Computational diagnosis and risk evaluation for canine lymphoma
The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select t...
Saved in:
| Published in | Computers in biology and medicine Vol. 53; pp. 279 - 290 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.10.2014
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2014.08.006 |
Cover
| Abstract | The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.
•Acute phase proteins, C-Reactive Protein and Haptoglobin, are used for the canine lymphoma blood test.•This test can be used for diagnostics, screening, and for remission monitoring.•We compare various decision trees, KNN (and advanced KNN) and algorithms for probability density evaluation.•For the differential diagnosis the best solution gives the sensitivity 83.5% and specificity 77%. |
|---|---|
| AbstractList | The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis.The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and , respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and>99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. •Acute phase proteins, C-Reactive Protein and Haptoglobin, are used for the canine lymphoma blood test.•This test can be used for diagnostics, screening, and for remission monitoring.•We compare various decision trees, KNN (and advanced KNN) and algorithms for probability density evaluation.•For the differential diagnosis the best solution gives the sensitivity 83.5% and specificity 77%. Abstract The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for remission monitoring as well. We analyze clinical data, test various machine learning methods and select the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced and adaptive kNN) and probability density evaluation with radial basis functions, are used for classification and risk estimation. Several pre-processing approaches were implemented and compared. The best of them are used to create the diagnostic system. For the differential diagnosis the best solution gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides the best result, with sensitivity and specificity of 81.4% and > 99 % , respectively (using the same input features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation problem is formulated and solved. The best models are selected as the system for computational lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical signs. The risk map visualization provides a friendly tool for exploratory data analysis. |
| Author | Alexandrakis, I. Tuli, R. Gorban, A.N. Mirkes, E.M. Slater, K. |
| Author_xml | – sequence: 1 givenname: E.M. surname: Mirkes fullname: Mirkes, E.M. organization: Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK – sequence: 2 givenname: I. surname: Alexandrakis fullname: Alexandrakis, I. organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK – sequence: 3 givenname: K. surname: Slater fullname: Slater, K. organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK – sequence: 4 givenname: R. surname: Tuli fullname: Tuli, R. organization: Avacta Animal Health, Unit 706, Avenue E, Thorp Arch Estate, Wetherby LS23 7GA, UK – sequence: 5 givenname: A.N. surname: Gorban fullname: Gorban, A.N. email: ag153@le.ac.uk organization: Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25194257$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1v1DAQhi1URLeFv4AiceGSMHbifFyAsuJLqsQBkLhZjj0Bbx17sZOi_fc4pKVSJUR7siW_82j8zJyQI-cdEpJRKCjQ-sWuUH7c98aPqAsGtCqgLQDqB2RD26bLgZfVEdkAUMirlvFjchLjDgAqKOEROWacdhXjzYa82ibQPMnJeCdtpo387nw0MZNOZ8HEiwwvpZ3_vGeDD5mSzjjM7GHc__CjfEweDtJGfHJ1npKv795-2X7Izz-9_7g9O88V75opb5isVKcbxKHhkjZ9o5mu6wGQal5SpnUlO5Syoy3tse15n-6clqBRlkNZlqekW7mz28vDL2mt2AczynAQFMQiRezEjRSxSBHQiiQl1T5fa_fB_5wxTmI0UaG10qGfo6A1YzWlNYX_R3ldlbxKJlP02a3ozs8hSVyAtIKu5sBS6ulVau6Xvq6bvp5ACrRrQAUfY8DhPv96eatUmXWSU5DG3gXwZgVgmtylwSCiMugUahNQTUJ7c48u_kKUNc4oaS_wgPFGiohMgPi8LOWyk0kRMGi_JcDrfwPu1sNvMVD1vg |
| CODEN | CBMDAW |
| CitedBy_id | crossref_primary_10_3389_fvets_2016_00087 crossref_primary_10_1038_srep33922 crossref_primary_10_1080_01652176_2016_1152633 crossref_primary_10_1111_jvim_17266 |
| Cites_doi | 10.1074/mcp.M600171-MCP200 10.1002/ajh.10017 10.1158/1078-0432.CCR-1167-3 10.1158/0008-5472.CAN-10-1319 10.1016/j.tvjl.2010.04.005 10.1186/1471-2407-9-164 10.1002/pmic.200300523 10.1073/pnas.1013699108 10.1002/pmic.200300521 10.1093/bioinformatics/btg210 10.1109/34.506411 10.1111/j.1469-1809.1936.tb02137.x 10.2460/ajvr.68.4.405 10.1111/j.1476-5829.2008.00171.x 10.1186/1471-2105-5-26 10.1093/bib/bbn005 10.1016/j.artmed.2004.03.006 10.2460/javma.230.4.522 10.1002/pmic.200300522 10.1111/j.1476-5829.2009.00165.x 10.1006/jcss.1997.1543 10.1093/biostatistics/4.3.449 10.1093/bioinformatics/btp558 10.1073/pnas.2033602100 10.1016/j.ygyno.2005.06.040 10.1158/1078-0432.CCR-06-2699 10.1371/journal.pone.0015003 10.1111/j.1476-5829.2012.00328.x 10.1142/S0129065710002383 10.2460/javma.1999.214.07.1023 10.1111/j.1939-1676.2008.0255.x 10.1245/ASO.2004.03.557 10.1002/pmic.200400857 10.1016/S0020-7373(87)80053-6 10.1002/pmic.200300516 10.1093/bioinformatics/bti494 10.1093/bioinformatics/18.3.395 10.1002/pmic.200300519 10.1016/j.camwa.2012.12.009 10.1016/S1741-8364(04)02416-3 10.1093/bioinformatics/btg1066 10.1186/1471-2105-10-259 10.1186/1477-5956-9-55 10.2460/javma.1993.203.08.1144 10.1016/j.tvjl.2006.05.018 10.1159/000084824 10.1111/j.1349-7006.2006.00339.x 10.1111/j.1939-1676.2005.tb02779.x 10.1093/bib/bbp012 10.1037/h0058700 10.1002/hon.2017 10.1016/j.neucom.2010.02.022 10.1016/j.tvjl.2013.01.006 10.2174/1570164053507808 10.1089/106652703322756159 10.1002/pmic.200300512 10.1016/j.tvjl.2012.12.010 10.1111/j.1939-1676.2007.tb01960.x 10.1613/jair.953 10.1109/34.67645 10.1016/j.tvjl.2010.04.003 10.1186/1471-2105-11-109 10.1016/j.jbi.2005.04.002 10.1038/sj.bjc.6605810 10.1385/CP:2:1:13 10.1080/01621459.1978.10480013 10.1093/bioinformatics/btg419 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Oct 2014 |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Oct 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2014.08.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Veterinary Medicine |
| EISSN | 1879-0534 |
| EndPage | 290 |
| ExternalDocumentID | oai:lra.le.ac.uk:2381/40283 3465713641 25194257 10_1016_j_compbiomed_2014_08_006 S001048251400208X 1_s2_0_S001048251400208X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ SV3 T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c597t-72a4c9d7eef75a17b7d2d66f0e1d5312dd4a9eaa9181be8b5baa95130dea3f333 |
| IEDL.DBID | UNPAY |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 04:09:20 EDT 2025 Tue Oct 07 09:38:00 EDT 2025 Sat Sep 27 17:21:11 EDT 2025 Tue Oct 07 06:12:19 EDT 2025 Thu Apr 03 06:54:17 EDT 2025 Wed Oct 01 04:07:19 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Sun Feb 23 10:19:32 EST 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Advanced KNN Data analysis Radial basis functions Risk evaluation Classification Cancer diagnosis Decision tree |
| Language | English |
| License | Copyright © 2014 Elsevier Ltd. All rights reserved. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c597t-72a4c9d7eef75a17b7d2d66f0e1d5312dd4a9eaa9181be8b5baa95130dea3f333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2381/40283 |
| PMID | 25194257 |
| PQID | 1614096502 |
| PQPubID | 1226355 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2014_08_006 proquest_miscellaneous_1622611610 proquest_miscellaneous_1564354000 proquest_journals_1614096502 pubmed_primary_25194257 crossref_primary_10_1016_j_compbiomed_2014_08_006 crossref_citationtrail_10_1016_j_compbiomed_2014_08_006 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2014_08_006 elsevier_clinicalkeyesjournals_1_s2_0_S001048251400208X elsevier_clinicalkey_doi_10_1016_j_compbiomed_2014_08_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Becker, Cazares, Watson, Lynch, Semmes, Drake, Laronga (bib9) 2004; 11 Kearns, Mansour (bib39) 1999; 58 Westerhoff, Hofmeyr (bib84) 2005; vol. 13 (bib24) 2008; vol. 58 Adam, Qu, Davis, Ward, Clements, Cazares, Semmes, Schellhammer, Yasui, Feng, Wright (bib1) 2002; 62 Rokach, Maimon (bib70) 2010 Rassnick, McEntee, Erb, Burke, Balkman, Flory, Kiselow, Autio, Gieger (bib26) 2007; 21 Kirmiz, Li, An, Clowers, Chew, Lam, Ferrige, Alecio, Borowsky, Sulaimon, Lebrilla, Miyamoto (bib40) 2007; 6 Atherton, Braceland, Fontaine, Waterston, Burchmore, Eadie, Eckersall, Morris (bib5) 2013; 196 Pastor, Chalvet-Monfray, Marchal, Keck, Magnol, Fournel-Fleury, Ponce (bib65) 2009; 23 Koopmann, Zhang, White, Rosenzweig, Fedarko, Jagannath, Canto, Yeo, Chan, Goggins (bib41) 2004; 10 Hilario, Kalousis, Muller, Pellegrini (bib33) 2003; 3 Asiago, Alvarado, Shanaiah, Gowda, Owusu-Sarfo, Ballas, Raftery (bib4) 2010; 70 Li, Liu, Ng, Wong (bib45) 2003; 19 Prados, Kalousis, Sanchez, Allard, Carrette, Hilario (bib66) 2004; 4 Hahn, Freeman, Barnhill, Stephen (bib28) 1999; 214 Guan, Zhou, Hampton, Benigno, DeEtte Walker, Gray, McDonald, Fernández (bib29) 2009; 10 Neville, Tan, Mann, Wolfinger (bib62) 2003; 3 Ogilvie, Walters, Greeley, Henkel, Salman (bib63) 1993; 203 Ball, Mian, Holding, Allibone, Lowe, Ali, Li, McCardle, Ellis, Creaser, Rees (bib7) 2002; 18 Buhmann (bib14) 2003 Hilario, Kalousis, Prados, Binz (bib34) 2004; 2 Mischke, Waterston, Eckersall (bib57) 2007; 174 Aresu, Aricó, Comazzi, Gelain, Riondato, Mortarino, Morello, Stefanello, Castagnaro (bib3) 2014; 12 Matharoo-Ball, Miles, Creaser, Ball, Rees (bib51) 2008; 6 Shin, Markey (bib74) 2006; 39 T.G. Dietterich, M. Kearns, Y. Mansour, Applying the weak learning framework to understand and improve C4.5, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 1996, pp. 96–104. Gorban, Zinovyev (bib25) 2010; 20 Yasui, Pepe, Thompson, Adam, Wright, Qu, Potter, Winget, Thornquist, Feng (bib87) 2003; 4 McCaw, Chan, Stegner, Mooney, Bryan, Turnquist, Henry, Alexander, Alexander (bib52) 2007; 13 Ratcliffe, Mian, Slater, King, Napolitano, Aucoin, Mobasheri (bib69) 2009; 7 Rosen, Wang, Atkinson, Yu, Lu, Diamandis, Hellstrom, Mok, Liu, Bast (bib71) 2005; 99 Monari, Casali, Cuoghi, Nesci, Bellei, Bergamini, Fantoni, Natali, Morandi, Tomasi (bib60) 2011; 9 Vail, Young (bib81) 2001 Yang, Zhang, Zhou, Zomaya (bib86) 2010; 73 Bedford, Cooke (bib10) 2001 Cray (bib17) 2012; vol. 105 Marconato, Gelain, Comazzi (bib54) 2013; 31 Ostroff, Bigbee, Franklin, Gold, Mehan, Miller, Pass, Rom, Siegfried, Stewart, Walker, Weissfeld, Williams, Zichi, Brody (bib64) 2010; 5 Hoffman, Gilliland, Adams-Cameron, Hunt, Key (bib36) 2002; 3 Nam, Chung, Kim, Lee, Lee (bib61) 2009; 25 Henry (bib32) 2010; 185 Geurts, Fillet, deSeny, Meuwis, Malaise, Merville, Wehenkel (bib23) 2005; 21 Merlo, Rezende, Franchini, Simoes, Lucas (bib55) 2007; 230 Yu, Chen, Wang, Chen, Guo, Yan, Zhang, Peng, Zhang, Chen (bib88) 2005; 68 Efron (bib19) 1978; 73 Hosmer, Lemeshow (bib37) 2000 Tanner, Swets (bib78) 1954; 61 McFadden (bib53) 1974 Tang, Li, Xiong, Chen (bib76) 2010; 11 Peng, Hakim, Broza, Billan, Abdah-Bortnyak, Kuten, Tisch, Haick (bib67) 2010; 103 Lancashire, Mian, Ellis, Rees, Ball (bib44) 2005; 2 Gaines, Powell, Walmsley, Estredge, Wisnewski, Stinchcomb, Withrow, Lana (bib21) 2007; 68 Cima, Schiess, Wild, Kaelin, Schüffler, Lange, Picotti, Ossola, Templeton, Schubert, Fuchs, Leippold, Wyler, Zehetner, Jochum, Buhmann, Cerny, Moch, Gillessen, Aebersold, Krek (bib15) 2011; 108 Scott (bib72) 1992 Clarkson (bib16) 2005 Elis, Blickstein, Klein, Eliav-Ronen, Manor, Lishner (bib27) 2002; 69 Kozak, Amneus, Pusey, Su, Luong, Luong, Reddy, Farias-Eisner (bib42) 2003; 100 Lancashire, Lemetre, Ball (bib43) 2009; 10 Wagner, Naik, Pothen, Kasukurti, Devineni, Adam, Semmes, Wright (bib83) 2004; 5 Gelfand, Ravishankar, Delp (bib22) 1991; 13 Chawla, Bowyer, Kegelmeyer (bib12) 2002; 16 Fisher (bib20) 1936; 7 Mobasheri, Cassidy (bib59) 2010; 185 Wu, Abbott, Fishman, McMurray, Mor, Stone, Ward, Williams, Zhao (bib85) 2003; 19 Su, Shen, Qian, Ma, Ji, Ma, Ma, Zhang, Meng, Li, Wu, Jin, Zhang, Shou (bib75) 2007; 98 Hahn, Freeman, Barnhill, Stephen (bib30) 1999; 214 Wagner, Naik, Pothen (bib82) 2003; 3 Tecles, Sprianelli, Bonfanti, Ceron, Patrinieri (bib77) 2005; 19 Mahalanobis (bib49) 1936; 2 Markey, Tourassi, Floyd (bib50) 2003; 3 Breiman, Friedman, Olshen, Stone (bib13) 1984 Hilario, Kalousis (bib35) 2008; 9 Mobasheri (bib58) 2013; 196 Hastie, Tibshirani (bib31) 1996; 18 Quinlan (bib68) 1987; 27 I. Alexandrakis, The use of CART algorithms to combine serum acute phase protein levels as a diagnostic aid in canine lymphoma, in: M. Klinkon, et al. (Ed.), Proceedings of 15th Congress of the International Society for Animal Clinical Pathology, 14th Conference of the European Society of Veterinary Clinical Pathology, (Ljubljana, Slovenia, 3rd–7th July, 2012) Ljubljana: Veterinary Faculty, 2012, p. 65 . Li, Tang, Wu, Gong, Gruidl, Zou, Tockman, Clark (bib46) 2004; 32 Thomas, Tourassi, Elmaghraby, Valdes, Jortani (bib80) 2006; 2 Lilien, Farid, Donald (bib48) 2003; 10 Baggerly, Morris, Wang, Gold, Xiao, Coombes (bib6) 2003; 3 Jesneck, Mukherjee, Yurkovetsky, Clyde, Marks, Lokshin, Lo (bib38) 2009; 9 Li, Racine (bib47) 2007 Saar-Tsechansky, Provost (bib73) 2007; 8 Zinovyev, Mirkes (bib89) 2013; 65 Tatay, Feng, Sobczak, Jiang, Chen, Kirova, Struble, Wang, Tonellato (bib79) 2003; 3 Braga-Neto, Dougherty (bib11) 2004; 20 Mirkes, Alexandrakis, Slater, Tuli, Gorban (bib56) 2014; 490 Barillot, Calzone, Hupe, Vert, Zinovyev (bib8) 2012 Tatay (10.1016/j.compbiomed.2014.08.006_bib79) 2003; 3 Mahalanobis (10.1016/j.compbiomed.2014.08.006_bib49) 1936; 2 Bedford (10.1016/j.compbiomed.2014.08.006_bib10) 2001 Ostroff (10.1016/j.compbiomed.2014.08.006_bib64) 2010; 5 Becker (10.1016/j.compbiomed.2014.08.006_bib9) 2004; 11 Westerhoff (10.1016/j.compbiomed.2014.08.006_bib84) 2005; vol. 13 Baggerly (10.1016/j.compbiomed.2014.08.006_bib6) 2003; 3 Chawla (10.1016/j.compbiomed.2014.08.006_bib12) 2002; 16 Mischke (10.1016/j.compbiomed.2014.08.006_bib57) 2007; 174 Efron (10.1016/j.compbiomed.2014.08.006_bib19) 1978; 73 Saar-Tsechansky (10.1016/j.compbiomed.2014.08.006_bib73) 2007; 8 Braga-Neto (10.1016/j.compbiomed.2014.08.006_bib11) 2004; 20 Hilario (10.1016/j.compbiomed.2014.08.006_bib33) 2003; 3 Kearns (10.1016/j.compbiomed.2014.08.006_bib39) 1999; 58 Aresu (10.1016/j.compbiomed.2014.08.006_bib3) 2014; 12 Atherton (10.1016/j.compbiomed.2014.08.006_bib5) 2013; 196 Quinlan (10.1016/j.compbiomed.2014.08.006_bib68) 1987; 27 Shin (10.1016/j.compbiomed.2014.08.006_bib74) 2006; 39 Gorban (10.1016/j.compbiomed.2014.08.006_bib25) 2010; 20 McCaw (10.1016/j.compbiomed.2014.08.006_bib52) 2007; 13 Henry (10.1016/j.compbiomed.2014.08.006_bib32) 2010; 185 Peng (10.1016/j.compbiomed.2014.08.006_bib67) 2010; 103 Hilario (10.1016/j.compbiomed.2014.08.006_bib35) 2008; 9 Rokach (10.1016/j.compbiomed.2014.08.006_bib70) 2010 Lilien (10.1016/j.compbiomed.2014.08.006_bib48) 2003; 10 Cima (10.1016/j.compbiomed.2014.08.006_bib15) 2011; 108 Kozak (10.1016/j.compbiomed.2014.08.006_bib42) 2003; 100 Lancashire (10.1016/j.compbiomed.2014.08.006_bib43) 2009; 10 Zinovyev (10.1016/j.compbiomed.2014.08.006_bib89) 2013; 65 Gaines (10.1016/j.compbiomed.2014.08.006_bib21) 2007; 68 Mirkes (10.1016/j.compbiomed.2014.08.006_bib56) 2014; 490 Mobasheri (10.1016/j.compbiomed.2014.08.006_bib59) 2010; 185 Neville (10.1016/j.compbiomed.2014.08.006_bib62) 2003; 3 Scott (10.1016/j.compbiomed.2014.08.006_bib72) 1992 Tang (10.1016/j.compbiomed.2014.08.006_bib76) 2010; 11 Koopmann (10.1016/j.compbiomed.2014.08.006_bib41) 2004; 10 Rosen (10.1016/j.compbiomed.2014.08.006_bib71) 2005; 99 (10.1016/j.compbiomed.2014.08.006_bib24) 2008; vol. 58 McFadden (10.1016/j.compbiomed.2014.08.006_bib53) 1974 Geurts (10.1016/j.compbiomed.2014.08.006_bib23) 2005; 21 Mobasheri (10.1016/j.compbiomed.2014.08.006_bib58) 2013; 196 Monari (10.1016/j.compbiomed.2014.08.006_bib60) 2011; 9 Hastie (10.1016/j.compbiomed.2014.08.006_bib31) 1996; 18 Rassnick (10.1016/j.compbiomed.2014.08.006_bib26) 2007; 21 Vail (10.1016/j.compbiomed.2014.08.006_bib81) 2001 10.1016/j.compbiomed.2014.08.006_bib18 Jesneck (10.1016/j.compbiomed.2014.08.006_bib38) 2009; 9 Asiago (10.1016/j.compbiomed.2014.08.006_bib4) 2010; 70 Hosmer (10.1016/j.compbiomed.2014.08.006_bib37) 2000 Wagner (10.1016/j.compbiomed.2014.08.006_bib82) 2003; 3 Gelfand (10.1016/j.compbiomed.2014.08.006_bib22) 1991; 13 Li (10.1016/j.compbiomed.2014.08.006_bib46) 2004; 32 Thomas (10.1016/j.compbiomed.2014.08.006_bib80) 2006; 2 Li (10.1016/j.compbiomed.2014.08.006_bib45) 2003; 19 Nam (10.1016/j.compbiomed.2014.08.006_bib61) 2009; 25 Yang (10.1016/j.compbiomed.2014.08.006_bib86) 2010; 73 Tanner (10.1016/j.compbiomed.2014.08.006_bib78) 1954; 61 Adam (10.1016/j.compbiomed.2014.08.006_bib1) 2002; 62 Barillot (10.1016/j.compbiomed.2014.08.006_bib8) 2012 Ratcliffe (10.1016/j.compbiomed.2014.08.006_bib69) 2009; 7 Tecles (10.1016/j.compbiomed.2014.08.006_bib77) 2005; 19 Su (10.1016/j.compbiomed.2014.08.006_bib75) 2007; 98 Cray (10.1016/j.compbiomed.2014.08.006_bib17) 2012; vol. 105 Ogilvie (10.1016/j.compbiomed.2014.08.006_bib63) 1993; 203 Prados (10.1016/j.compbiomed.2014.08.006_bib66) 2004; 4 Wu (10.1016/j.compbiomed.2014.08.006_bib85) 2003; 19 Merlo (10.1016/j.compbiomed.2014.08.006_bib55) 2007; 230 Li (10.1016/j.compbiomed.2014.08.006_bib47) 2007 Elis (10.1016/j.compbiomed.2014.08.006_bib27) 2002; 69 Breiman (10.1016/j.compbiomed.2014.08.006_bib13) 1984 Clarkson (10.1016/j.compbiomed.2014.08.006_bib16) 2005 Yasui (10.1016/j.compbiomed.2014.08.006_bib87) 2003; 4 Kirmiz (10.1016/j.compbiomed.2014.08.006_bib40) 2007; 6 Pastor (10.1016/j.compbiomed.2014.08.006_bib65) 2009; 23 Hahn (10.1016/j.compbiomed.2014.08.006_bib28) 1999; 214 Hilario (10.1016/j.compbiomed.2014.08.006_bib34) 2004; 2 Hahn (10.1016/j.compbiomed.2014.08.006_bib30) 1999; 214 Hoffman (10.1016/j.compbiomed.2014.08.006_bib36) 2002; 3 Lancashire (10.1016/j.compbiomed.2014.08.006_bib44) 2005; 2 Fisher (10.1016/j.compbiomed.2014.08.006_bib20) 1936; 7 Yu (10.1016/j.compbiomed.2014.08.006_bib88) 2005; 68 Ball (10.1016/j.compbiomed.2014.08.006_bib7) 2002; 18 Buhmann (10.1016/j.compbiomed.2014.08.006_bib14) 2003 Matharoo-Ball (10.1016/j.compbiomed.2014.08.006_bib51) 2008; 6 Wagner (10.1016/j.compbiomed.2014.08.006_bib83) 2004; 5 10.1016/j.compbiomed.2014.08.006_bib2 Guan (10.1016/j.compbiomed.2014.08.006_bib29) 2009; 10 Marconato (10.1016/j.compbiomed.2014.08.006_bib54) 2013; 31 Markey (10.1016/j.compbiomed.2014.08.006_bib50) 2003; 3 |
| References_xml | – volume: 3 start-page: 1716 year: 2003 end-page: 1719 ident: bib33 article-title: Machine learning approaches to lung cancer prediction from mass spectra publication-title: Proteomics – volume: 19 start-page: 1636 year: 2003 end-page: 1643 ident: bib85 article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data publication-title: Bioinformatics – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib20 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – volume: 3 start-page: 1692 year: 2003 end-page: 1698 ident: bib82 article-title: Protocols for disease classification from mass spectrometry data publication-title: Proteomics – volume: 185 start-page: 1 year: 2010 end-page: 3 ident: bib59 article-title: Biomarkers in veterinary medicine publication-title: Vet. J. – volume: 108 start-page: 3342 year: 2011 end-page: 3347 ident: bib15 article-title: Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 1710 year: 2003 end-page: 1715 ident: bib62 article-title: Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum publication-title: Proteomics – volume: 19 start-page: 865 year: 2005 end-page: 870 ident: bib77 article-title: Preliminary studies of serum acute-phase protein concentration in hematologic and neoplastic diseases of the dog publication-title: J. Vet. Int. Med. – volume: 73 start-page: 113 year: 1978 end-page: 121 ident: bib19 article-title: Regression and ANOVA with zero-one data publication-title: J. Am. Stat. Assoc. – volume: 4 start-page: 2320 year: 2004 end-page: 2332 ident: bib66 article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents publication-title: Proteomics – volume: 13 start-page: 2496 year: 2007 end-page: 2503 ident: bib52 article-title: Proteomics of canine lymphoma identifies potential cancer-specific protein markers publication-title: Clin. Cancer Res. – reference: I. Alexandrakis, The use of CART algorithms to combine serum acute phase protein levels as a diagnostic aid in canine lymphoma, in: M. Klinkon, et al. (Ed.), Proceedings of 15th Congress of the International Society for Animal Clinical Pathology, 14th Conference of the European Society of Veterinary Clinical Pathology, (Ljubljana, Slovenia, 3rd–7th July, 2012) Ljubljana: Veterinary Faculty, 2012, p. 65 . – volume: 8 start-page: 1625 year: 2007 end-page: 1657 ident: bib73 article-title: Handling missing values when applying classification models publication-title: J. Mach. Learn. Res. – volume: 196 start-page: 320 year: 2013 end-page: 324 ident: bib5 article-title: Changes in the serum proteome of canine lymphoma identified by electrophoresis and mass spectrometry publication-title: Vet. J. – volume: 69 start-page: 41 year: 2002 end-page: 44 ident: bib27 article-title: Detection of relapse in non-Hodgkin׳s lymphoma publication-title: Am. J. Hematol. – volume: 23 start-page: 301 year: 2009 end-page: 310 ident: bib65 article-title: Genetic and environmental risk indicators in canine non-hodgkin׳s lymphomas publication-title: J. Vet. Int. Med. – volume: 70 start-page: 8309 year: 2010 end-page: 8318 ident: bib4 article-title: Early detection of recurrent breast cancer using metabolite profiling publication-title: Cancer Res. – volume: 185 start-page: 10 year: 2010 end-page: 14 ident: bib32 article-title: Biomarkers in veterinary cancer screening publication-title: Vet. J. – volume: 3 start-page: 1667 year: 2003 end-page: 1672 ident: bib6 article-title: A comprehensive approach to the analysis of matrix assisted laser desorption/ionization-time of flight proteomics spectra from serum samples publication-title: Proteomics – volume: 10 start-page: 259 year: 2009 ident: bib29 article-title: Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines publication-title: BMC Bioinformat. – volume: 214 start-page: 1023 year: 1999 end-page: 1025 ident: bib28 article-title: Serum alpha 1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin publication-title: J. Am. Vet. Med. Assoc. – volume: 39 start-page: 227 year: 2006 end-page: 248 ident: bib74 article-title: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples publication-title: J. Biomed. Informat. – year: 2001 ident: bib10 article-title: Probabilistic Risk Analysis: Foundations and Methods – volume: 203 start-page: 1144 year: 1993 end-page: 1146 ident: bib63 article-title: Concentration of alpha 1-acid glycoprotein in dogs with malignant neoplasia publication-title: J. Am. Vet. Med. Assoc. – volume: 19 start-page: ii93 year: 2003 end-page: ii102 ident: bib45 article-title: Discovery of significant rules for classifying cancer diagnosis data publication-title: Bioinformatics – volume: 196 start-page: 286 year: 2013 end-page: 287 ident: bib58 article-title: Exploring the serum proteome in dogs publication-title: Vet. J. – volume: 58 start-page: 109 year: 1999 end-page: 128 ident: bib39 article-title: On the boosting ability of top-down decision tree learning algorithms publication-title: J. Comput. Syst. Sci. – volume: 21 start-page: 3138 year: 2005 end-page: 3145 ident: bib23 article-title: Proteomic mass spectra classification using decision tree based ensemble methods publication-title: Bioinformatics – volume: 230 start-page: 522 year: 2007 end-page: 526 ident: bib55 article-title: Serum creative protein concentrations in dogs with multicentric lymphoma undergoing chemotherapy publication-title: J. Am. Vet. Med. Assoc. – volume: 7 start-page: 92 year: 2009 end-page: 105 ident: bib69 article-title: Proteomic identification and profiling of canine lymphoma patients publication-title: Vet. Comp. Oncol. – year: 2000 ident: bib37 article-title: Applied Logistic Regression – volume: 100 start-page: 12343 year: 2003 end-page: 12348 ident: bib42 article-title: Identification of biomarkers for ovarian cancer using strong anion-exchange proteinchips publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 55 year: 2011 ident: bib60 article-title: Enriched sera protein profiling for detection of non-small cell lung cancer biomarkers publication-title: Prot. Sci. – volume: 5 start-page: 26 year: 2004 ident: bib83 article-title: Computational protein biomarker prediction publication-title: BMC Bioinformat. – volume: 68 start-page: 405 year: 2007 end-page: 410 ident: bib21 article-title: Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry publication-title: Am. J. Vet. Res. – start-page: 105 year: 1974 end-page: 142 ident: bib53 article-title: Conditional logit analysis of qualitative choice behaviour publication-title: Frontiers in Econometrics – volume: 62 start-page: 3609 year: 2002 end-page: 3614 ident: bib1 article-title: Serum protein fingerprinting coupled with a pattern matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men publication-title: Cancer Res. – year: 2003 ident: bib14 article-title: Radial Basis Functions: Theory and Implementations – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: bib49 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 10 start-page: 860 year: 2004 end-page: 868 ident: bib41 article-title: Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry publication-title: Clin. Cancer Res. – volume: 4 start-page: 449 year: 2003 end-page: 463 ident: bib87 article-title: A data-analytic strategy for protein biomarker discovery publication-title: Biostatistics – volume: 5 start-page: e15003 year: 2010 ident: bib64 article-title: Unlocking biomarker discovery publication-title: PloS one – reference: T.G. Dietterich, M. Kearns, Y. Mansour, Applying the weak learning framework to understand and improve C4.5, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 1996, pp. 96–104. – volume: 9 start-page: 164 year: 2009 ident: bib38 article-title: Do serum biomarkers really measure breast cancer? publication-title: BMC Cancer – volume: 13 start-page: 163 year: 1991 end-page: 174 ident: bib22 article-title: An iterative growing and pruning algorithm for classification tree design publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 490 start-page: 012135 year: 2014 ident: bib56 article-title: Computational diagnosis of canine lymphoma publication-title: J. Phys.: Conf. Ser. – volume: 18 start-page: 395 year: 2002 end-page: 404 ident: bib7 article-title: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers publication-title: Bioinformatics – volume: 11 start-page: 907 year: 2004 end-page: 914 ident: bib9 article-title: Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer publication-title: Ann. Surg. Oncol. – volume: 103 start-page: 542 year: 2010 end-page: 551 ident: bib67 article-title: Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors publication-title: Br. J. Cancer – volume: 73 start-page: 2317 year: 2010 end-page: 2331 ident: bib86 article-title: A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data publication-title: Neurocomputing – volume: vol. 13 start-page: 119 year: 2005 end-page: 141 ident: bib84 article-title: What is systems biology? publication-title: From genes to function and back, Topics in Current Genetics (Systems Biology) – volume: 3 year: 2002 ident: bib36 article-title: Prostate-specific antigen testing accuracy in community practice publication-title: BMC Family Pract. – volume: 2 start-page: 15 year: 2005 end-page: 29 ident: bib44 article-title: Current developments in the analysis of proteomic data: artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer publication-title: Curr. Proteomics – volume: 11 start-page: 109 year: 2010 ident: bib76 article-title: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data publication-title: BMC Bioinformat. – volume: 3 start-page: 1704 year: 2003 end-page: 1709 ident: bib79 article-title: Multiple approaches to data-mining of proteomics data based on statistical and pattern classification methods publication-title: Proteomics – year: 1992 ident: bib72 article-title: Multivariate Density Estimation: Theory Practice and Visualization – volume: 20 year: 2010 ident: bib25 article-title: Principal manifolds and graphs in practice publication-title: Int. J. Neural Syst. – volume: 61 start-page: 401 year: 1954 end-page: 409 ident: bib78 article-title: A decision-making theory of visual detection publication-title: Psychol. Rev. – start-page: 699 year: 2001 end-page: 733 ident: bib81 article-title: Canine lymphoma and lymphoid leukemias publication-title: Withrow and MacEwen׳s Small Animal Clinical Oncology – volume: 6 start-page: 43 year: 2007 end-page: 55 ident: bib40 article-title: A serum glycomics approach to breast cancer biomarkers publication-title: Mol. Cellular Proteomics – volume: 18 start-page: 607 year: 1996 end-page: 616 ident: bib31 article-title: Discriminant adaptive nearest neighbor classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 98 start-page: 37 year: 2007 end-page: 43 ident: bib75 article-title: Diagnosis of gastric cancer using decision tree classification of mass spectral data publication-title: Cancer Sci. – volume: 12 start-page: 29 year: 2014 end-page: 36 ident: bib3 article-title: VEGF and MMP-9 publication-title: Vet. Comp. Oncol. – volume: 21 start-page: 1364 year: 2007 end-page: 1373 ident: bib26 article-title: Comparison of 3 protocols for treatment after induction of remission in dogs with lymphoma publication-title: J. Vet. Int. Med. – volume: 174 start-page: 188 year: 2007 end-page: 192 ident: bib57 article-title: Changes in C-reactive protein and haptoglobin in dogs with lymphatic neoplasia publication-title: Vet. J. – volume: 20 start-page: 374 year: 2004 end-page: 380 ident: bib11 article-title: Is cross-validation valid for small-sample microarray classification? publication-title: Bioinformatics – volume: 3 start-page: 1678 year: 2003 end-page: 1679 ident: bib50 article-title: Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer publication-title: Proteomics – volume: 2 start-page: 214 year: 2004 end-page: 222 ident: bib34 article-title: Data mining for mass-spectra based diagnosis and biomarker discovery publication-title: Drug Discov. Today: Biosilico – start-page: 165 year: 2010 end-page: 192 ident: bib70 article-title: Decision trees publication-title: Data Mining and Knowledge Discovery Handbook – volume: 214 start-page: 1023 year: 1999 end-page: 1025 ident: bib30 article-title: Serum a1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin publication-title: J. Am. Vet. Med. Assoc. – volume: 10 start-page: 925 year: 2003 end-page: 946 ident: bib48 article-title: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum publication-title: J. Comput. Biol. – volume: 2 start-page: 13 year: 2006 end-page: 32 ident: bib80 article-title: Data mining in proteomic mass spectrometry publication-title: Clin. Prot. – start-page: 15 year: 2005 end-page: 59 ident: bib16 article-title: Nearest-neighbor searching and metric space dimensions publication-title: Nearest-Neighbor Methods in Learning and Vision – volume: vol. 105 start-page: 113 year: 2012 end-page: 150 ident: bib17 article-title: Acute phase proteins in animals publication-title: Animal Models of Molecular Pathology, Progress in Molecular Biology and Translational Science – volume: 68 start-page: 79 year: 2005 end-page: 86 ident: bib88 article-title: Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification publication-title: Oncology – volume: 9 start-page: 102 year: 2008 end-page: 118 ident: bib35 article-title: Approaches to dimensionality reduction in proteomic biomarker studies publication-title: Brief. Bioinformat. – year: 2007 ident: bib47 article-title: Nonparametric Econometrics: Theory and Practice – volume: 10 start-page: 315 year: 2009 end-page: 329 ident: bib43 article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies publication-title: Brief. Bioinformat. – volume: 65 start-page: 1471 year: 2013 end-page: 1482 ident: bib89 article-title: Data complexity measured by principal graphs publication-title: Comput. Math. Appl. – volume: 32 start-page: 71 year: 2004 end-page: 83 ident: bib46 article-title: Data mining techniques for cancer detection using serum proteomic profiling publication-title: Artif. Intell. Med. – volume: 99 start-page: 267 year: 2005 end-page: 277 ident: bib71 article-title: Potential markers that complement expression of CA125 in epithelial ovarian cancer publication-title: Gynecol. Oncol. – year: 1984 ident: bib13 article-title: Classification and Regression Trees – volume: 31 start-page: 1 year: 2013 end-page: 9 ident: bib54 article-title: The dog as a possible animal model for human non-Hodgkin lymphoma publication-title: Hematol. Oncol. – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: bib68 article-title: Simplifying decision trees publication-title: Int. J. Man-Mach. Stud. – volume: vol. 58 year: 2008 ident: bib24 publication-title: Principal Manifolds for Data Visualisation and Dimension Reduction, LNCSE – volume: 25 start-page: 3151 year: 2009 end-page: 3157 ident: bib61 article-title: Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification publication-title: Bioinformatics – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib12 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 6 start-page: 224 year: 2008 end-page: 247 ident: bib51 article-title: Serum biomarker profiling in cancer studies publication-title: Vet. Comp. Oncol. – year: 2012 ident: bib8 article-title: Computational Systems Biology of Cancer – volume: 6 start-page: 43 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib40 article-title: A serum glycomics approach to breast cancer biomarkers publication-title: Mol. Cellular Proteomics doi: 10.1074/mcp.M600171-MCP200 – volume: 69 start-page: 41 issue: 1 year: 2002 ident: 10.1016/j.compbiomed.2014.08.006_bib27 article-title: Detection of relapse in non-Hodgkin׳s lymphoma publication-title: Am. J. Hematol. doi: 10.1002/ajh.10017 – volume: 10 start-page: 860 issue: 3 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib41 article-title: Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-1167-3 – volume: 70 start-page: 8309 issue: 21 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib4 article-title: Early detection of recurrent breast cancer using metabolite profiling publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1319 – volume: 185 start-page: 10 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib32 article-title: Biomarkers in veterinary cancer screening publication-title: Vet. J. doi: 10.1016/j.tvjl.2010.04.005 – volume: 62 start-page: 3609 issue: 13 year: 2002 ident: 10.1016/j.compbiomed.2014.08.006_bib1 article-title: Serum protein fingerprinting coupled with a pattern matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men publication-title: Cancer Res. – year: 2001 ident: 10.1016/j.compbiomed.2014.08.006_bib10 – volume: vol. 105 start-page: 113 year: 2012 ident: 10.1016/j.compbiomed.2014.08.006_bib17 article-title: Acute phase proteins in animals – volume: 9 start-page: 164 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib38 article-title: Do serum biomarkers really measure breast cancer? publication-title: BMC Cancer doi: 10.1186/1471-2407-9-164 – volume: 3 start-page: 1716 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib33 article-title: Machine learning approaches to lung cancer prediction from mass spectra publication-title: Proteomics doi: 10.1002/pmic.200300523 – volume: 108 start-page: 3342 issue: 8 year: 2011 ident: 10.1016/j.compbiomed.2014.08.006_bib15 article-title: Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013699108 – volume: 3 start-page: 1678 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib50 article-title: Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer publication-title: Proteomics doi: 10.1002/pmic.200300521 – volume: 19 start-page: 1636 issue: 13 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib85 article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg210 – volume: 18 start-page: 607 issue: 6 year: 1996 ident: 10.1016/j.compbiomed.2014.08.006_bib31 article-title: Discriminant adaptive nearest neighbor classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.506411 – year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib14 – volume: 2 start-page: 49 issue: 1 year: 1936 ident: 10.1016/j.compbiomed.2014.08.006_bib49 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 490 start-page: 012135 year: 2014 ident: 10.1016/j.compbiomed.2014.08.006_bib56 article-title: Computational diagnosis of canine lymphoma publication-title: J. Phys.: Conf. Ser. – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.compbiomed.2014.08.006_bib20 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 68 start-page: 405 issue: 4 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib21 article-title: Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry publication-title: Am. J. Vet. Res. doi: 10.2460/ajvr.68.4.405 – year: 2012 ident: 10.1016/j.compbiomed.2014.08.006_bib8 – volume: 6 start-page: 224 issue: 4 year: 2008 ident: 10.1016/j.compbiomed.2014.08.006_bib51 article-title: Serum biomarker profiling in cancer studies publication-title: Vet. Comp. Oncol. doi: 10.1111/j.1476-5829.2008.00171.x – volume: 5 start-page: 26 issue: 1 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib83 article-title: Computational protein biomarker prediction publication-title: BMC Bioinformat. doi: 10.1186/1471-2105-5-26 – volume: 9 start-page: 102 issue: 2 year: 2008 ident: 10.1016/j.compbiomed.2014.08.006_bib35 article-title: Approaches to dimensionality reduction in proteomic biomarker studies publication-title: Brief. Bioinformat. doi: 10.1093/bib/bbn005 – volume: 32 start-page: 71 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib46 article-title: Data mining techniques for cancer detection using serum proteomic profiling publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.03.006 – volume: 230 start-page: 522 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib55 article-title: Serum creative protein concentrations in dogs with multicentric lymphoma undergoing chemotherapy publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.230.4.522 – volume: 3 start-page: 1667 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib6 article-title: A comprehensive approach to the analysis of matrix assisted laser desorption/ionization-time of flight proteomics spectra from serum samples publication-title: Proteomics doi: 10.1002/pmic.200300522 – year: 1984 ident: 10.1016/j.compbiomed.2014.08.006_bib13 – year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib47 – volume: 7 start-page: 92 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib69 article-title: Proteomic identification and profiling of canine lymphoma patients publication-title: Vet. Comp. Oncol. doi: 10.1111/j.1476-5829.2009.00165.x – volume: 58 start-page: 109 issue: 1 year: 1999 ident: 10.1016/j.compbiomed.2014.08.006_bib39 article-title: On the boosting ability of top-down decision tree learning algorithms publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1543 – start-page: 165 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib70 article-title: Decision trees – volume: 3 issue: 19 year: 2002 ident: 10.1016/j.compbiomed.2014.08.006_bib36 article-title: Prostate-specific antigen testing accuracy in community practice publication-title: BMC Family Pract. – volume: 4 start-page: 449 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib87 article-title: A data-analytic strategy for protein biomarker discovery publication-title: Biostatistics doi: 10.1093/biostatistics/4.3.449 – volume: 25 start-page: 3151 issue: 23 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib61 article-title: Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp558 – volume: 100 start-page: 12343 issue: 21 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib42 article-title: Identification of biomarkers for ovarian cancer using strong anion-exchange proteinchips publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2033602100 – volume: 99 start-page: 267 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib71 article-title: Potential markers that complement expression of CA125 in epithelial ovarian cancer publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2005.06.040 – volume: 13 start-page: 2496 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib52 article-title: Proteomics of canine lymphoma identifies potential cancer-specific protein markers publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2699 – volume: 5 start-page: e15003 issue: 12 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib64 article-title: Unlocking biomarker discovery publication-title: PloS one doi: 10.1371/journal.pone.0015003 – volume: 12 start-page: 29 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2014.08.006_bib3 article-title: VEGF and MMP-9 publication-title: Vet. Comp. Oncol. doi: 10.1111/j.1476-5829.2012.00328.x – volume: 20 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib25 article-title: Principal manifolds and graphs in practice publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065710002383 – volume: 214 start-page: 1023 issue: 7 year: 1999 ident: 10.1016/j.compbiomed.2014.08.006_bib28 article-title: Serum alpha 1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.1999.214.07.1023 – volume: 23 start-page: 301 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib65 article-title: Genetic and environmental risk indicators in canine non-hodgkin׳s lymphomas publication-title: J. Vet. Int. Med. doi: 10.1111/j.1939-1676.2008.0255.x – start-page: 699 year: 2001 ident: 10.1016/j.compbiomed.2014.08.006_bib81 article-title: Canine lymphoma and lymphoid leukemias – volume: 11 start-page: 907 issue: 10 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib9 article-title: Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer publication-title: Ann. Surg. Oncol. doi: 10.1245/ASO.2004.03.557 – ident: 10.1016/j.compbiomed.2014.08.006_bib2 – volume: 4 start-page: 2320 issue: 8 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib66 article-title: Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents publication-title: Proteomics doi: 10.1002/pmic.200400857 – volume: 27 start-page: 221 year: 1987 ident: 10.1016/j.compbiomed.2014.08.006_bib68 article-title: Simplifying decision trees publication-title: Int. J. Man-Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – volume: 3 start-page: 1710 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib62 article-title: Generalizable mass spectrometry mining used to identify disease state biomarkers from blood serum publication-title: Proteomics doi: 10.1002/pmic.200300516 – volume: 21 start-page: 3138 issue: 15 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib23 article-title: Proteomic mass spectra classification using decision tree based ensemble methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti494 – year: 2000 ident: 10.1016/j.compbiomed.2014.08.006_bib37 – volume: 18 start-page: 395 issue: 3 year: 2002 ident: 10.1016/j.compbiomed.2014.08.006_bib7 article-title: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.395 – volume: 3 start-page: 1692 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib82 article-title: Protocols for disease classification from mass spectrometry data publication-title: Proteomics doi: 10.1002/pmic.200300519 – volume: 65 start-page: 1471 issue: 10 year: 2013 ident: 10.1016/j.compbiomed.2014.08.006_bib89 article-title: Data complexity measured by principal graphs publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.12.009 – volume: 2 start-page: 214 issue: 5 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib34 article-title: Data mining for mass-spectra based diagnosis and biomarker discovery publication-title: Drug Discov. Today: Biosilico doi: 10.1016/S1741-8364(04)02416-3 – volume: 19 start-page: ii93 issue: Suppl. 2 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib45 article-title: Discovery of significant rules for classifying cancer diagnosis data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1066 – start-page: 105 year: 1974 ident: 10.1016/j.compbiomed.2014.08.006_bib53 article-title: Conditional logit analysis of qualitative choice behaviour – volume: 10 start-page: 259 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib29 article-title: Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines publication-title: BMC Bioinformat. doi: 10.1186/1471-2105-10-259 – volume: 9 start-page: 55 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2014.08.006_bib60 article-title: Enriched sera protein profiling for detection of non-small cell lung cancer biomarkers publication-title: Prot. Sci. doi: 10.1186/1477-5956-9-55 – volume: 203 start-page: 1144 year: 1993 ident: 10.1016/j.compbiomed.2014.08.006_bib63 article-title: Concentration of alpha 1-acid glycoprotein in dogs with malignant neoplasia publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.1993.203.08.1144 – volume: 174 start-page: 188 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib57 article-title: Changes in C-reactive protein and haptoglobin in dogs with lymphatic neoplasia publication-title: Vet. J. doi: 10.1016/j.tvjl.2006.05.018 – volume: 68 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib88 article-title: Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification publication-title: Oncology doi: 10.1159/000084824 – volume: 98 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib75 article-title: Diagnosis of gastric cancer using decision tree classification of mass spectral data publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2006.00339.x – volume: 19 start-page: 865 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib77 article-title: Preliminary studies of serum acute-phase protein concentration in hematologic and neoplastic diseases of the dog publication-title: J. Vet. Int. Med. doi: 10.1111/j.1939-1676.2005.tb02779.x – volume: 10 start-page: 315 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2014.08.006_bib43 article-title: An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies publication-title: Brief. Bioinformat. doi: 10.1093/bib/bbp012 – volume: 61 start-page: 401 year: 1954 ident: 10.1016/j.compbiomed.2014.08.006_bib78 article-title: A decision-making theory of visual detection publication-title: Psychol. Rev. doi: 10.1037/h0058700 – volume: 31 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2014.08.006_bib54 article-title: The dog as a possible animal model for human non-Hodgkin lymphoma publication-title: Hematol. Oncol. doi: 10.1002/hon.2017 – volume: 73 start-page: 2317 issue: 13 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib86 article-title: A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.022 – start-page: 15 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib16 article-title: Nearest-neighbor searching and metric space dimensions – volume: 196 start-page: 286 year: 2013 ident: 10.1016/j.compbiomed.2014.08.006_bib58 article-title: Exploring the serum proteome in dogs publication-title: Vet. J. doi: 10.1016/j.tvjl.2013.01.006 – volume: 2 start-page: 15 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib44 article-title: Current developments in the analysis of proteomic data: artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer publication-title: Curr. Proteomics doi: 10.2174/1570164053507808 – volume: 10 start-page: 925 issue: 6 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib48 article-title: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum publication-title: J. Comput. Biol. doi: 10.1089/106652703322756159 – volume: 3 start-page: 1704 issue: 9 year: 2003 ident: 10.1016/j.compbiomed.2014.08.006_bib79 article-title: Multiple approaches to data-mining of proteomics data based on statistical and pattern classification methods publication-title: Proteomics doi: 10.1002/pmic.200300512 – volume: vol. 58 year: 2008 ident: 10.1016/j.compbiomed.2014.08.006_bib24 – volume: vol. 13 start-page: 119 year: 2005 ident: 10.1016/j.compbiomed.2014.08.006_bib84 article-title: What is systems biology? – volume: 196 start-page: 320 year: 2013 ident: 10.1016/j.compbiomed.2014.08.006_bib5 article-title: Changes in the serum proteome of canine lymphoma identified by electrophoresis and mass spectrometry publication-title: Vet. J. doi: 10.1016/j.tvjl.2012.12.010 – volume: 8 start-page: 1625 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib73 article-title: Handling missing values when applying classification models publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 1364 issue: 6 year: 2007 ident: 10.1016/j.compbiomed.2014.08.006_bib26 article-title: Comparison of 3 protocols for treatment after induction of remission in dogs with lymphoma publication-title: J. Vet. Int. Med. doi: 10.1111/j.1939-1676.2007.tb01960.x – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.compbiomed.2014.08.006_bib12 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – year: 1992 ident: 10.1016/j.compbiomed.2014.08.006_bib72 – volume: 13 start-page: 163 issue: 2 year: 1991 ident: 10.1016/j.compbiomed.2014.08.006_bib22 article-title: An iterative growing and pruning algorithm for classification tree design publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.67645 – volume: 185 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib59 article-title: Biomarkers in veterinary medicine publication-title: Vet. J. doi: 10.1016/j.tvjl.2010.04.003 – volume: 11 start-page: 109 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib76 article-title: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data publication-title: BMC Bioinformat. doi: 10.1186/1471-2105-11-109 – volume: 39 start-page: 227 issue: 2 year: 2006 ident: 10.1016/j.compbiomed.2014.08.006_bib74 article-title: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples publication-title: J. Biomed. Informat. doi: 10.1016/j.jbi.2005.04.002 – volume: 103 start-page: 542 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2014.08.006_bib67 article-title: Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6605810 – volume: 214 start-page: 1023 year: 1999 ident: 10.1016/j.compbiomed.2014.08.006_bib30 article-title: Serum a1-acid glycoprotein concentrations before and after relapse in dogs with lymphoma treated with doxorubicin publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.1999.214.07.1023 – ident: 10.1016/j.compbiomed.2014.08.006_bib18 – volume: 2 start-page: 13 issue: 1–2 year: 2006 ident: 10.1016/j.compbiomed.2014.08.006_bib80 article-title: Data mining in proteomic mass spectrometry publication-title: Clin. Prot. doi: 10.1385/CP:2:1:13 – volume: 73 start-page: 113 year: 1978 ident: 10.1016/j.compbiomed.2014.08.006_bib19 article-title: Regression and ANOVA with zero-one data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1978.10480013 – volume: 20 start-page: 374 issue: 3 year: 2004 ident: 10.1016/j.compbiomed.2014.08.006_bib11 article-title: Is cross-validation valid for small-sample microarray classification? publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 |
| SSID | ssj0004030 |
| Score | 2.0812743 |
| Snippet | The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be used for... Abstract The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins (C-Reactive Protein and Haptoglobin). This test can be... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 279 |
| SubjectTerms | Advanced KNN Age Algorithms Animals Biomarkers Cancer Cancer diagnosis Classification Data analysis Data Mining Decision tree Decision Trees Diagnosis, Computer-Assisted - methods Dogs Female Internal Medicine Lymphoma Lymphoma - diagnosis Lymphoma - epidemiology Lymphoma - veterinary Male Medical screening Other Proteins Radial basis functions Risk Assessment Risk evaluation Sensitivity and Specificity Tumors Vascular endothelial growth factor Veterinary medicine |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhzY9lLZJm03SokKvTixZslbkEEJICIX01MDexNjSwpatd8nuEnLpb8-MJXsbEspCb35o_BiPZj7b38ww9g1AKyhDngVZQ6a0NpktapmJYOXQi9rWbTufmx_l9a36PtKjLXbR5cIQrTL5_ujTW2-dtpwkbZ7MJxPK8cVXCcq8VG2nyRFlsCtDXQyO_6xpHiovYhoK-hsandg8keNFtO2Y5k4kL9UW86TeRy-HqOcQ9A17vWrm8HAP0-lfYenqHXub8CQ_j5f8nm2F5gN7dZP-mO-ys9i2IX3y4z4y6yYLDo3nxCvn63rfHAEsR1WjIJ8-4GOe_YY9dnt1-fPiOktNE7Ia3w2WmZGgautNCGOjQZjKeOnLcpwH4XG-Se8V2ABgMbRXYVjpCpc1RjIfoBgXRfGRbTezJuwzrvKx9gEBjsIYXlqwKCqNAFsJVQ99OWCm05OrU0VxamwxdR117Jdba9iRhh31vMxRUvSS81hVYwMZ2z0K12WNop9z6Po3kDUvyYZFmrALJ9xCutw9M6oBO-0ln9jlhuc96mzGrU9VUpExRMZywL72u3FW068aaMJshWM0IkUE03n-jzElQmeBR8Mxn6I99sqkfGTyxgMmewPdWNMH_3XPh2yH1iLh8YhtL-9W4TMCt2X1pZ2Zj5UeQVA priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RixMxEB7OHqj3IFo9rZ4SwdfF3Wx20yByqNxxCFdEPelbyCYpKL1ttS1y__5mNslW8Dj6VtpMd5lMJt9uvpkP4I0xlTC1zzPPrclEVclMlZZnhVd87AqrbCfncz6pzy7E52k13YNJqoUhWmXKiV2idgtL78jfIjIR1Kkk58fL3xmpRtHpapLQMFFawb3vWozdgX1OnbEGsP_xZPLl67ZSMi9DUQpmH4EPR5HbExhfROIORe9E-RJda09SQrp5w_ofkB7AvU27NFd_zXz-zyZ1-hAeRHTJPoRweAR7vh3C3fN4fj6E4Q9iv3QluCx9-xiOg7RDfC3IXGDf_Vwx0zpG3HO27QnOEOQynA40ZPMrDIXFpXkCF6cn3z-dZVFYIbP4_LDOJDfCKie9n8nKFLKRjru6nuW-cLgmuXPCKG-Mwu2_8eOmavBzhbud86aclWV5CIN20fpnwEQ-q5xHECRwfmplFJpyWRjVFMKOXT0Cmbynbew6TuIXc53oZb_01u-a_K5JFzNHy6K3XIbOGzvYqDRBOlWWYi7UuD3sYCtvsvWruKhXutArrnP9retpRCW_opM4nY7gXW8ZcUvAIzte9yhFkt5eqo_2Ebzuf8aVT8c5pvWLDY6pEE0i4M7zW8bUCK8L_Dcc8zREae9MqlmmjD0C3oftzp5-fvtdv4D7NDiwHo9gsP6z8S8Rva2bV3FJXgMUa0Pv priority: 102 providerName: ProQuest |
| Title | Computational diagnosis and risk evaluation for canine lymphoma |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001048251400208X https://www.clinicalkey.es/playcontent/1-s2.0-S001048251400208X https://dx.doi.org/10.1016/j.compbiomed.2014.08.006 https://www.ncbi.nlm.nih.gov/pubmed/25194257 https://www.proquest.com/docview/1614096502 https://www.proquest.com/docview/1564354000 https://www.proquest.com/docview/1622611610 http://hdl.handle.net/2381/40283 |
| UnpaywallVersion | submittedVersion |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central (via ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3aWgnGA9-wwqiCxGtK7NhxLB5QQSsFtGoCKpUny4ldCVbSaWmFtof9dq7jJEVsoIqXtFV9E9W-9j1pjs8BeKE1ZzqxUWhprkPGuQhlnNOQWElTQ3KZV3Y-R5NkPGUfZny2A41l3R_yAq6evGSuBO5CN-GItjvQnU6Oh1_9AhuFLK18VZ1ndoj5xGqyjqdwOVa238XuOFys0up01kbXV6CrCPMW3FwXp_r8p14sfqs6ozue_VhWYoWObHIyWK-yQX5xVcrxrz_oLtyuIWcw9DlyD3ZscR9uHNUP1R_Aa-_sUP8rGBhPvvtWBnjCwFHPg40keIAYN8DRwMBgcY6ZsPyhH8J0dPjl7TisfRXCHG8fVqGgmuXSCGvngmsiMmGoSZJ5ZInBKUmNYVparSVW_8ymGc_wPcdiZ6yO53EcP4JOsSzsPgQsmnNjEQMxLPOJ1BJDqSBaZoTlqUl6IJq-VnktOu68LxaqYZd9V5tRUm6UlLPFjDCStJGnXnhjixjZDKdqNpbiUqiwOmwRK66LtWU9p0tFVElVpD5XkkZuxy-rHE5nPXjVRtawxcORLa970OSd2lwqcTpkCJ5pD563X-PEd09zdGGXa2zDEUwi3o6if7RJEF0TPBu2eexzuu1Mt2XZLdg9oG2Sb93TT_4n6CnsuU-eCnkAndXZ2j5DSLfK-rA7uCR4FDOBx3T0rg_d4fuP4wm-vjmcHH_q1_P-F-31TiI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5Nm8TYA4LyY4UBRoLHiMRxklpomjbY1LG1QrChvhkndiVQSQtpNfWf42_jLnZSJKapL3urUl8SnS93n-27-wBea50IndowsLzQgUiSLJBxwYPISt4zUSGLms5nMEz7l-LjKBltwJ-mFobSKhufWDtqMy1oj_wtIhNBnUpCfjD7FRBrFJ2uNhQa2lMrmP26xZgv7DizyytcwlX7px9wvt9wfnJ88b4feJaBoEAwPQ8yrkUhTWbtOEt0lOWZ4SZNx6GNDBooN0ZoabWWGAtz28uTHH8n6PqN1fE4pg1RDAFbIhYSF39bR8fDT59XlZlh7Ipg0NsJXIz5XCKXYUZJ467InlLMRN1KlJiXrg-Q_wPgHdhelDO9vNKTyT9B8eQ-3PNolh0683sAG7bswJ2BP6_vQOcrZdvUJb-sufoQDhyVhN-GZMZl-32vmC4No1x3tupBzhBUM5x-FGSTJZre9Kd-BJe3ouLHsFlOS7sLTITjxFgEXQLtIZVaoijPIi3zSBQ9k3Yha7SnCt_lnMg2JqpJZ_uhVnpXpHdFPJwhSkat5Mx1-lhDRjYTpJpKVvS9CsPRGrLZdbK28k6kUpGquArVl7qHEpUYi5pSddSFd62kx0kO_6z53L3GktTqUe3X1YVX7d_oaej4SJd2usAxCaJXBPhheMOYFOF8hHfDMU-clbbKpBppihBd4K3Zrq3ppze_9UvY7l8MztX56fDsGdwlQZdxuQeb898L-xyR4zx_4T9PBt9u2yP8BU3xgoc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5NQxrwgKDAKAwwEjxGSxwnroXQhBjVxtiEBEN9M47tSKCSFtJq6l_j13EXJykS09SXvVWtr4nOl89f7O_uAF4akwmT-zjy3JpIZJmMVGp5lHjFRy6xyjbtfE7P8qNz8WGSTbbgT5cLQ7LKDhMboHYzS3vk-8hMBFUqifl-2coiPh2OD-a_IuogRSetXTuNECInfnWBr2_1m-NDnOtXnI_ff3l3FLUdBiKLRHoRSW6EVU56X8rMJLKQjrs8L2OfOAxO7pwwyhujcB0s_KjICvycIew7b9Iypc1QhP8bMk0VyQnlRK5zMuM0pL8gzgl8DWtVREFbRnLxkF5P4jLRFBGlnkuXL43_U9_bcHNZzc3qwkyn_yyH47twp-Wx7G0IvHuw5asB7Jy2J_UDGHwlnU2T7Mu6b-_DQWgi0W5AMhd0ft9rZirHSOXO1tXHGdJphhOPhmy6wqCb_TQP4PxaHPwQtqtZ5R8BE3GZOY90S2Ak5MooNOUyMapIhB25fAiy8562bX1zarMx1Z2Q7Yde-12T3zV14IzRMukt56HGxwY2qpsg3eWwIupqXIg2sJWX2fq6hY9aJ7rmOtafm-pJlFwsmmaqkyG87i1bhhSYz4bX3esiSa8v1T9XQ3jR_4wYQwdHpvKzJY7JkLcitY_jK8bkSOQT_DccsxuitHcmZUfT2jAE3oftxp5-fPVdP4cdxAH98fjs5AncIrsgtdyD7cXvpX-KlHFRPGueTQbfrhsM_gLA6IAh |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dixMxFL2sXdD1we-P6ioRfM06ySSZBh9kEZdF2EXQQn0KmSQFtU6XnRZZf703k8xU3FWKby3NnaHJTe6Zyck5AC-tlcKqUNDAnaVCyorq0nHKguYTz5x2nZ3Pyak6nor3Mznbgd6y7g95gVhPXolYAq_BrpKItkewOz39cPg5LbAFFZPOVzV6ZlPMJ5HJOonCFVnZ6RR75HCJTqszWhtdXYEuI8ybcGPdnNmLH3ax-K3qHN1O7Me2EyuMZJNvB-tVfeB-XpZy_OsfugO3MuQkhylH7sJOaO7B9ZO8qX4f3iRnh_xWkPhEvvvSErwgidRzspEEJ4hxCY4GBpLFBWbC8rt9ANOjd5_eHtPsq0AdPj6saMWtcNpXIcwraVlVV557peZFYB6nJPdeWB2s1Vj96zCpZY2fJRY7H2w5L8vyIYyaZRMeAxHFXPqAGEhgmVfaagzlFbO6ZsJNvBpD1fe1cVl0PHpfLEzPLvtqNqNk4iiZaItZYCQbIs-S8MYWMbofTtMfLMWl0GB12CK2uio2tHlOt4aZlpvCfOwkjeKJX9E5nM7G8HqIzLAlwZEt77vf553Z3EpFHTIEz3wML4afceLH3RzbhOUa20gEk4i3i-IfbRSia4ZXwzaPUk4PnRmPLMcFewx8SPKte_rJ_wQ9hb34LVEh92G0Ol-HZwjpVvXzPKt_AQUKSC8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+diagnosis+and+risk+evaluation+for+canine+lymphoma&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Mirkes%2C+E.M.&rft.au=Alexandrakis%2C+I.&rft.au=Slater%2C+K.&rft.au=Tuli%2C+R.&rft.date=2014-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=53&rft.spage=279&rft.epage=290&rft_id=info:doi/10.1016%2Fj.compbiomed.2014.08.006&rft.externalDocID=S001048251400208X |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482514X00090%2Fcov150h.gif |