聚碳酸酯材料的浓缩风能装置流固耦合分析

浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置在特定风场下进行仿真模拟,得到了浓缩风能装置所处流场的风速和风压分布。将流场计算结果作为载荷加载到浓缩风能装置上,该装置在风中所受最大应力3.267 MPa,远小于拜耳makrolon 2407型聚碳酸酯的屈服应力66 MPa、断裂应力65 MPa以及弯曲强度98 MPa,因此该型号聚碳酸酯在强度上满足浓缩风能装置要求,可以替代目前所用材料冷轧钢板。该研究结果可为后期的结构改进和优化设计提供理论依据和参考。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 2; pp. 191 - 196
Main Author 田德 姬忠涛
Format Journal Article
LanguageChinese
Published 华北电力大学新能源电力系统国家重点实验室,北京,102206%华北电力大学新能源电力系统国家重点实验室,北京 102206 2015
曲靖师范学院物理与电子工程学院,曲靖 655011
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2015.02.027

Cover

Abstract 浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置在特定风场下进行仿真模拟,得到了浓缩风能装置所处流场的风速和风压分布。将流场计算结果作为载荷加载到浓缩风能装置上,该装置在风中所受最大应力3.267 MPa,远小于拜耳makrolon 2407型聚碳酸酯的屈服应力66 MPa、断裂应力65 MPa以及弯曲强度98 MPa,因此该型号聚碳酸酯在强度上满足浓缩风能装置要求,可以替代目前所用材料冷轧钢板。该研究结果可为后期的结构改进和优化设计提供理论依据和参考。
AbstractList 浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置在特定风场下进行仿真模拟,得到了浓缩风能装置所处流场的风速和风压分布。将流场计算结果作为载荷加载到浓缩风能装置上,该装置在风中所受最大应力3.267 MPa,远小于拜耳makrolon 2407型聚碳酸酯的屈服应力66 MPa、断裂应力65 MPa以及弯曲强度98 MPa,因此该型号聚碳酸酯在强度上满足浓缩风能装置要求,可以替代目前所用材料冷轧钢板。该研究结果可为后期的结构改进和优化设计提供理论依据和参考。
F11; 浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置在特定风场下进行仿真模拟,得到了浓缩风能装置所处流场的风速和风压分布。将流场计算结果作为载荷加载到浓缩风能装置上,该装置在风中所受最大应力3.267 MPa,远小于拜耳makrolon 2407型聚碳酸酯的屈服应力66 MPa、断裂应力65 MPa以及弯曲强度98 MPa,因此该型号聚碳酸酯在强度上满足浓缩风能装置要求,可以替代目前所用材料冷轧钢板。该研究结果可为后期的结构改进和优化设计提供理论依据和参考。
Abstract_FL The concentrated wind energy device is the core of the concentrated wind energy generator, and its material can directly affect the widespread application of the concentrated wind energy generator. This research adopts a fluid-solid interaction (FSI) method. At first, a solid-field model of a concentrated wind energy device is created with the help of the CAD software according to the size of the model. And a cylindrical area is established after the solid-field model is imported into the finite element analysis software. The cylindrical area has a radius of 10 m and a length of 30 m and the distance between the inlet of the fluid-field area and the inlet of the concentrated wind energy device is 5 m. Then in the cylindrical area, a geometric fluid field is established through Boolean subtraction of the solid field area. Based on the CFD software analysis of the fluid field, the wind flow is simulated in a specific wind field. A non-uniform tetrahedron meshing and an SSTk-ω turbulence model are adopted. The fluid medium is air, with the temperature of 296.75 K, the density of 1.044 kg/m3, the pressure of 88 800 Pa, the viscosity of 1.85×10-5 kg/(m·s), the thermal conductivity coefficient of 0.02623 W/(m·K), and the constant-pressure specific heat capacity of 1 013 J/(kg·K). During the simulation, the wind speed is set to 25 m/s, the mass flow rate is set to 8199.557 kg/s, and the corresponding turbulent kinetic energy and the specific dissipation rate are respectively 0.714963 m2/s2 and 24.67 s-1. The mass flow inlet and pressure flow outlet are adopted. The roughness height of surface is set to 0.3 mm. When the component residual reaches 1.0×10-4kg/s, the equation converges and the distribution of the wind speed and wind pressure in the fluid field is obtained. The result shows that the maximum wind speed that the central cylinder can work on the wind turbine blades is 35 m/s and the fluent speed increases along the radial direction of the wall, with a maximum speed of 38.8 m/s at the central cylinder. This indicates that the concentrated wind energy device has increased wind speed and concentrated its energy. In the structural static module, the whole solid field is divided into tetrahedral meshes and the size of each structural unit is 0.02 m. The stress cloud plot and the solid-field deformation plot are obtained after the calculated results of the fluid field are loaded on the concentrated wind energy device. The plots show that the maximum stress area is on the outer edge of the diffusion pipe with a maximum stress of 3.267 MPa, which is far less than the yield strength of 66 MPa, the fracture stress of 65 MPa and the bending strength of 98 MPa in the candidate German Bayer’s makrolon-2407 polycarbonate. Therefore, it is concluded that this type of polycarbonate can be used to make the concentrated wind energy device. Meanwhile, the results of the analysis can provide theoretical basis and reference for the later structural improvement and design optimization.
Author 田德 姬忠涛
AuthorAffiliation 华北电力大学新能源电力系统国家重点实验室,北京102206 曲靖师范学院物理与电子工程学院,曲靖655011
AuthorAffiliation_xml – name: 华北电力大学新能源电力系统国家重点实验室,北京,102206%华北电力大学新能源电力系统国家重点实验室,北京 102206; 曲靖师范学院物理与电子工程学院,曲靖 655011
Author_FL Ji Zhongtao
Tian De
Author_FL_xml – sequence: 1
  fullname: Tian De
– sequence: 2
  fullname: Ji Zhongtao
Author_xml – sequence: 1
  fullname: 田德 姬忠涛
BookMark eNo9j81Kw0AUhWdRwVr7EiK4SpyZZCZzl1L8g4Kb7kMmTmKKTrVBtDuLRrqSgCBY0YUFwY0upCBiH6dJ-hZGKsKFA5ePc_iWUEV3tEJolWDTAg7rbTOKY20SjKnBBQGTYsJMTMtzKqj6_19E9TiOJGbEcjC2SRVB0R_mzx-z5HOWvGePaXZ3nw-vsvFt_v06G90Ul5NilOSTt2zcnz58FRcv03QwHVxnT-kyWgi8w1jV_7KGWlubrcaO0dzb3m1sNA2fgWOQgICNqS8ot0FJsC1HMbmvGFXEFx6hgZBAJaGCSKwcYVtcehx8wUExocCqobV57ZmnA0-Hbrtz2tXloKt7oX8uf00xLT1LcmVO-gcdHZ5EJXvcjY68bs_lnFmYQqn9A9lKa1w
ClassificationCodes F11
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2015.02.027
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Fluid-solid interaction modeling analysis of wind-energy concentration devices with polycarbonate
DocumentTitle_FL Fluid-solid interaction modeling analysis of wind-energy concentration devices with polycarbonate
EndPage 196
ExternalDocumentID nygcxb201502027
665302951
GrantInformation_xml – fundername: 国家高技术研究发展计划项目(863计划)
  funderid: (2011AA05A104)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c597-1f19402c82649eb9437e5bde52e1c8a12f8b92b1281b0e78436ba69c869e58e93
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:30:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords wind power
finite element method
fluid-solid interaction
材料
materials
浓缩风能装置,流固耦合,聚碳酸酯
wind-energy concentration device
风能
polycarbonate
有限元法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597-1f19402c82649eb9437e5bde52e1c8a12f8b92b1281b0e78436ba69c869e58e93
Notes 11-2047/S
The concentrated wind energy device is the core of the concentrated wind energy generator, and its material can directly affect the widespread application of the concentrated wind energy generator. This research adopts a fluid-solid interaction (FSI) method. At first, a solid-field model of a concentrated wind energy device is created with the help of the CAD software according to the size of the model. And a cylindrical area is established after the solid-field model is imported into the finite element analysis software. The cylindrical area has a radius of 10 m and a length of 30 m and the distance between the inlet of the fluid-field area and the inlet of the concentrated wind energy device is 5 m. Then in the cylindrical area, a geometric fluid field is established through Boolean subtraction of the solid field area. Based on the CFD software analysis of the fluid field, the wind flow is simulated in a specific wind field. A non-uniform tetrahedron meshing and an SSTk-ω turbulence model are adopt
PageCount 6
ParticipantIDs wanfang_journals_nygcxb201502027
chongqing_primary_665302951
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 华北电力大学新能源电力系统国家重点实验室,北京,102206%华北电力大学新能源电力系统国家重点实验室,北京 102206
曲靖师范学院物理与电子工程学院,曲靖 655011
Publisher_xml – name: 华北电力大学新能源电力系统国家重点实验室,北京,102206%华北电力大学新能源电力系统国家重点实验室,北京 102206
– name: 曲靖师范学院物理与电子工程学院,曲靖 655011
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0949545
Snippet 浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置...
F11; 浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 191
SubjectTerms 有限元法
材料
浓缩风能装置,流固耦合,聚碳酸酯
风能
Title 聚碳酸酯材料的浓缩风能装置流固耦合分析
URI http://lib.cqvip.com/qk/90712X/201502/665302951.html
https://d.wanfangdata.com.cn/periodical/nygcxb201502027
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na1QxMJQWRA_iJ9aq9NCc5NWX95GXHPN231IEPVXobUneZrdetrW2oD1ZtNKTFATB-nGwIHjRgxRE7M_p7vZfOJOXbpciRYUlhHmZZF7m7WQmycwQMpO0hJZRxgNbMhMk2vBAZ2kr0O0sszopDePo73zvPp97kNxdSBfGxt6P3FpaWzWz5fof_Ur-h6sAA76il-w_cHbYKQCgDvyFEjgM5V_xmBYCNEEqFS0yqiKax7SQVKQ0F76iGrTgVNapDF0FfhIbA4pIEJKnVMYIyWtUScRSMRWF6zmmeR0rCEldmzpVhceCcQvAzWmuXOOQKu4gIRUCK1AK7gYtaJWr80gJdk8BXqNFgqQi_UAzvIIbRQFijhBVd31yKhQ8Ovo0HPmAFzqkAvBuu8aAWHOgBlXuZXMYIh_d1ag8Or0IRhnNhRekXkb7leLhiKlcCVxW5fryazersuOeXBZiyaVbFnCA2eEAeLEvdRFbq_AEJwJvc44ZlST6509EuNszTiZUXs8bx-omQ4t6KA8Z5iJgx37IEUYZ4MfmXMpiTCYwvIKEB_CpO433BJ0hM57aO6fRimFAFpe6nUeg3Dhfs25bdzsjatH8BXLe2zPTqvo4L5Kx9cVL5JzqrPiYLvYykYONnf6n74ebPw43v_U-bPfevO3vvOjtve7_-nK4-2rwfH-wu9nf_9rb2zh493Pw7PPB9tbB1svex-0rZL5RzNfmAp-xIyjBMA1Ym8kkjEowWRNpjUzizKamZdPIslJoFrWFkZHBw1sT2kwkMTeay1JwaVNhZXyVjHeXuvYamY60jttCtCJMU29spplugzJtRKJlAtyYJFPDOWguV4FZmkOOTZJpPytN_3d93Ow-7ZRPDE5jiBt-10_tYIqcxZbVXtsNMr66smZvgva5am75j-A3gw1oFw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%81%9A%E7%A2%B3%E9%85%B8%E9%85%AF%E6%9D%90%E6%96%99%E7%9A%84%E6%B5%93%E7%BC%A9%E9%A3%8E%E8%83%BD%E8%A3%85%E7%BD%AE%E6%B5%81%E5%9B%BA%E8%80%A6%E5%90%88%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%94%B0%E5%BE%B7+%E5%A7%AC%E5%BF%A0%E6%B6%9B&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=2&rft.spage=191&rft.epage=196&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2015.02.027&rft.externalDocID=665302951
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg