基于贝叶斯网的航班过站时间动态估计
U8; 一架飞机每天要执行多个航班,从而形成航班链.前序航班进港后,若估计出飞机在机场的过站时间,后续航班的离港时间便可较准确给出.文中选取了对航班过站时间影响较为显著的几个因素,运用历史数据,采用最大似然估计进行贝叶斯网参数学习并获得不同情况下过站时间的估计值.同时,利用贝叶斯网增量学习的特性,运用航班增量数据基于贝叶斯估计修正贝叶斯网参数,并用新的学习结果更新过站时间估计值.实验数据表明,所提出的方法能较好地对飞机过站时间进行估计.最后,对影响过站时间的各因素进行了灵敏度分析对比....
Saved in:
| Published in | 南京航空航天大学学报 Vol. 47; no. 4; pp. 517 - 524 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国民航大学计算机科学与技术学院,天津,300300
2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1005-2615 |
| DOI | 10.16356/j.1005-2615.2015.04.007 |
Cover
| Abstract | U8; 一架飞机每天要执行多个航班,从而形成航班链.前序航班进港后,若估计出飞机在机场的过站时间,后续航班的离港时间便可较准确给出.文中选取了对航班过站时间影响较为显著的几个因素,运用历史数据,采用最大似然估计进行贝叶斯网参数学习并获得不同情况下过站时间的估计值.同时,利用贝叶斯网增量学习的特性,运用航班增量数据基于贝叶斯估计修正贝叶斯网参数,并用新的学习结果更新过站时间估计值.实验数据表明,所提出的方法能较好地对飞机过站时间进行估计.最后,对影响过站时间的各因素进行了灵敏度分析对比. |
|---|---|
| AbstractList | U8; 一架飞机每天要执行多个航班,从而形成航班链.前序航班进港后,若估计出飞机在机场的过站时间,后续航班的离港时间便可较准确给出.文中选取了对航班过站时间影响较为显著的几个因素,运用历史数据,采用最大似然估计进行贝叶斯网参数学习并获得不同情况下过站时间的估计值.同时,利用贝叶斯网增量学习的特性,运用航班增量数据基于贝叶斯估计修正贝叶斯网参数,并用新的学习结果更新过站时间估计值.实验数据表明,所提出的方法能较好地对飞机过站时间进行估计.最后,对影响过站时间的各因素进行了灵敏度分析对比. |
| Author | 丁建立 曹卫东 赵键涛 |
| AuthorAffiliation | 中国民航大学计算机科学与技术学院,天津,300300 |
| AuthorAffiliation_xml | – name: 中国民航大学计算机科学与技术学院,天津,300300 |
| Author_FL | Zhao Jiantao Ding Jianli Cao Weidong |
| Author_FL_xml | – sequence: 1 fullname: Ding Jianli – sequence: 2 fullname: Zhao Jiantao – sequence: 3 fullname: Cao Weidong |
| Author_xml | – sequence: 1 fullname: 丁建立 – sequence: 2 fullname: 赵键涛 – sequence: 3 fullname: 曹卫东 |
| BookMark | eNrjYmDJy89LZWBQMDTQMzQzNjXTz9IzNDAw1TUyMzTVMzIAEgYmegYG5iwMnHBxDgbe4uLMJAMDQ0MjS6AaTgbjp_N3PdnV92LL3Kf9255NW_9878Tns1pedKx63r_2xf7256tnPpu-7eX0LU-7VjxraHyyZ8OLdQt5GFjTEnOKU3mhNDdDiJtriLOHro-_u6ezo49usqmluW5aiqWJYUqyeaqhRYpFsqFRmnFicnJiiqW5cbJJipGhiWmSeZqhpaVJqrG5mbmZiZGRsaFlipmxUVqqRUqikWWqMTeDOsTY8sS8tMS89Pis_NKiPKCF8XlZGdkZJSA_GpgAfWgMAElgWzg |
| ClassificationCodes | U8 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16356/j.1005-2615.2015.04.007 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Dynamic Estimation About Turnaround Time of Flight Based on Bayesian Network |
| EndPage | 524 |
| ExternalDocumentID | njhkht201504007 |
| GrantInformation_xml | – fundername: 国家自然科学基金; 中国民航科技重大专项; 中央高校基本科研业务费 funderid: (60879015); (MHRD201241); (3122014P004) |
| GroupedDBID | -03 2B. 4A8 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT TN5 U1G U5M |
| ID | FETCH-LOGICAL-c597-fd941dc7e18d8c12f3accad973c4d2145b7f1994e37676422319d632fe8da29e3 |
| ISSN | 1005-2615 |
| IngestDate | Thu May 29 04:00:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 过站时间估计 灵敏度分析 turnaround time estimation incremental learning sensitivity analysis 贝叶斯网 air transport 航空运输 增量学习 Bayesian network |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c597-fd941dc7e18d8c12f3accad973c4d2145b7f1994e37676422319d632fe8da29e3 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_njhkht201504007 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | 南京航空航天大学学报 |
| PublicationTitle_FL | Journal of Nanjing University of Aeronautics & Astronautics |
| PublicationYear | 2015 |
| Publisher | 中国民航大学计算机科学与技术学院,天津,300300 |
| Publisher_xml | – name: 中国民航大学计算机科学与技术学院,天津,300300 |
| SSID | ssib001129201 ssib051370533 ssib009282312 ssib020892855 ssib023167634 ssj0040328 |
| Score | 2.0421088 |
| Snippet | U8; 一架飞机每天要执行多个航班,从而形成航班链.前序航班进港后,若估计出飞机在机场的过站时间,后续航班的离港时间便可较准确给出.文中选取了对航班过站时间影响较为显著... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 517 |
| Title | 基于贝叶斯网的航班过站时间动态估计 |
| URI | https://d.wanfangdata.com.cn/periodical/njhkht201504007 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1005-2615 databaseCode: ADMLS dateStart: 20120201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib020892855 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0OrjAgfEU7zVAz5uycNO7KOzyapClAtF6q3KbhIqkBYJtpeeQEICcaDiQkUlhLghEI9D1UMF4me6D_6CmbG7GwqIhxRFk_F4Mo_EHif2mLFLPmYVz0sYluSiakBEHDZUXsGlxL80hfJz2gxm8Vq0cENcWZbLU9NbtVlLa732fGf9l-tK_sergAO_4irZf_DsmCkgAAb_whk8DOe_8jHPJNctnhieCTyrjGeKJ4LrFIsUFEU8i7iOuGnxLOZJyrWPgAZigcRKcWMQA8QmpeotrmLEmIRrTdVj4qMJEMTZcKOwSHkQitLdmzzxsLrJuPHrIS_Rp1jXCmmaP9zXaJJ_jJHcCEQ6ICYg5SaqAREJIPcfFmKsSBDJk4T4kfgqmZCAYhIPVEOglMAFtNI1ErziiXYCQ33LVzfrn0bsslB6jF25IWNj1ZSYemTjAwrV9XBGIiEzMgzcubkvdkzVx8RWtcwpDfa2xOjPMY1GR5kAXpea_SL0lZGADLGN9WrdD-aFhTGtrPdPNiOpew9FrbORdtWri1ukXYv-U5eICQhtn7jPHCc0ynmbNn4SBownZ3Zvrd5e7SENNvDxNJsN8FvXDJs16eLV65Ng28edzia9gw7wl_I4WA48BZjJqucAcy5Ek2SE0g9jjwYbNm4SmNmR5iY4Md28O5T_8m-kp5V23Srv3qwFhUtH2RE3mpsz9tU8xqbWV4-zw7UcnydY2H-1u7f7dLT9sr-xM3j-cfjl2XDr4ejx2-HG-9HXR8N3LwabO982t_tP3gzuP9j7_Gn04fVJttTKlpoLDbdTSaMDA_JGVWjhF5249KF16_hBFebQMBY6DjuiwK0A2nGFObhLTJ0EA34whS6iMKhKVeSBLsNTbKZ7p1ueZnOF5-UQtatcayXCSLTDIiiCsmjHkcw7Upxhc07jFdcQ3Vs54LCzfyY5xw4hbD8lnmczvbtr5QUIrnvti87L3wEOm5ML |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%B4%9D%E5%8F%B6%E6%96%AF%E7%BD%91%E7%9A%84%E8%88%AA%E7%8F%AD%E8%BF%87%E7%AB%99%E6%97%B6%E9%97%B4%E5%8A%A8%E6%80%81%E4%BC%B0%E8%AE%A1&rft.jtitle=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E4%B8%81%E5%BB%BA%E7%AB%8B&rft.au=%E8%B5%B5%E9%94%AE%E6%B6%9B&rft.au=%E6%9B%B9%E5%8D%AB%E4%B8%9C&rft.date=2015&rft.pub=%E4%B8%AD%E5%9B%BD%E6%B0%91%E8%88%AA%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5%2C300300&rft.issn=1005-2615&rft.volume=47&rft.issue=4&rft.spage=517&rft.epage=524&rft_id=info:doi/10.16356%2Fj.1005-2615.2015.04.007&rft.externalDocID=njhkht201504007 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjhkht%2Fnjhkht.jpg |