle, Ellis, Creaser, Rees (bib7) 2002; 18
Buhmann (bib14) 2003
Hilario, Kalousis, Prados, Binz (bib34) 2004; 2
Mischke, Waterston, Eckersall (bib57) 2007; 174
Aresu, Aricó, Comazzi, Gelain, Riondato, Mortarino, Morello, Stefanello, Castagnaro (bib3) 2014; 12
Matharoo-Ball, Miles, Creaser, Ball, Rees (bib51) 2008; 6
Shin, Markey (bib74) 2006; 39
T.G. Dietterich, M. Kearns, Y. Mansour, Applying the weak learning framework to understand and improve C4.5, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 1996, pp. 96–104.
Gorban, Zinovyev (bib25) 2010; 20
Yasui, Pepe, Thompson, Adam, Wright, Qu, Potter, Winget, Thornquist, Feng (bib87) 2003; 4
McCaw, Chan, Stegner, Mooney, Bryan, Turnquist, Henry, Alexander, Alexander (bib52) 2007; 13
Ratcliffe, Mian, Slater, King, Napolitano, Aucoin, Mobasheri (bib69) 2009; 7
Rosen, Wang, Atkinson, Yu, Lu, Diamandis, Hellstrom, Mok, Liu, Bast (bib71) 2005; 99
Monari, Casali, Cuoghi, Nesci, Bellei, Bergamini, Fantoni, Natali, Morandi, Tomasi (bib60) 2011; 9
Vail, Young (bib81) 2001
Yang, Zhang, Zhou, Zomaya (bib86) 2010; 73
Bedford, Cooke (bib10) 2001
Cray (bib17) 2012; vol. 105
Marconato, Gelain, Comazzi (bib54) 2013; 31
Ostroff, Bigbee, Franklin, Gold, Mehan, Miller, Pass, Rom, Siegfried, Stewart, Walker, Weissfeld, Williams, Zichi, Brody (bib64) 2010; 5
Hoffman, Gilliland, Adams-Cameron, Hunt, Key (bib36) 2002; 3
Nam, Chung, Kim, Lee, Lee (bib61) 2009; 25
Henry (bib32) 2010; 185
Geurts, Fillet, deSeny, Meuwis, Malaise, Merville, Wehenkel (bib23) 2005; 21
Merlo, Rezende, Franchini, Simoes, Lucas (bib55) 2007; 230
Yu, Chen, Wang, Chen, Guo, Yan, Zhang, Peng, Zhang, Chen (bib88) 2005; 68
Efron (bib19) 1978; 73
Hosmer, Lemeshow (bib37) 2000
Tanner, Swets (bib78) 1954; 61
McFadden (bib53) 1974
Tang, Li, Xiong, Chen (bib76) 2010; 11
Peng, Hakim, Broza, Billan, Abdah-Bortnyak, Kuten, Tisch, Haick (bib67) 2010; 103
Lancashire, Mian, Ellis, Rees, Ball (bib44) 2005; 2
Gaines, Powell, Walmsley, Estredge, Wisnewski, Stinchcomb, Withrow, Lana (bib21) 2007; 68
Cima, Schiess, Wild, Kaelin, Schüffler, Lange, Picotti, Ossola, Templeton, Schubert, Fuchs, Leippold, Wyler, Zehetner, Jochum, Buhmann, Cerny, Moch, Gillessen, Aebersold, Krek (bib15) 2011; 108
Scott (bib72) 1992
Clarkson (bib16) 2005
Elis, Blickstein, Klein, Eliav-Ronen, Manor, Lishner (bib27) 2002; 69
Kozak, Amneus, Pusey, Su, Luong, Luong, Reddy, Farias-Eisner (bib42) 2003; 100
Lancashire, Lemetre, Ball (bib43) 2009; 10
Wagner, Naik, Pothen, Kasukurti, Devineni, Adam, Semmes, Wright (bib83) 2004; 5
Gelfand, Ravishankar, Delp (bib22) 1991; 13
Chawla, Bowyer, Kegelmeyer (bib12) 2002; 16
Fisher (bib20) 1936; 7
Mobasheri, Cassidy (bib59) 2010; 185
Wu, Abbott, Fishman, McMurray, Mor, Stone, Ward, Williams, Zhao (bib85) 2003; 19
Su, Shen, Qian, Ma, Ji, Ma, Ma, Zhang, Meng, Li, Wu, Jin, Zhang, Shou (bib75) 2007; 98
Hahn, Freeman, Barnhill, Stephen (bib30) 1999; 214
Wagner, Naik, Pothen (bib82) 2003; 3
Tecles, Sprianelli, Bonfanti, Ceron, Patrinieri (bib77) 2005; 19
Mahalanobis (bib49) 1936; 2
Markey, Tourassi, Floyd (bib50) 2003; 3
Breiman, Friedman, Olshen, Stone (bib13) 1984
Hilario, Kalousis (bib35) 2008; 9
Mobasheri (bib58) 2013; 196
Hastie, Tibshirani (bib31) 1996; 18
Quinlan (bib68) 1987; 27
I. Alexandrakis, The use of CART algorithms to combine serum acute phase protein levels as a diagnostic aid in canine lymphoma, in: M. Klinkon, et al. (Ed.), Proceedings of 15th Congress of the International Society for Animal Clinical Pathology, 14th Conference of the European Society of Veterinary Clinical Pathology, (Ljubljana, Slovenia, 3rd–7th July, 2012) Ljubljana: Veterinary Faculty, 2012, p. 65 .
Li, Tang, Wu, Gong, Gruidl, Zou, Tockman, Clark (bib46) 2004; 32
Thomas, Tourassi, Elmaghraby, Valdes, Jortani (bib80) 2006; 2
Lilien, Farid, Donald (bib48) 2003; 10
Baggerly, Morris, Wang, Gold, Xiao, Coombes (bib6) 2003; 3
Jesneck, Mukherjee, Yurkovetsky, Clyde, Marks, Lokshin, Lo (bib38) 2009; 9
Li, Racine (bib47) 2007
Saar-Tsechansky, Provost (bib73) 2007; 8
Zinovyev, Mirkes (bib89) 2013; 65
Tatay, Feng, Sobczak, Jiang, Chen, Kirova, Struble, Wang, Tonellato (bib79) 2003; 3
Braga-Neto, Dougherty (bib11) 2004; 20
Mirkes, Alexandrakis, Slater, Tuli, Gorban (bib56) 2014; 490
Barillot, Calzone, Hupe, Vert, Zinovyev (bib8) 2012
Tatay (10.1016/j.compbiomed.2014.08.006_bib79) 2003; 3
Mahalanobis (10.1016/j.compbiomed.2014.08.006_bib49) 1936; 2
Bedford (10.1016/j.compbiomed.2014.08.006_bib10) 2001
Ostroff (10.1016/j.compbiomed.2014.08.006_bib64) 2010; 5
Becker (10.1016/j.compbiomed.2014.08.006_bib9) 2004; 11
Westerhoff (10.1016/j.compbiomed.2014.08.006_bib84) 2005; vol. 13
Baggerly (10.1016/j.compbiomed.2014.08.006_bib6) 2003; 3
Chawla (10.1016/j.compbiomed.2014.08.006_bib12) 2002; 16
Mischke (10.1016/j.compbiomed.2014.08.006_bib57) 2007; 174
Efron (10.1016/j.compbiomed.2014.08.006_bib19) 1978; 73
Saar-Tsechansky (10.1016/j.compbiomed.2014.08.006_bib73) 2007; 8
Braga-Neto (10.1016/j.compbiomed.2014.08.006_bib11) 2004; 20
Hilario (10.1016/j.compbiomed.2014.08.006_bib33) 2003; 3
Kearns (10.1016/j.compbiomed.2014.08.006_bib39) 1999; 58
Aresu (10.1016/j.compbiomed.2014.08.006_bib3) 2014; 12
Atherton (10.1016/j.compbiomed.2014.08.006_bib5) 2013; 196
Quinlan (10.1016/j.compbiomed.2014.08.006_bib68) 1987; 27
Shin (10.1016/j.compbiomed.2014.08.006_bib74) 2006; 39
Gorban (10.1016/j.compbiomed.2014.08.006_bib25) 2010; 20
McCaw (10.1016/j.compbiomed.2014.08.006_bib52) 2007; 13
Henry (10.1016/j.compbiomed.2014.08.006_bib32) 2010; 185
Peng (10.1016/j.compbiomed.2014.08.006_bib67) 2010; 103
Hilario (10.1016/j.compbiomed.2014.08.006_bib35) 2008; 9
Rokach (10.1016/j.compbiomed.2014.08.006_bib70) 2010
Lilien (10.1016/j.compbiomed.2014.08.006_bib48) 2003; 10
Cima (10.1016/j.compbiomed.2014.08.006_bib15) 2011; 108
Kozak (10.1016/j.compbiomed.2014.08.006_bib42) 2003; 100
Lancashire (10.1016/j.compbiomed.2014.08.006_bib43) 2009; 10
Zinovyev (10.1016/j.compbiomed.2014.08.006_bib89) 2013; 65
Gaines (10.1016/j.compbiomed.2014.08.006_bib21) 2007; 68
Mirkes (10.1016/j.compbiomed.2014.08.006_bib56) 2014; 490
Mobasheri (10.1016/j.compbiomed.2014.08.006_bib59) 2010; 185
Neville (10.1016/j.compbiomed.2014.08.006_bib62) 2003; 3
Scott (10.1016/j.compbiomed.2014.08.006_bib72) 1992
Tang (10.1016/j.compbiomed.2014.08.006_bib76) 2010; 11
Koopmann (10.1016/j.compbiomed.2014.08.006_bib41) 2004; 10
Rosen (10.1016/j.compbiomed.2014.08.006_bib71) 2005; 99
(10.1016/j.compbiomed.2014.08.006_bib24) 2008; vol. 58
McFadden (10.1016/j.compbiomed.2014.08.006_bib53) 1974
Geurts (10.1016/j.compbiomed.2014.08.006_bib23) 2005; 21
Mobasheri (10.1016/j.compbiomed.2014.08.006_bib58) 2013; 196
Monari (10.1016/j.compbiomed.2014.08.006_bib60) 2011; 9
Hastie (10.1016/j.compbiomed.2014.08.006_bib31) 1996; 18
Rassnick (10.1016/j.compbiomed.2014.08.006_bib26) 2007; 21
Vail (10.1016/j.compbiomed.2014.08.006_bib81) 2001
10.1016/j.compbiomed.2014.08.006_bib18
Jesneck (10.1016/j.compbiomed.2014.08.006_bib38) 2009; 9
Asiago (10.1016/j.compbiomed.2014.08.006_bib4) 2010; 70
Hosmer (10.1016/j.compbiomed.2014.08.006_bib37) 2000
Wagner (10.1016/j.compbiomed.2014.08.006_bib82) 2003; 3
Gelfand (10.1016/j.compbiomed.2014.08.006_bib22) 1991; 13
Li (10.1016/j.compbiomed.2014.08.006_bib46) 2004; 32
Thomas (10.1016/j.compbiomed.2014.08.006_bib80) 2006; 2
Li (10.1016/j.compbiomed.2014.08.006_bib45) 2003; 19
Nam (10.1016/j.compbiomed.2014.08.006_bib61) 2009; 25
Yang (10.1016/j.compbiomed.2014.08.006_bib86) 2010; 73
Tanner (10.1016/j.compbiomed.2014.08.006_bib78) 1954; 61
Adam (10.1016/j.compbiomed.2014.08.006_bib1) 2002; 62
Barillot (10.1016/j.compbiomed.2014.08.006_bib8) 2012
Ratcliffe (10.1016/j.compbiomed.2014.08.006_bib69) 2009; 7
Tecles (10.1016/j.compbiomed.2014.08.006_bib77) 2005; 19
Su (10.1016/j.compbiomed.2014.08.006_bib75) 2007; 98
Cray (10.1016/j.compbiomed.2014.08.006_bib17) 2012; vol. 105
Ogilvie (10.1016/j.compbiomed.2014.08.006_bib63) 1993; 203
Prados (10.1016/j.compbiomed.2014.08.006_bib66) 2004; 4
Wu (10.1016/j.compbiomed.2014.08.006_bib85) 2003; 19
Merlo (10.1016/j.compbiomed.2014.08.006_bib55) 2007; 230
Li (10.1016/j.compbiomed.2014.08.006_bib47) 2007
Elis (10.1016/j.compbiomed.2014.08.006_bib27) 2002; 69
Breiman (10.1016/j.compbiomed.2014.08.006_bib13) 1984
Clarkson (10.1016/j.compbiomed.2014.08.006_bib16) 2005
Yasui (10.1016/j.compbiomed.2014.08.006_bib87) 2003; 4
Kirmiz (10.1016/j.compbiomed.2014.08.006_bib40) 2007; 6
Pastor (10.1016/j.compbiomed.2014.08.006_bib65) 2009; 23
Hahn (10.1016/j.compbiomed.2014.08.006_bib28) 1999; 214
Hilario (10.1016/j.compbiomed.2014.08.006_bib34) 2004; 2
Hahn (10.1016/j.compbiomed.2014.08.006_bib30) 1999; 214
Hoffman (10.1016/j.compbiomed.2014.08.006_bib36) 2002; 3
Lancashire (10.1016/j.compbiomed.2014.08.006_bib44) 2005; 2
Fisher (10.1016/j.compbiomed.2014.08.006_bib20) 1936; 7
Yu (10.1016/j.compbiomed.2014.08.006_bib88) 2005; 68
Ball (10.1016/j.compbiomed.2014.08.006_bib7) 2002; 18
Buhmann (10.1016/j.compbiomed.2014.08.006_bib14) 2003
Matharoo-Ball (10.1016/j.compbiomed.2014.08.006_bib51) 2008; 6
Wagner (10.1016/j.compbiomed.2014.08.006_bib83) 2004; 5
10.1016/j.compbiomed.2014.08.006_bib2
Guan (10.1016/j.compbiomed.2014.08.006_bib29) 2009; 10
Marconato (10.1016/j.compbiomed.2014.08.006_bib54) 2013; 31
Markey (10.1016/j.compbiomed.2014.08.006_bib50) 2003; 3
References_xml – volume: 3
  start-page: 1716
  year: 2003
  end-page: 1719
  ident: bib33
  article-title: Machine learning approaches to lung cancer prediction from mass spectra
  publication-title: Proteomics
– volume: 19
  start-page: 1636
  year: 2003
  end-page: 1643
  ident: bib85
  article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
  publication-title: Bioinformatics
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib20
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– volume: 3
  start-page: 1692
  year: 2003
  end-page: 1698
  ident: bib82
  article-title: Protocols for disease classification from mass spectrometry data
  publication-title: Proteomics
– volume: 185
  start-page: 1
  year: 2010
  end-page: 3
  ident: bib59
  article-title: Biomarkers in veterinary medicine
  publication-title: Vet. J.
– volume: 108
  start-page: 3342
  year: 2011
  end-page: 3347
  ident: bib15
  article-title: Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 1710
  year: 2003
  end-page: 1715
  ident: bib62
  article-title: Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum
  publication-title: Proteomics
– volume: 19
  start-page: 865
  year: 2005
  end-page: 870
  ident: bib77
  article-title: Preliminary studies of serum acute-phase protein concentration in hematologic and neoplastic diseases of the dog
  publication-title: J. Vet. Int. Med.
– volume: 73
  start-page: 113
  year: 1978
  end-page: 121
  ident: bib19
  article-title: Regression and ANOVA with zero-one data
  publication-title: J. Am. Stat. Assoc.
– volume: 4
  start-page: 2320
  year: 2004
  end-page: 2332
  ident: bib66
  article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
  publication-title: Proteomics
– volume: 13
  start-page: 2496
  year: 2007
  end-page: 2503
  ident: bib52
  article-title: Proteomics of canine lymphoma identifies potential cancer-specific protein markers
  publication-title: Clin. Cancer Res.
– reference: I. Alexandrakis, The use of CART algorithms to combine serum acute phase protein levels as a diagnostic aid in canine lymphoma, in: M. Klinkon, et al. (Ed.), Proceedings of 15th Congress of the International Society for Animal Clinical Pathology, 14th Conference of the European Society of Veterinary Clinical Pathology, (Ljubljana, Slovenia, 3rd–7th July, 2012) Ljubljana: Veterinary Faculty, 2012, p. 65 .
– volume: 8
  start-page: 1625
  year: 2007
  end-page: 1657
  ident: bib73
  article-title: Handling missing values when applying classification models
  publication-title: J. Mach. Learn. Res.
– volume: 196
  start-page: 320
  year: 2013
  end-page: 324
  ident: bib5
  article-title: Changes in the serum proteome of canine lymphoma identified by electrophoresis and mass spectrometry
  publication-title: Vet. J.
– volume: 69
  start-page: 41
  year: 2002
  end-page: 44
  ident: bib27
  article-title: Detection of relapse in non-Hodgkin׳s lymphoma
  publication-title: Am. J. Hematol.
– volume: 23
  start-page: 301
  year: 2009
  end-page: 310
  ident: bib65
  article-title: Genetic and environmental risk indicators in canine non-hodgkin׳s lymphomas
  publication-title: J. Vet. Int. Med.
– volume: 70
  start-page: 8309
  year: 2010
  end-page: 8318
  ident: bib4
  article-title: Early detection of recurrent breast cancer using metabolite profiling
  publication-title: Cancer Res.
– volume: 185
  start-page: 10
  year: 2010
  end-page: 14
  ident: bib32
  article-title: Biomarkers in veterinary cancer screening
  publication-title: Vet. J.
– volume: 3
  start-page: 1667
  year: 2003
  end-page: 1672
  ident: bib6
  article-title: A comprehensive approach to the analysis of matrix assisted laser desorption/ionization-time of flight proteomics spectra from serum samples
  publication-title: Proteomics
– volume: 10
  start-page: 259
  year: 2009
  ident: bib29
  article-title: Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines
  publication-title: BMC Bioinformat.
– volume: 214
  start-page: 1023
  year: 1999
  end-page: 1025
  ident: bib28
  article-title: Serum alpha 1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 39
  start-page: 227
  year: 2006
  end-page: 248
  ident: bib74
  article-title: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples
  publication-title: J. Biomed. Informat.
– year: 2001
  ident: bib10
  article-title: Probabilistic Risk Analysis: Foundations and Methods
– volume: 203
  start-page: 1144
  year: 1993
  end-page: 1146
  ident: bib63
  article-title: Concentration of alpha 1-acid glycoprotein in dogs with malignant neoplasia
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 19
  start-page: ii93
  year: 2003
  end-page: ii102
  ident: bib45
  article-title: Discovery of significant rules for classifying cancer diagnosis data
  publication-title: Bioinformatics
– volume: 196
  start-page: 286
  year: 2013
  end-page: 287
  ident: bib58
  article-title: Exploring the serum proteome in dogs
  publication-title: Vet. J.
– volume: 58
  start-page: 109
  year: 1999
  end-page: 128
  ident: bib39
  article-title: On the boosting ability of top-down decision tree learning algorithms
  publication-title: J. Comput. Syst. Sci.
– volume: 21
  start-page: 3138
  year: 2005
  end-page: 3145
  ident: bib23
  article-title: Proteomic mass spectra classification using decision tree based ensemble methods
  publication-title: Bioinformatics
– volume: 230
  start-page: 522
  year: 2007
  end-page: 526
  ident: bib55
  article-title: Serum creative protein concentrations in dogs with multicentric lymphoma undergoing chemotherapy
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 7
  start-page: 92
  year: 2009
  end-page: 105
  ident: bib69
  article-title: Proteomic identification and profiling of canine lymphoma patients
  publication-title: Vet. Comp. Oncol.
– year: 2000
  ident: bib37
  article-title: Applied Logistic Regression
– volume: 100
  start-page: 12343
  year: 2003
  end-page: 12348
  ident: bib42
  article-title: Identification of biomarkers for ovarian cancer using strong anion-exchange proteinchips
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 55
  year: 2011
  ident: bib60
  article-title: Enriched sera protein profiling for detection of non-small cell lung cancer biomarkers
  publication-title: Prot. Sci.
– volume: 5
  start-page: 26
  year: 2004
  ident: bib83
  article-title: Computational protein biomarker prediction
  publication-title: BMC Bioinformat.
– volume: 68
  start-page: 405
  year: 2007
  end-page: 410
  ident: bib21
  article-title: Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry
  publication-title: Am. J. Vet. Res.
– start-page: 105
  year: 1974
  end-page: 142
  ident: bib53
  article-title: Conditional logit analysis of qualitative choice behaviour
  publication-title: Frontiers in Econometrics
– volume: 62
  start-page: 3609
  year: 2002
  end-page: 3614
  ident: bib1
  article-title: Serum protein fingerprinting coupled with a pattern matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
  publication-title: Cancer Res.
– year: 2003
  ident: bib14
  article-title: Radial Basis Functions: Theory and Implementations
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: bib49
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 10
  start-page: 860
  year: 2004
  end-page: 868
  ident: bib41
  article-title: Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry
  publication-title: Clin. Cancer Res.
– volume: 4
  start-page: 449
  year: 2003
  end-page: 463
  ident: bib87
  article-title: A data-analytic strategy for protein biomarker discovery
  publication-title: Biostatistics
– volume: 5
  start-page: e15003
  year: 2010
  ident: bib64
  article-title: Unlocking biomarker discovery
  publication-title: PloS one
– reference: T.G. Dietterich, M. Kearns, Y. Mansour, Applying the weak learning framework to understand and improve C4.5, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 1996, pp. 96–104.
– volume: 9
  start-page: 164
  year: 2009
  ident: bib38
  article-title: Do serum biomarkers really measure breast cancer?
  publication-title: BMC Cancer
– volume: 13
  start-page: 163
  year: 1991
  end-page: 174
  ident: bib22
  article-title: An iterative growing and pruning algorithm for classification tree design
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 490
  start-page: 012135
  year: 2014
  ident: bib56
  article-title: Computational diagnosis of canine lymphoma
  publication-title: J. Phys.: Conf. Ser.
– volume: 18
  start-page: 395
  year: 2002
  end-page: 404
  ident: bib7
  article-title: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
  publication-title: Bioinformatics
– volume: 11
  start-page: 907
  year: 2004
  end-page: 914
  ident: bib9
  article-title: Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer
  publication-title: Ann. Surg. Oncol.
– volume: 103
  start-page: 542
  year: 2010
  end-page: 551
  ident: bib67
  article-title: Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors
  publication-title: Br. J. Cancer
– volume: 73
  start-page: 2317
  year: 2010
  end-page: 2331
  ident: bib86
  article-title: A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data
  publication-title: Neurocomputing
– volume: vol. 13
  start-page: 119
  year: 2005
  end-page: 141
  ident: bib84
  article-title: What is systems biology?
  publication-title: From genes to function and back, Topics in Current Genetics (Systems Biology)
– volume: 3
  year: 2002
  ident: bib36
  article-title: Prostate-specific antigen testing accuracy in community practice
  publication-title: BMC Family Pract.
– volume: 2
  start-page: 15
  year: 2005
  end-page: 29
  ident: bib44
  article-title: Current developments in the analysis of proteomic data: artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer
  publication-title: Curr. Proteomics
– volume: 11
  start-page: 109
  year: 2010
  ident: bib76
  article-title: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data
  publication-title: BMC Bioinformat.
– volume: 3
  start-page: 1704
  year: 2003
  end-page: 1709
  ident: bib79
  article-title: Multiple approaches to data-mining of proteomics data based on statistical and pattern classification methods
  publication-title: Proteomics
– year: 1992
  ident: bib72
  article-title: Multivariate Density Estimation: Theory Practice and Visualization
– volume: 20
  year: 2010
  ident: bib25
  article-title: Principal manifolds and graphs in practice
  publication-title: Int. J. Neural Syst.
– volume: 61
  start-page: 401
  year: 1954
  end-page: 409
  ident: bib78
  article-title: A decision-making theory of visual detection
  publication-title: Psychol. Rev.
– start-page: 699
  year: 2001
  end-page: 733
  ident: bib81
  article-title: Canine lymphoma and lymphoid leukemias
  publication-title: Withrow and MacEwen׳s Small Animal Clinical Oncology
– volume: 6
  start-page: 43
  year: 2007
  end-page: 55
  ident: bib40
  article-title: A serum glycomics approach to breast cancer biomarkers
  publication-title: Mol. Cellular Proteomics
– volume: 18
  start-page: 607
  year: 1996
  end-page: 616
  ident: bib31
  article-title: Discriminant adaptive nearest neighbor classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 98
  start-page: 37
  year: 2007
  end-page: 43
  ident: bib75
  article-title: Diagnosis of gastric cancer using decision tree classification of mass spectral data
  publication-title: Cancer Sci.
– volume: 12
  start-page: 29
  year: 2014
  end-page: 36
  ident: bib3
  article-title: VEGF and MMP-9
  publication-title: Vet. Comp. Oncol.
– volume: 21
  start-page: 1364
  year: 2007
  end-page: 1373
  ident: bib26
  article-title: Comparison of 3 protocols for treatment after induction of remission in dogs with lymphoma
  publication-title: J. Vet. Int. Med.
– volume: 174
  start-page: 188
  year: 2007
  end-page: 192
  ident: bib57
  article-title: Changes in C-reactive protein and haptoglobin in dogs with lymphatic neoplasia
  publication-title: Vet. J.
– volume: 20
  start-page: 374
  year: 2004
  end-page: 380
  ident: bib11
  article-title: Is cross-validation valid for small-sample microarray classification?
  publication-title: Bioinformatics
– volume: 3
  start-page: 1678
  year: 2003
  end-page: 1679
  ident: bib50
  article-title: Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer
  publication-title: Proteomics
– volume: 2
  start-page: 214
  year: 2004
  end-page: 222
  ident: bib34
  article-title: Data mining for mass-spectra based diagnosis and biomarker discovery
  publication-title: Drug Discov. Today: Biosilico
– start-page: 165
  year: 2010
  end-page: 192
  ident: bib70
  article-title: Decision trees
  publication-title: Data Mining and Knowledge Discovery Handbook
– volume: 214
  start-page: 1023
  year: 1999
  end-page: 1025
  ident: bib30
  article-title: Serum a1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin
  publication-title: J. Am. Vet. Med. Assoc.
– volume: 10
  start-page: 925
  year: 2003
  end-page: 946
  ident: bib48
  article-title: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
  publication-title: J. Comput. Biol.
– volume: 2
  start-page: 13
  year: 2006
  end-page: 32
  ident: bib80
  article-title: Data mining in proteomic mass spectrometry
  publication-title: Clin. Prot.
– start-page: 15
  year: 2005
  end-page: 59
  ident: bib16
  article-title: Nearest-neighbor searching and metric space dimensions
  publication-title: Nearest-Neighbor Methods in Learning and Vision
– volume: vol. 105
  start-page: 113
  year: 2012
  end-page: 150
  ident: bib17
  article-title: Acute phase proteins in animals
  publication-title: Animal Models of Molecular Pathology, Progress in Molecular Biology and Translational Science
– volume: 68
  start-page: 79
  year: 2005
  end-page: 86
  ident: bib88
  article-title: Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification
  publication-title: Oncology
– volume: 9
  start-page: 102
  year: 2008
  end-page: 118
  ident: bib35
  article-title: Approaches to dimensionality reduction in proteomic biomarker studies
  publication-title: Brief. Bioinformat.
– year: 2007
  ident: bib47
  article-title: Nonparametric Econometrics: Theory and Practice
– volume: 10
  start-page: 315
  year: 2009
  end-page: 329
  ident: bib43
  article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies
  publication-title: Brief. Bioinformat.
– volume: 65
  start-page: 1471
  year: 2013
  end-page: 1482
  ident: bib89
  article-title: Data complexity measured by principal graphs
  publication-title: Comput. Math. Appl.
– volume: 32
  start-page: 71
  year: 2004
  end-page: 83
  ident: bib46
  article-title: Data mining techniques for cancer detection using serum proteomic profiling
  publication-title: Artif. Intell. Med.
– volume: 99
  start-page: 267
  year: 2005
  end-page: 277
  ident: bib71
  article-title: Potential markers that complement expression of CA125 in epithelial ovarian cancer
  publication-title: Gynecol. Oncol.
– year: 1984
  ident: bib13
  article-title: Classification and Regression Trees
– volume: 31
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib54
  article-title: The dog as a possible animal model for human non-Hodgkin lymphoma
  publication-title: Hematol. Oncol.
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: bib68
  article-title: Simplifying decision trees
  publication-title: Int. J. Man-Mach. Stud.
– volume: vol. 58
  year: 2008
  ident: bib24
  publication-title: Principal Manifolds for Data Visualisation and Dimension Reduction, LNCSE
– volume: 25
  start-page: 3151
  year: 2009
  end-page: 3157
  ident: bib61
  article-title: Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification
  publication-title: Bioinformatics
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib12
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 6
  start-page: 224
  year: 2008
  end-page: 247
  ident: bib51
  article-title: Serum biomarker profiling in cancer studies
  publication-title: Vet. Comp. Oncol.
– year: 2012
  ident: bib8
  article-title: Computational Systems Biology of Cancer
– volume: 6
  start-page: 43
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib40
  article-title: A serum glycomics approach to breast cancer biomarkers
  publication-title: Mol. Cellular Proteomics
  doi: 10.1074/mcp.M600171-MCP200
– volume: 69
  start-page: 41
  issue: 1
  year: 2002
  ident: 10.1016/j.compbiomed.2014.08.006_bib27
  article-title: Detection of relapse in non-Hodgkin׳s lymphoma
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.10017
– volume: 10
  start-page: 860
  issue: 3
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib41
  article-title: Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-1167-3
– volume: 70
  start-page: 8309
  issue: 21
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib4
  article-title: Early detection of recurrent breast cancer using metabolite profiling
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1319
– volume: 185
  start-page: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib32
  article-title: Biomarkers in veterinary cancer screening
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2010.04.005
– volume: 62
  start-page: 3609
  issue: 13
  year: 2002
  ident: 10.1016/j.compbiomed.2014.08.006_bib1
  article-title: Serum protein fingerprinting coupled with a pattern matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
  publication-title: Cancer Res.
– year: 2001
  ident: 10.1016/j.compbiomed.2014.08.006_bib10
– volume: vol. 105
  start-page: 113
  year: 2012
  ident: 10.1016/j.compbiomed.2014.08.006_bib17
  article-title: Acute phase proteins in animals
– volume: 9
  start-page: 164
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib38
  article-title: Do serum biomarkers really measure breast cancer?
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-9-164
– volume: 3
  start-page: 1716
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib33
  article-title: Machine learning approaches to lung cancer prediction from mass spectra
  publication-title: Proteomics
  doi: 10.1002/pmic.200300523
– volume: 108
  start-page: 3342
  issue: 8
  year: 2011
  ident: 10.1016/j.compbiomed.2014.08.006_bib15
  article-title: Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013699108
– volume: 3
  start-page: 1678
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib50
  article-title: Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer
  publication-title: Proteomics
  doi: 10.1002/pmic.200300521
– volume: 19
  start-page: 1636
  issue: 13
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib85
  article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg210
– volume: 18
  start-page: 607
  issue: 6
  year: 1996
  ident: 10.1016/j.compbiomed.2014.08.006_bib31
  article-title: Discriminant adaptive nearest neighbor classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.506411
– year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib14
– volume: 2
  start-page: 49
  issue: 1
  year: 1936
  ident: 10.1016/j.compbiomed.2014.08.006_bib49
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 490
  start-page: 012135
  year: 2014
  ident: 10.1016/j.compbiomed.2014.08.006_bib56
  article-title: Computational diagnosis of canine lymphoma
  publication-title: J. Phys.: Conf. Ser.
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.compbiomed.2014.08.006_bib20
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 68
  start-page: 405
  issue: 4
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib21
  article-title: Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.68.4.405
– year: 2012
  ident: 10.1016/j.compbiomed.2014.08.006_bib8
– volume: 6
  start-page: 224
  issue: 4
  year: 2008
  ident: 10.1016/j.compbiomed.2014.08.006_bib51
  article-title: Serum biomarker profiling in cancer studies
  publication-title: Vet. Comp. Oncol.
  doi: 10.1111/j.1476-5829.2008.00171.x
– volume: 5
  start-page: 26
  issue: 1
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib83
  article-title: Computational protein biomarker prediction
  publication-title: BMC Bioinformat.
  doi: 10.1186/1471-2105-5-26
– volume: 9
  start-page: 102
  issue: 2
  year: 2008
  ident: 10.1016/j.compbiomed.2014.08.006_bib35
  article-title: Approaches to dimensionality reduction in proteomic biomarker studies
  publication-title: Brief. Bioinformat.
  doi: 10.1093/bib/bbn005
– volume: 32
  start-page: 71
  issue: 2
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib46
  article-title: Data mining techniques for cancer detection using serum proteomic profiling
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.03.006
– volume: 230
  start-page: 522
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib55
  article-title: Serum creative protein concentrations in dogs with multicentric lymphoma undergoing chemotherapy
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.230.4.522
– volume: 3
  start-page: 1667
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib6
  article-title: A comprehensive approach to the analysis of matrix assisted laser desorption/ionization-time of flight proteomics spectra from serum samples
  publication-title: Proteomics
  doi: 10.1002/pmic.200300522
– year: 1984
  ident: 10.1016/j.compbiomed.2014.08.006_bib13
– year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib47
– volume: 7
  start-page: 92
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib69
  article-title: Proteomic identification and profiling of canine lymphoma patients
  publication-title: Vet. Comp. Oncol.
  doi: 10.1111/j.1476-5829.2009.00165.x
– volume: 58
  start-page: 109
  issue: 1
  year: 1999
  ident: 10.1016/j.compbiomed.2014.08.006_bib39
  article-title: On the boosting ability of top-down decision tree learning algorithms
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1543
– start-page: 165
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib70
  article-title: Decision trees
– volume: 3
  issue: 19
  year: 2002
  ident: 10.1016/j.compbiomed.2014.08.006_bib36
  article-title: Prostate-specific antigen testing accuracy in community practice
  publication-title: BMC Family Pract.
– volume: 4
  start-page: 449
  issue: 3
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib87
  article-title: A data-analytic strategy for protein biomarker discovery
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.3.449
– volume: 25
  start-page: 3151
  issue: 23
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib61
  article-title: Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp558
– volume: 100
  start-page: 12343
  issue: 21
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib42
  article-title: Identification of biomarkers for ovarian cancer using strong anion-exchange proteinchips
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2033602100
– volume: 99
  start-page: 267
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib71
  article-title: Potential markers that complement expression of CA125 in epithelial ovarian cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2005.06.040
– volume: 13
  start-page: 2496
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib52
  article-title: Proteomics of canine lymphoma identifies potential cancer-specific protein markers
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2699
– volume: 5
  start-page: e15003
  issue: 12
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib64
  article-title: Unlocking biomarker discovery
  publication-title: PloS one
  doi: 10.1371/journal.pone.0015003
– volume: 12
  start-page: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2014.08.006_bib3
  article-title: VEGF and MMP-9
  publication-title: Vet. Comp. Oncol.
  doi: 10.1111/j.1476-5829.2012.00328.x
– volume: 20
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib25
  article-title: Principal manifolds and graphs in practice
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002383
– volume: 214
  start-page: 1023
  issue: 7
  year: 1999
  ident: 10.1016/j.compbiomed.2014.08.006_bib28
  article-title: Serum alpha 1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.1999.214.07.1023
– volume: 23
  start-page: 301
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib65
  article-title: Genetic and environmental risk indicators in canine non-hodgkin׳s lymphomas
  publication-title: J. Vet. Int. Med.
  doi: 10.1111/j.1939-1676.2008.0255.x
– start-page: 699
  year: 2001
  ident: 10.1016/j.compbiomed.2014.08.006_bib81
  article-title: Canine lymphoma and lymphoid leukemias
– volume: 11
  start-page: 907
  issue: 10
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib9
  article-title: Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/ASO.2004.03.557
– ident: 10.1016/j.compbiomed.2014.08.006_bib2
– volume: 4
  start-page: 2320
  issue: 8
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib66
  article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents
  publication-title: Proteomics
  doi: 10.1002/pmic.200400857
– volume: 27
  start-page: 221
  year: 1987
  ident: 10.1016/j.compbiomed.2014.08.006_bib68
  article-title: Simplifying decision trees
  publication-title: Int. J. Man-Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 3
  start-page: 1710
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib62
  article-title: Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum
  publication-title: Proteomics
  doi: 10.1002/pmic.200300516
– volume: 21
  start-page: 3138
  issue: 15
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib23
  article-title: Proteomic mass spectra classification using decision tree based ensemble methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti494
– year: 2000
  ident: 10.1016/j.compbiomed.2014.08.006_bib37
– volume: 18
  start-page: 395
  issue: 3
  year: 2002
  ident: 10.1016/j.compbiomed.2014.08.006_bib7
  article-title: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.395
– volume: 3
  start-page: 1692
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib82
  article-title: Protocols for disease classification from mass spectrometry data
  publication-title: Proteomics
  doi: 10.1002/pmic.200300519
– volume: 65
  start-page: 1471
  issue: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2014.08.006_bib89
  article-title: Data complexity measured by principal graphs
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.12.009
– volume: 2
  start-page: 214
  issue: 5
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib34
  article-title: Data mining for mass-spectra based diagnosis and biomarker discovery
  publication-title: Drug Discov. Today: Biosilico
  doi: 10.1016/S1741-8364(04)02416-3
– volume: 19
  start-page: ii93
  issue: Suppl. 2
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib45
  article-title: Discovery of significant rules for classifying cancer diagnosis data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1066
– start-page: 105
  year: 1974
  ident: 10.1016/j.compbiomed.2014.08.006_bib53
  article-title: Conditional logit analysis of qualitative choice behaviour
– volume: 10
  start-page: 259
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib29
  article-title: Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines
  publication-title: BMC Bioinformat.
  doi: 10.1186/1471-2105-10-259
– volume: 9
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2014.08.006_bib60
  article-title: Enriched sera protein profiling for detection of non-small cell lung cancer biomarkers
  publication-title: Prot. Sci.
  doi: 10.1186/1477-5956-9-55
– volume: 203
  start-page: 1144
  year: 1993
  ident: 10.1016/j.compbiomed.2014.08.006_bib63
  article-title: Concentration of alpha 1-acid glycoprotein in dogs with malignant neoplasia
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.1993.203.08.1144
– volume: 174
  start-page: 188
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib57
  article-title: Changes in C-reactive protein and haptoglobin in dogs with lymphatic neoplasia
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2006.05.018
– volume: 68
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib88
  article-title: Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification
  publication-title: Oncology
  doi: 10.1159/000084824
– volume: 98
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib75
  article-title: Diagnosis of gastric cancer using decision tree classification of mass spectral data
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2006.00339.x
– volume: 19
  start-page: 865
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib77
  article-title: Preliminary studies of serum acute-phase protein concentration in hematologic and neoplastic diseases of the dog
  publication-title: J. Vet. Int. Med.
  doi: 10.1111/j.1939-1676.2005.tb02779.x
– volume: 10
  start-page: 315
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2014.08.006_bib43
  article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies
  publication-title: Brief. Bioinformat.
  doi: 10.1093/bib/bbp012
– volume: 61
  start-page: 401
  year: 1954
  ident: 10.1016/j.compbiomed.2014.08.006_bib78
  article-title: A decision-making theory of visual detection
  publication-title: Psychol. Rev.
  doi: 10.1037/h0058700
– volume: 31
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2014.08.006_bib54
  article-title: The dog as a possible animal model for human non-Hodgkin lymphoma
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.2017
– volume: 73
  start-page: 2317
  issue: 13
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib86
  article-title: A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.022
– start-page: 15
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib16
  article-title: Nearest-neighbor searching and metric space dimensions
– volume: 196
  start-page: 286
  year: 2013
  ident: 10.1016/j.compbiomed.2014.08.006_bib58
  article-title: Exploring the serum proteome in dogs
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2013.01.006
– volume: 2
  start-page: 15
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib44
  article-title: Current developments in the analysis of proteomic data: artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer
  publication-title: Curr. Proteomics
  doi: 10.2174/1570164053507808
– volume: 10
  start-page: 925
  issue: 6
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib48
  article-title: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652703322756159
– volume: 3
  start-page: 1704
  issue: 9
  year: 2003
  ident: 10.1016/j.compbiomed.2014.08.006_bib79
  article-title: Multiple approaches to data-mining of proteomics data based on statistical and pattern classification methods
  publication-title: Proteomics
  doi: 10.1002/pmic.200300512
– volume: vol. 58
  year: 2008
  ident: 10.1016/j.compbiomed.2014.08.006_bib24
– volume: vol. 13
  start-page: 119
  year: 2005
  ident: 10.1016/j.compbiomed.2014.08.006_bib84
  article-title: What is systems biology?
– volume: 196
  start-page: 320
  year: 2013
  ident: 10.1016/j.compbiomed.2014.08.006_bib5
  article-title: Changes in the serum proteome of canine lymphoma identified by electrophoresis and mass spectrometry
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2012.12.010
– volume: 8
  start-page: 1625
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib73
  article-title: Handling missing values when applying classification models
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 1364
  issue: 6
  year: 2007
  ident: 10.1016/j.compbiomed.2014.08.006_bib26
  article-title: Comparison of 3 protocols for treatment after induction of remission in dogs with lymphoma
  publication-title: J. Vet. Int. Med.
  doi: 10.1111/j.1939-1676.2007.tb01960.x
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.compbiomed.2014.08.006_bib12
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– year: 1992
  ident: 10.1016/j.compbiomed.2014.08.006_bib72
– volume: 13
  start-page: 163
  issue: 2
  year: 1991
  ident: 10.1016/j.compbiomed.2014.08.006_bib22
  article-title: An iterative growing and pruning algorithm for classification tree design
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.67645
– volume: 185
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib59
  article-title: Biomarkers in veterinary medicine
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2010.04.003
– volume: 11
  start-page: 109
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib76
  article-title: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data
  publication-title: BMC Bioinformat.
  doi: 10.1186/1471-2105-11-109
– volume: 39
  start-page: 227
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiomed.2014.08.006_bib74
  article-title: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples
  publication-title: J. Biomed. Informat.
  doi: 10.1016/j.jbi.2005.04.002
– volume: 103
  start-page: 542
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2014.08.006_bib67
  article-title: Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6605810
– volume: 214
  start-page: 1023
  year: 1999
  ident: 10.1016/j.compbiomed.2014.08.006_bib30
  article-title: Serum a1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.1999.214.07.1023
– ident: 10.1016/j.compbiomed.2014.08.006_bib18
– volume: 2
  start-page: 13
  issue: 1–2
  year: 2006
  ident: 10.1016/j.compbiomed.2014.08.006_bib80
  article-title: Data mining in proteomic mass spectrometry
  publication-title: Clin. Prot.
  doi: 10.1385/CP:2:1:13
– volume: 73
  start-page: 113
  year: 1978
  ident: 10.1016/j.compbiomed.2014.08.006_bib19
  article-title: Regression and ANOVA with zero-one data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1978.10480013
– volume: 20
  start-page: 374
  issue: 3
  year: 2004
  ident: 10.1016/j.compbiomed.2014.08.006_bib11
  article-title: Is cross-validation valid for small-sample microarray classification?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
SSID ssj0004030
Score 2.0812743
Snippet The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for...
Abstract The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms Advanced KNN
Age
Algorithms
Animals
Biomarkers
Cancer
Cancer diagnosis
Classification
Data analysis
Data Mining
Decision tree
Decision Trees
Diagnosis, Computer-Assisted - methods
Dogs
Female
Internal Medicine
Lymphoma
Lymphoma - diagnosis
Lymphoma - epidemiology
Lymphoma - veterinary
Male
Medical screening
Other
Proteins
Radial basis functions
Risk Assessment
Risk evaluation
Sensitivity and Specificity
Tumors
Vascular endothelial growth factor
Veterinary medicine
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhzY9lLZJm03SokKvTixZslbkEEJICIX01MDexNjSwpatd8nuEnLpb8-MJXsbEspCb35o_BiPZj7b38ww9g1AKyhDngVZQ6a0NpktapmJYOXQi9rWbTufmx_l9a36PtKjLXbR5cIQrTL5_ujTW2-dtpwkbZ7MJxPK8cVXCcq8VG2nyRFlsCtDXQyO_6xpHiovYhoK-hsandg8keNFtO2Y5k4kL9UW86TeRy-HqOcQ9A17vWrm8HAP0-lfYenqHXub8CQ_j5f8nm2F5gN7dZP-mO-ys9i2IX3y4z4y6yYLDo3nxCvn63rfHAEsR1WjIJ8-4GOe_YY9dnt1-fPiOktNE7Ia3w2WmZGgautNCGOjQZjKeOnLcpwH4XG-Se8V2ABgMbRXYVjpCpc1RjIfoBgXRfGRbTezJuwzrvKx9gEBjsIYXlqwKCqNAFsJVQ99OWCm05OrU0VxamwxdR117Jdba9iRhh31vMxRUvSS81hVYwMZ2z0K12WNop9z6Po3kDUvyYZFmrALJ9xCutw9M6oBO-0ln9jlhuc96mzGrU9VUpExRMZywL72u3FW068aaMJshWM0IkUE03n-jzElQmeBR8Mxn6I99sqkfGTyxgMmewPdWNMH_3XPh2yH1iLh8YhtL-9W4TMCt2X1pZ2Zj5UeQVA
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RixMxEB7OHqj3IFo9rZ4SwdfF3Wx20yByqNxxCFdEPelbyCYpKL1ttS1y__5mNslW8Dj6VtpMd5lMJt9uvpkP4I0xlTC1zzPPrclEVclMlZZnhVd87AqrbCfncz6pzy7E52k13YNJqoUhWmXKiV2idgtL78jfIjIR1Kkk58fL3xmpRtHpapLQMFFawb3vWozdgX1OnbEGsP_xZPLl67ZSMi9DUQpmH4EPR5HbExhfROIORe9E-RJda09SQrp5w_ofkB7AvU27NFd_zXz-zyZ1-hAeRHTJPoRweAR7vh3C3fN4fj6E4Q9iv3QluCx9-xiOg7RDfC3IXGDf_Vwx0zpG3HO27QnOEOQynA40ZPMrDIXFpXkCF6cn3z-dZVFYIbP4_LDOJDfCKie9n8nKFLKRjru6nuW-cLgmuXPCKG-Mwu2_8eOmavBzhbud86aclWV5CIN20fpnwEQ-q5xHECRwfmplFJpyWRjVFMKOXT0Cmbynbew6TuIXc53oZb_01u-a_K5JFzNHy6K3XIbOGzvYqDRBOlWWYi7UuD3sYCtvsvWruKhXutArrnP9retpRCW_opM4nY7gXW8ZcUvAIzte9yhFkt5eqo_2Ebzuf8aVT8c5pvWLDY6pEE0i4M7zW8bUCK8L_Dcc8zREae9MqlmmjD0C3oftzp5-fvtdv4D7NDiwHo9gsP6z8S8Rva2bV3FJXgMUa0Pv
  priority: 102
  providerName: ProQuest
Title Computational diagnosis and risk evaluation for canine lymphoma
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048251400208X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048251400208X
https://dx.doi.org/10.1016/j.compbiomed.2014.08.006
https://www.ncbi.nlm.nih.gov/pubmed/25194257
https://www.proquest.com/docview/1614096502
https://www.proquest.com/docview/1564354000
https://www.proquest.com/docview/1622611610
http://hdl.handle.net/2381/40283
UnpaywallVersion submittedVersion
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central (via ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3aWgnGA9-wwqiCxGtK7NhxLB5QQSsFtGoCKpUny4ldCVbSaWmFtof9dq7jJEVsoIqXtFV9E9W-9j1pjs8BeKE1ZzqxUWhprkPGuQhlnNOQWElTQ3KZV3Y-R5NkPGUfZny2A41l3R_yAq6evGSuBO5CN-GItjvQnU6Oh1_9AhuFLK18VZ1ndoj5xGqyjqdwOVa238XuOFys0up01kbXV6CrCPMW3FwXp_r8p14sfqs6ozue_VhWYoWObHIyWK-yQX5xVcrxrz_oLtyuIWcw9DlyD3ZscR9uHNUP1R_Aa-_sUP8rGBhPvvtWBnjCwFHPg40keIAYN8DRwMBgcY6ZsPyhH8J0dPjl7TisfRXCHG8fVqGgmuXSCGvngmsiMmGoSZJ5ZInBKUmNYVparSVW_8ymGc_wPcdiZ6yO53EcP4JOsSzsPgQsmnNjEQMxLPOJ1BJDqSBaZoTlqUl6IJq-VnktOu68LxaqYZd9V5tRUm6UlLPFjDCStJGnXnhjixjZDKdqNpbiUqiwOmwRK66LtWU9p0tFVElVpD5XkkZuxy-rHE5nPXjVRtawxcORLa970OSd2lwqcTpkCJ5pD563X-PEd09zdGGXa2zDEUwi3o6if7RJEF0TPBu2eexzuu1Mt2XZLdg9oG2Sb93TT_4n6CnsuU-eCnkAndXZ2j5DSLfK-rA7uCR4FDOBx3T0rg_d4fuP4wm-vjmcHH_q1_P-F-31TiI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5Nm8TYA4LyY4UBRoLHiMRxklpomjbY1LG1QrChvhkndiVQSQtpNfWf42_jLnZSJKapL3urUl8SnS93n-27-wBea50IndowsLzQgUiSLJBxwYPISt4zUSGLms5nMEz7l-LjKBltwJ-mFobSKhufWDtqMy1oj_wtIhNBnUpCfjD7FRBrFJ2uNhQa2lMrmP26xZgv7DizyytcwlX7px9wvt9wfnJ88b4feJaBoEAwPQ8yrkUhTWbtOEt0lOWZ4SZNx6GNDBooN0ZoabWWGAtz28uTHH8n6PqN1fE4pg1RDAFbIhYSF39bR8fDT59XlZlh7Ipg0NsJXIz5XCKXYUZJ467InlLMRN1KlJiXrg-Q_wPgHdhelDO9vNKTyT9B8eQ-3PNolh0683sAG7bswJ2BP6_vQOcrZdvUJb-sufoQDhyVhN-GZMZl-32vmC4No1x3tupBzhBUM5x-FGSTJZre9Kd-BJe3ouLHsFlOS7sLTITjxFgEXQLtIZVaoijPIi3zSBQ9k3Yha7SnCt_lnMg2JqpJZ_uhVnpXpHdFPJwhSkat5Mx1-lhDRjYTpJpKVvS9CsPRGrLZdbK28k6kUpGquArVl7qHEpUYi5pSddSFd62kx0kO_6z53L3GktTqUe3X1YVX7d_oaej4SJd2usAxCaJXBPhheMOYFOF8hHfDMU-clbbKpBppihBd4K3Zrq3ppze_9UvY7l8MztX56fDsGdwlQZdxuQeb898L-xyR4zx_4T9PBt9u2yP8BU3xgoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5NQxrwgKDAKAwwEjxGSxwnroXQhBjVxtiEBEN9M47tSKCSFtJq6l_j13EXJykS09SXvVWtr4nOl89f7O_uAF4akwmT-zjy3JpIZJmMVGp5lHjFRy6xyjbtfE7P8qNz8WGSTbbgT5cLQ7LKDhMboHYzS3vk-8hMBFUqifl-2coiPh2OD-a_IuogRSetXTuNECInfnWBr2_1m-NDnOtXnI_ff3l3FLUdBiKLRHoRSW6EVU56X8rMJLKQjrs8L2OfOAxO7pwwyhujcB0s_KjICvycIew7b9Iypc1QhP8bMk0VyQnlRK5zMuM0pL8gzgl8DWtVREFbRnLxkF5P4jLRFBGlnkuXL43_U9_bcHNZzc3qwkyn_yyH47twp-Wx7G0IvHuw5asB7Jy2J_UDGHwlnU2T7Mu6b-_DQWgi0W5AMhd0ft9rZirHSOXO1tXHGdJphhOPhmy6wqCb_TQP4PxaHPwQtqtZ5R8BE3GZOY90S2Ak5MooNOUyMapIhB25fAiy8562bX1zarMx1Z2Q7Yde-12T3zV14IzRMukt56HGxwY2qpsg3eWwIupqXIg2sJWX2fq6hY9aJ7rmOtafm-pJlFwsmmaqkyG87i1bhhSYz4bX3esiSa8v1T9XQ3jR_4wYQwdHpvKzJY7JkLcitY_jK8bkSOQT_DccsxuitHcmZUfT2jAE3oftxp5-fPVdP4cdxAH98fjs5AncIrsgtdyD7cXvpX-KlHFRPGueTQbfrhsM_gLA6IAh
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dixMxFL2sXdD1we-P6ioRfM06ySSZBh9kEZdF2EXQQn0KmSQFtU6XnRZZf703k8xU3FWKby3NnaHJTe6Zyck5AC-tlcKqUNDAnaVCyorq0nHKguYTz5x2nZ3Pyak6nor3Mznbgd6y7g95gVhPXolYAq_BrpKItkewOz39cPg5LbAFFZPOVzV6ZlPMJ5HJOonCFVnZ6RR75HCJTqszWhtdXYEuI8ybcGPdnNmLH3ax-K3qHN1O7Me2EyuMZJNvB-tVfeB-XpZy_OsfugO3MuQkhylH7sJOaO7B9ZO8qX4f3iRnh_xWkPhEvvvSErwgidRzspEEJ4hxCY4GBpLFBWbC8rt9ANOjd5_eHtPsq0AdPj6saMWtcNpXIcwraVlVV557peZFYB6nJPdeWB2s1Vj96zCpZY2fJRY7H2w5L8vyIYyaZRMeAxHFXPqAGEhgmVfaagzlFbO6ZsJNvBpD1fe1cVl0PHpfLEzPLvtqNqNk4iiZaItZYCQbIs-S8MYWMbofTtMfLMWl0GB12CK2uio2tHlOt4aZlpvCfOwkjeKJX9E5nM7G8HqIzLAlwZEt77vf553Z3EpFHTIEz3wML4afceLH3RzbhOUa20gEk4i3i-IfbRSia4ZXwzaPUk4PnRmPLMcFewx8SPKte_rJ_wQ9hb34LVEh92G0Ol-HZwjpVvXzPKt_AQUKSC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+diagnosis+and+risk+evaluation+for+canine+lymphoma&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mirkes%2C+E.M.&rft.au=Alexandrakis%2C+I.&rft.au=Slater%2C+K.&rft.au=Tuli%2C+R.&rft.date=2014-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=53&rft.spage=279&rft.epage=290&rft_id=info:doi/10.1016%2Fj.compbiomed.2014.08.006&rft.externalDocID=S001048251400208X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482514X00090%2Fcov150h.gif