Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection
The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 7; no. 5; p. e2239 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1935-2735 1935-2727 1935-2735 |
DOI | 10.1371/journal.pntd.0002239 |
Cover
Abstract | The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.
We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.
This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. |
---|---|
AbstractList | Background: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Methodology/Principal Findings: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. Conclusions/Significance: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.BACKGROUNDThe impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.METHODOLOGY/PRINCIPAL FINDINGSWe utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.CONCLUSIONS/SIGNIFICANCEThis data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. Background The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Methodology/Principal Findings We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. Conclusions/Significance This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. Although a link between the increased susceptibility of mosquitoes for arthropod-borne viruses and exposure to lower rearing temperatures has been known for many years, the molecular basis of this has remained unknown. We investigated this phenomenon using an engineered strain of mosquito where the expression of a reporter was dependant on the status of the RNA interference pathway (RNAi). Our studies indicate a correlation between the virus-susceptibility phenotype and temperature-dependent deficiencies in antiviral immunity. Specifically, we demonstrate that RNAi, a critical antiviral immune pathway in mosquito vectors of human disease, is impaired in insects reared at cooler temperatures. This suggests for the first time a molecular explanation for previously described observations, findings that may lead to a better understanding of how global climate change will affect the transmission of mosquito-borne viruses, and new criteria for evaluating genetic control strategies based on RNAi. Our studies also suggest a novel mechanism for arbovirus adaptation to otherwise incompetent vector species. The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors. |
Audience | Academic |
Author | Morazzani, Elaine M. Adelman, Zach N. Samuel, Glady Hazitha Murreddu, Marta G. Anderson, Michelle A. E. Wiley, Michael R. Myles, Kevin M. |
AuthorAffiliation | Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America United States Army Medical Research Institute of Infectious Diseases, United States of America |
AuthorAffiliation_xml | – name: Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America – name: United States Army Medical Research Institute of Infectious Diseases, United States of America |
Author_xml | – sequence: 1 givenname: Zach N. surname: Adelman fullname: Adelman, Zach N. – sequence: 2 givenname: Michelle A. E. surname: Anderson fullname: Anderson, Michelle A. E. – sequence: 3 givenname: Michael R. surname: Wiley fullname: Wiley, Michael R. – sequence: 4 givenname: Marta G. surname: Murreddu fullname: Murreddu, Marta G. – sequence: 5 givenname: Glady Hazitha surname: Samuel fullname: Samuel, Glady Hazitha – sequence: 6 givenname: Elaine M. surname: Morazzani fullname: Morazzani, Elaine M. – sequence: 7 givenname: Kevin M. surname: Myles fullname: Myles, Kevin M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23738025$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A_9B6IDgnizazKZZDK9EJatH4WqoLW3IZM52U3JJtsko1T88Wa629IVQZmLDCfPeXPevDks9px3UBRPMZpi0uDXl34ITtrp2qV-ihCqKtI-KA5wS-ikagjdu_e_XxzGeIkQbSnHj4r9ijSEo4oeFL_m3lsI5Tms1hBkGgLE8gRikp2x5ieUXz7NylOXIGgI4BSU0vW5oALICOXXISpYJzPC6br0ujwx8WbnAlTyofzo49Vgks-qyZcXJkibu3XeNN49Lh5qaSM82a5Hxbd3b8_nHyZnn9-fzmdnE0Vblia6qwjGuMKyJQjVmCLGgGoOvOFKNbXGddcTTUgDvGMsm-4q4JIxTHupAZGj4vlGd219FNuLiwITxjPDGcvE6YbovbwU62BWMlwLL424KfiwEDIkoywIBEzTimumm7auKXQkn0oq6BFWNenG0-hGa3Bref1DWnsniJEYs7sdQYzZiW12ue_NdsqhW0GvwKUg7c4wuzvOLMXCfxeEsabhTRZ4tRUI_mrIGYqVyfFYKx344cYvbXlNG57RFxt0IbMl47TPimrExYyQGtUVIaOT6V-o_PWwMio_R21yfafh5b2GJUibltHbYQw77oLP7nu9M3n7MDNwvAFU8DEG0EKZJEedPIKx_7rJ-o_m_wrgN-0oDjk |
CitedBy_id | crossref_primary_10_1371_journal_pone_0220753 crossref_primary_10_1038_s41598_024_63625_4 crossref_primary_10_21615_cesmedicina_33_1_5 crossref_primary_10_3390_v11090867 crossref_primary_10_3390_v14050880 crossref_primary_10_1021_acs_jafc_3c08665 crossref_primary_10_1186_s12979_024_00465_w crossref_primary_10_1186_s13071_019_3391_1 crossref_primary_10_3389_fmicb_2020_00901 crossref_primary_10_1128_mbio_02021_22 crossref_primary_10_1186_s13071_024_06594_x crossref_primary_10_3390_challe14010008 crossref_primary_10_1073_pnas_2213701120 crossref_primary_10_1038_s41598_021_00432_1 crossref_primary_10_1093_jme_tjv145 crossref_primary_10_1098_rspb_2014_1078 crossref_primary_10_1038_emi_2017_82 crossref_primary_10_1111_1365_2435_12487 crossref_primary_10_3390_microorganisms9081653 crossref_primary_10_3389_finsc_2023_1144072 crossref_primary_10_1098_rspb_2018_0795 crossref_primary_10_1016_j_pt_2023_04_007 crossref_primary_10_1038_s41579_024_01026_0 crossref_primary_10_3390_v11111013 crossref_primary_10_3389_fmicb_2019_00022 crossref_primary_10_3390_ijerph13070734 crossref_primary_10_3390_v10030118 crossref_primary_10_1016_j_celrep_2023_112257 crossref_primary_10_1098_rspb_2017_1506 crossref_primary_10_1186_s12870_021_03324_8 crossref_primary_10_1128_jvi_00165_22 crossref_primary_10_1111_ele_14228 crossref_primary_10_3390_v10020084 crossref_primary_10_3390_v12010104 crossref_primary_10_2807_1560_7917_ES_2018_23_29_1800033 crossref_primary_10_1186_s12870_018_1344_z crossref_primary_10_3390_insects14120950 crossref_primary_10_1002_ecs2_4297 crossref_primary_10_1098_rstb_2013_0551 crossref_primary_10_1093_jme_tjy073 crossref_primary_10_1111_mve_12251 crossref_primary_10_1371_journal_ppat_1006788 crossref_primary_10_1093_nar_gkv152 crossref_primary_10_3390_v8060163 crossref_primary_10_1586_14760584_2014_990387 crossref_primary_10_1371_journal_pone_0266128 crossref_primary_10_1038_s41598_022_10977_4 crossref_primary_10_3390_v13101889 crossref_primary_10_1080_22221751_2019_1707125 crossref_primary_10_1016_j_cois_2016_06_005 crossref_primary_10_1093_jme_tjv088 crossref_primary_10_1093_jme_tjw013 crossref_primary_10_3390_v17020217 crossref_primary_10_3389_fphys_2019_00890 crossref_primary_10_1016_j_cbpa_2024_111703 crossref_primary_10_1093_jme_tjx182 crossref_primary_10_3389_fmicb_2017_02050 crossref_primary_10_1016_j_virol_2015_05_009 crossref_primary_10_3390_pathogens12111368 crossref_primary_10_1186_s13071_018_3013_3 crossref_primary_10_1016_j_amc_2021_126446 crossref_primary_10_1016_j_actatropica_2013_09_023 crossref_primary_10_3389_fmicb_2020_584846 crossref_primary_10_1093_jme_tjw209 crossref_primary_10_3390_v14122644 |
Cites_doi | 10.1186/gb-2009-10-3-r25 10.1603/0022-2585-39.1.99 10.1089/vbz.2009.0035 10.1371/journal.pone.0007468 10.1111/j.1365-2583.2010.01005.x 10.4269/ajtmh.1990.43.543 10.1186/1471-2180-8-47 10.1016/j.coi.2010.01.007 10.1093/jmedent/10.1.1 10.1093/emboj/cdg74 10.1038/nri2824 10.1093/jmedent/43.3.484 10.1073/pnas.0803408105 10.1104/pp.105.066563 10.1371/journal.pone.0001168 10.2307/3435012 10.1371/journal.ppat.1002470 10.1089/vbz.2007.0649 10.1371/journal.ppat.1000299 10.1093/jmedent/35.3.289 10.1016/j.trstmh.2008.07.025 10.4269/ajtmh.1987.36.143 10.1016/j.virol.2008.04.021 10.1126/science.1125694 10.1017/S0950268809002052 10.1126/science.272.5263.884 10.1111/j.1365-2915.2008.00783.x 10.4269/ajtmh.1983.32.1130 10.1371/journal.ppat.0030201 10.1073/pnas.1014378107 10.1016/j.ibmb.2008.04.002 10.1073/pnas.0600479103 10.4269/ajtmh.1993.49.672 10.1128/JVI.80.10.4992-4997.2006 10.1242/jeb.037564 10.1258/ebm.2011.010402 10.1371/journal.pntd.0001470 10.4269/ajtmh.1980.29.963 10.1371/journal.pone.0030861 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Adelman et al 2013 Adelman et al 2013 Adelman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Adelman ZN, Anderson MAE, Wiley MR, Murreddu MG, Samuel GH, et al. (2013) Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLoS Negl Trop Dis 7(5): e2239. doi:10.1371/journal.pntd.0002239 |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Adelman et al 2013 Adelman et al – notice: 2013 Adelman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Adelman ZN, Anderson MAE, Wiley MR, Murreddu MG, Samuel GH, et al. (2013) Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLoS Negl Trop Dis 7(5): e2239. doi:10.1371/journal.pntd.0002239 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1371/journal.pntd.0002239 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Temperature-induced Destabilization of RNAi |
EISSN | 1935-2735 |
ExternalDocumentID | 1368615866 oai_doaj_org_article_0e6f528f6f79445eb3e8b32ed01c43b0 10.1371/journal.pntd.0002239 PMC3667787 A334042330 23738025 10_1371_journal_pntd_0002239 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI085091 – fundername: NIAID NIH HHS grantid: R01 AI085091 – fundername: NIAID NIH HHS grantid: R01 AI077726 – fundername: NIAID NIH HHS grantid: AI077726 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD ECGQY EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM SV3 TR2 TUS UKHRP ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ PMFND 7X8 5PM ADTOC UNPAY 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c596t-fb2311121a9300415066e5f8e878cc74f14bd3f337e8b66935b2e8a6615dafe03 |
IEDL.DBID | M48 |
ISSN | 1935-2735 1935-2727 |
IngestDate | Sun Oct 01 00:20:32 EDT 2023 Wed Aug 27 01:30:58 EDT 2025 Wed Oct 01 16:41:41 EDT 2025 Tue Sep 30 16:12:58 EDT 2025 Fri Sep 05 12:58:39 EDT 2025 Tue Jun 17 20:59:57 EDT 2025 Tue Jun 10 20:43:31 EDT 2025 Thu May 22 21:21:26 EDT 2025 Mon Jul 21 05:48:40 EDT 2025 Wed Oct 01 04:18:59 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Green Fluorescent Proteins Cold Temperature Gene Expression Animals RNA Interference Disease Vectors Immunity, Innate Aedes Genes, Reporter Gene Knockdown Techniques |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-fb2311121a9300415066e5f8e878cc74f14bd3f337e8b66935b2e8a6615dafe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: ZNA KMM. Performed the experiments: ZNA MAEA MRW MGM GHS EMM KMM. Analyzed the data: ZNA MRW KMM. Contributed reagents/materials/analysis tools: ZNA MAEA MRW MGM GHS EMM KMM. Wrote the paper: ZNA KMM. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0002239 |
PMID | 23738025 |
PQID | 1365984578 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1368615866 doaj_primary_oai_doaj_org_article_0e6f528f6f79445eb3e8b32ed01c43b0 unpaywall_primary_10_1371_journal_pntd_0002239 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3667787 proquest_miscellaneous_1365984578 gale_infotracmisc_A334042330 gale_infotracacademiconefile_A334042330 gale_healthsolutions_A334042330 pubmed_primary_23738025 crossref_citationtrail_10_1371_journal_pntd_0002239 crossref_primary_10_1371_journal_pntd_0002239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | CL Campbell (ref17) 2008; 8 I Sanchez-Vargas (ref18) 2009; 5 N Vodovar (ref20) 2012; 7 B Langmead (ref29) 2009; 10 P Reiter (ref4) 2008; 27 MJ Turell (ref9) 1990; 43 HM Yang (ref34) 2009; 137 ref1 MJ Turell (ref10) 1993; 49 D Vezzani (ref37) 2009; 23 NC Davis (ref7) 1932; 16 CJ Westbrook (ref11) 2009; 10 KE Olson (ref41) 1996; 272 JL Hardy (ref15) 1980; 29 SW Ding (ref23) 2010; 10 G Szittya (ref31) 2003; 22 ZN Adelman (ref25) 2008; 38 AW Franz (ref42) 2006; 103 KA Tsetsarkin (ref39) 2007; 3 M Vazeille (ref40) 2007; 2 DJ Gubler (ref2) 2001; 109 Suppl 2 WJ Tabachnick (ref5) 2010; 213 MA Anderson (ref27) 2010; 19 H Delatte (ref38) 2008; 8 KM Myles (ref16) 2008; 105 DM Watts (ref33) 1987; 36 KM Myles (ref26) 2006; 80 HL Chotkowski (ref30) 2008; 377 P Chellappan (ref32) 2005; 138 LR Sabin (ref24) 2010; 22 EM Morazzani (ref19) 2012; 8 KT Thai (ref6) 2011; 236 R Barrera (ref36) 2006; 43 E Descloux (ref35) 2012; 6 LD Kramer (ref12) 1983; 32 BH Kay (ref14) 2002; 39 HS Hurlbut (ref8) 1973; 10 XH Wang (ref21) 2006; 312 EA Gould (ref3) 2009; 103 LD Kramer (ref13) 1998; 35 NE Plaskon (ref28) 2009; 4 S Mueller (ref22) 2010; 107 19725768 - Vector Borne Zoonotic Dis. 2010 Apr;10(3):241-7 16641290 - J Virol. 2006 May;80(10):4992-7 6625067 - Am J Trop Med Hyg. 1983 Sep;32(5):1130-9 16556799 - Science. 2006 Apr 21;312(5772):452-4 22348154 - PLoS Negl Trop Dis. 2012;6(2):e1470 16739405 - J Med Entomol. 2006 May;43(3):484-92 19192323 - Epidemiol Infect. 2009 Aug;137(8):1179-87 20456509 - Insect Mol Biol. 2010 Aug;19(4):441-9 16040661 - Plant Physiol. 2005 Aug;138(4):1828-41 18366655 - BMC Microbiol. 2008;8:47 22241995 - PLoS Pathog. 2012 Jan;8(1):e1002470 18171104 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):25-34 19847293 - PLoS One. 2009;4(10):e7468 12554663 - EMBO J. 2003 Feb 3;22(3):633-40 3812879 - Am J Trop Med Hyg. 1987 Jan;36(1):143-52 18819667 - Rev Sci Tech. 2008 Aug;27(2):383-98 22292064 - PLoS One. 2012;7(1):e30861 8629025 - Science. 1996 May 10;272(5263):884-6 20137906 - Curr Opin Immunol. 2010 Feb;22(1):4-9 20706278 - Nat Rev Immunol. 2010 Sep;10(9):632-44 8279634 - Am J Trop Med Hyg. 1993 Dec;49(6):672-6 18000540 - PLoS One. 2007;2(11):e1168 18799177 - Trans R Soc Trop Med Hyg. 2009 Feb;103(2):109-21 18501400 - Virology. 2008 Jul 20;377(1):197-206 9615548 - J Med Entomol. 1998 May;35(3):289-95 19261174 - Genome Biol. 2009;10(3):R25 16537508 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4198-203 19047642 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19938-43 11359689 - Environ Health Perspect. 2001 May;109 Suppl 2:223-33 21737578 - Exp Biol Med (Maywood). 2011 Aug;236(8):944-54 4697417 - J Med Entomol. 1973 Jan 31;10(1):1-12 19214215 - PLoS Pathog. 2009 Feb;5(2):e1000299 7435796 - Am J Trop Med Hyg. 1980 Sep;29(5):963-8 18069894 - PLoS Pathog. 2007 Dec;3(12):e201 18549956 - Insect Biochem Mol Biol. 2008 Jul;38(7):705-13 2173434 - Am J Trop Med Hyg. 1990 Nov;43(5):543-50 19239617 - Med Vet Entomol. 2009 Mar;23(1):78-84 20190119 - J Exp Biol. 2010 Mar 15;213(6):946-54 11931278 - J Med Entomol. 2002 Jan;39(1):99-105 20978209 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19390-5 |
References_xml | – volume: 10 start-page: R25 year: 2009 ident: ref29 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – ident: ref1 – volume: 39 start-page: 99 year: 2002 ident: ref14 article-title: Enhancement or modulation of the vector competence of Ochlerotatus vigilax (Diptera: Culicidae) for Ross River virus by temperature publication-title: J Med Entomol doi: 10.1603/0022-2585-39.1.99 – volume: 10 start-page: 241 year: 2009 ident: ref11 article-title: Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus publication-title: Vector Borne Zoonotic Dis doi: 10.1089/vbz.2009.0035 – volume: 4 start-page: e7468 year: 2009 ident: ref28 article-title: Accurate strand-specific quantification of viral RNA publication-title: PLoS One doi: 10.1371/journal.pone.0007468 – volume: 19 start-page: 441 year: 2010 ident: ref27 article-title: Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2010.01005.x – volume: 43 start-page: 543 year: 1990 ident: ref9 article-title: Effect of environmental temperature on the vector competence of Aedes aegypti and Ae. taeniorhynchus for Ockelbo virus publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1990.43.543 – volume: 8 start-page: 47 year: 2008 ident: ref17 article-title: Aedes aegypti uses RNA interference in defense against Sindbis virus infection publication-title: BMC Microbiol doi: 10.1186/1471-2180-8-47 – volume: 22 start-page: 4 year: 2010 ident: ref24 article-title: Innate antiviral immunity in Drosophila publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2010.01.007 – volume: 10 start-page: 1 year: 1973 ident: ref8 article-title: The effect of environmental temperature upon the transmission of St. Louis encephalitis virus by Culex pipiens quinquefasciatus publication-title: J Med Entomol doi: 10.1093/jmedent/10.1.1 – volume: 22 start-page: 633 year: 2003 ident: ref31 article-title: Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation publication-title: Embo J doi: 10.1093/emboj/cdg74 – volume: 10 start-page: 632 year: 2010 ident: ref23 article-title: RNA-based antiviral immunity publication-title: Nat Rev Immunol doi: 10.1038/nri2824 – volume: 43 start-page: 484 year: 2006 ident: ref36 article-title: Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico publication-title: J Med Entomol doi: 10.1093/jmedent/43.3.484 – volume: 105 start-page: 19938 year: 2008 ident: ref16 article-title: Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0803408105 – volume: 138 start-page: 1828 year: 2005 ident: ref32 article-title: Effect of temperature on geminivirus-induced RNA silencing in plants publication-title: Plant Physiol doi: 10.1104/pp.105.066563 – volume: 2 start-page: e1168 year: 2007 ident: ref40 article-title: Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus publication-title: PLoS One doi: 10.1371/journal.pone.0001168 – volume: 109 Suppl 2 start-page: 223 year: 2001 ident: ref2 article-title: Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases publication-title: Environ Health Perspect doi: 10.2307/3435012 – volume: 8 start-page: e1002470 year: 2012 ident: ref19 article-title: Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002470 – volume: 8 start-page: 25 year: 2008 ident: ref38 article-title: Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event publication-title: Vector Borne Zoonotic Dis doi: 10.1089/vbz.2007.0649 – volume: 5 start-page: e1000299 year: 2009 ident: ref18 article-title: Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000299 – volume: 35 start-page: 289 year: 1998 ident: ref13 article-title: Characterization of modulation of western equine encephalomyelitis virus by Culex tarsalis (Diptera: Culicidae) maintained at 32 degrees C following parenteral infection publication-title: J Med Entomol doi: 10.1093/jmedent/35.3.289 – volume: 103 start-page: 109 year: 2009 ident: ref3 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.07.025 – volume: 36 start-page: 143 year: 1987 ident: ref33 article-title: Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1987.36.143 – volume: 377 start-page: 197 year: 2008 ident: ref30 article-title: West Nile virus infection of Drosophila melanogaster induces a protective RNAi response publication-title: Virology doi: 10.1016/j.virol.2008.04.021 – volume: 312 start-page: 452 year: 2006 ident: ref21 article-title: RNA interference directs innate immunity against viruses in adult Drosophila publication-title: Science doi: 10.1126/science.1125694 – volume: 137 start-page: 1179 year: 2009 ident: ref34 article-title: Assessing the effects of temperature on dengue transmission publication-title: Epidemiol Infect doi: 10.1017/S0950268809002052 – volume: 272 start-page: 884 year: 1996 ident: ref41 article-title: Genetically engineered resistance to dengue-2 virus transmission in mosquitoes publication-title: Science doi: 10.1126/science.272.5263.884 – volume: 23 start-page: 78 year: 2009 ident: ref37 article-title: The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers publication-title: Med Vet Entomol doi: 10.1111/j.1365-2915.2008.00783.x – volume: 32 start-page: 1130 year: 1983 ident: ref12 article-title: Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1983.32.1130 – volume: 27 start-page: 383 year: 2008 ident: ref4 article-title: Climate change and mosquito-borne disease: knowing the horse before hitching the cart publication-title: Rev Sci Tech – volume: 3 start-page: e201 year: 2007 ident: ref39 article-title: A single mutation in chikungunya virus affects vector specificity and epidemic potential publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030201 – volume: 107 start-page: 19390 year: 2010 ident: ref22 article-title: RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014378107 – volume: 38 start-page: 705 year: 2008 ident: ref25 article-title: A transgenic sensor strain for monitoring the RNAi pathway in the yellow fever mosquito, Aedes aegypti publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2008.04.002 – volume: 103 start-page: 4198 year: 2006 ident: ref42 article-title: Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0600479103 – volume: 49 start-page: 672 year: 1993 ident: ref10 article-title: Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for Rift Valley fever and Venezuelan equine encephalitis viruses publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1993.49.672 – volume: 80 start-page: 4992 year: 2006 ident: ref26 article-title: Effects of an Opal Termination Codon Preceding the nsP4 Gene Sequence in the O'Nyong-Nyong Virus Genome on Anopheles gambiae Infectivity publication-title: J Virol doi: 10.1128/JVI.80.10.4992-4997.2006 – volume: 213 start-page: 946 year: 2010 ident: ref5 article-title: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world publication-title: J Exp Biol doi: 10.1242/jeb.037564 – volume: 236 start-page: 944 year: 2011 ident: ref6 article-title: The role of climate variability and change in the transmission dynamics and geographic distribution of dengue publication-title: Exp Biol Med (Maywood) doi: 10.1258/ebm.2011.010402 – volume: 6 start-page: e1470 year: 2012 ident: ref35 article-title: Climate-based models for understanding and forecasting dengue epidemics publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001470 – volume: 29 start-page: 963 year: 1980 ident: ref15 article-title: Effect of rearing temperature on transovarial transmission of St. Louis encephalitis virus in mosquitoes publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1980.29.963 – volume: 7 start-page: e30861 year: 2012 ident: ref20 article-title: Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells publication-title: PLoS One doi: 10.1371/journal.pone.0030861 – volume: 16 start-page: 163 year: 1932 ident: ref7 article-title: The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Ae. aegypti publication-title: Am J Hyg – reference: 18819667 - Rev Sci Tech. 2008 Aug;27(2):383-98 – reference: 16641290 - J Virol. 2006 May;80(10):4992-7 – reference: 18000540 - PLoS One. 2007;2(11):e1168 – reference: 8629025 - Science. 1996 May 10;272(5263):884-6 – reference: 9615548 - J Med Entomol. 1998 May;35(3):289-95 – reference: 18366655 - BMC Microbiol. 2008;8:47 – reference: 19847293 - PLoS One. 2009;4(10):e7468 – reference: 11931278 - J Med Entomol. 2002 Jan;39(1):99-105 – reference: 19214215 - PLoS Pathog. 2009 Feb;5(2):e1000299 – reference: 21737578 - Exp Biol Med (Maywood). 2011 Aug;236(8):944-54 – reference: 16556799 - Science. 2006 Apr 21;312(5772):452-4 – reference: 12554663 - EMBO J. 2003 Feb 3;22(3):633-40 – reference: 22348154 - PLoS Negl Trop Dis. 2012;6(2):e1470 – reference: 4697417 - J Med Entomol. 1973 Jan 31;10(1):1-12 – reference: 22241995 - PLoS Pathog. 2012 Jan;8(1):e1002470 – reference: 2173434 - Am J Trop Med Hyg. 1990 Nov;43(5):543-50 – reference: 16537508 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4198-203 – reference: 6625067 - Am J Trop Med Hyg. 1983 Sep;32(5):1130-9 – reference: 8279634 - Am J Trop Med Hyg. 1993 Dec;49(6):672-6 – reference: 22292064 - PLoS One. 2012;7(1):e30861 – reference: 20190119 - J Exp Biol. 2010 Mar 15;213(6):946-54 – reference: 18069894 - PLoS Pathog. 2007 Dec;3(12):e201 – reference: 20978209 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19390-5 – reference: 11359689 - Environ Health Perspect. 2001 May;109 Suppl 2:223-33 – reference: 18799177 - Trans R Soc Trop Med Hyg. 2009 Feb;103(2):109-21 – reference: 18501400 - Virology. 2008 Jul 20;377(1):197-206 – reference: 20706278 - Nat Rev Immunol. 2010 Sep;10(9):632-44 – reference: 3812879 - Am J Trop Med Hyg. 1987 Jan;36(1):143-52 – reference: 19047642 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19938-43 – reference: 20456509 - Insect Mol Biol. 2010 Aug;19(4):441-9 – reference: 19192323 - Epidemiol Infect. 2009 Aug;137(8):1179-87 – reference: 19725768 - Vector Borne Zoonotic Dis. 2010 Apr;10(3):241-7 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 19239617 - Med Vet Entomol. 2009 Mar;23(1):78-84 – reference: 20137906 - Curr Opin Immunol. 2010 Feb;22(1):4-9 – reference: 18549956 - Insect Biochem Mol Biol. 2008 Jul;38(7):705-13 – reference: 18171104 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):25-34 – reference: 16040661 - Plant Physiol. 2005 Aug;138(4):1828-41 – reference: 7435796 - Am J Trop Med Hyg. 1980 Sep;29(5):963-8 – reference: 16739405 - J Med Entomol. 2006 May;43(3):484-92 |
SSID | ssj0059581 |
Score | 2.3435647 |
Snippet | The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne... Background: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of... Although a link between the increased susceptibility of mosquitoes for arthropod-borne viruses and exposure to lower rearing temperatures has been known for... Background The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of... |
SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2239 |
SubjectTerms | Aedes - immunology Aedes - radiation effects Aedes - virology Animals Biology Climate change Cold Temperature Disease transmission Disease Vectors Gene Expression - radiation effects Gene Knockdown Techniques Genes, Reporter Genetic aspects Genetic susceptibility Green Fluorescent Proteins - biosynthesis Green Fluorescent Proteins - genetics Immunity, Innate - radiation effects Infections Mosquitoes Proteins RNA Interference - radiation effects Viral infections Virus-vector relationships |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kDupFfG901RYET5lN-p3juLgswu5BXNhbSDodFGIyTjIuu_jjrer0hAkK68HLHNKVDPVIVXW66itC3qWpM7CSxbJ2IhYps3HJdBIz56yrIEaJChuFz87V6YX4dCkv90Z9YU3YCA88Cu4ocaqWzNSqBssREvZ-zpScwXNSK3jpd-sQxnabqdEHy0z68aSQnWDHFdOhaY7r9CjoaLluh2rp8V9wUPheUPLY_ZOHXqybrv9b-vlnFeW9bbsurq-KptkLUScPyYOQW9LVyNMjcse1j8nds3B6_oT8Ou66xm0owlEFLOWeVvBvHmX3xtHP5yuK-BGb0ARIi7aCC5hY9o72297XwPhy2mva1TSc7tCf_tM__d71P7bgIeCpQ0exerihu2Kv9im5OPn45fg0DtMXYiszNcR1CakfZGNpkXlULgnJiZO1cUYba7WoU1FWvOZcg0KUAkmXzJkC4r2sitol_BlZtF3rDgiVSidaWcEKYYTg8GOFY2UmUpexpNQR4Tvx5zZAk-OEjCb3520atiijBHNUWh6UFpF4ums9QnPcQv8BNTvRIrC2vwDmlgdzy28zt4i8QbvIxy7VyT3kK84FlhhxoHjvKdBBABO2CH0OIAqE2ppRHs4o4cW2s-UDtL0dLz1wpgxI1ygVkbc7e8zxLiyUa1239TQyMwL8cESej_Y5McwQxQpy3IjomeXOJDJfab999ZDjXCHQIChqOdn4P8n8xf-Q-Utyn_khJFhmekgWw2brXkEqOJSv_Vv_G9ayXac priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-6B-qL3-dVT40g-tRe26Rp-rieHoewi-jtcT6VNk3xsLTrtUXuEPzXnUmzxfqB-uDLUppJ2PySTCadmV8IeRoEWkJJ4kal5i4PQuXmYey7odZKF7BH8QIThRdLcbjir0-iE3tVKebCWAThjFg1rfHk40PdFe2ehXIPCYsG96kXsDjYVPHWIOUZQheWPDOUQ_hprMMMpMtkS6ADaka2Vss38_eDqxmTscydrvaZRTa37netTvYuQ_E_KvIZ_s1fWak_B1te7et1dv45q6rvdrKDG-TrBoMhgOWj13e5py5-oIf8fyDdJNetEUznQyu3yCVd3yZXFtbNf4d82W-aSp_RIw1G_UD63FI8IRs64AtN3y7n1HzLtNmKNKsLeIEWcKvpu741wTom7vecNiV9Obih6LHxUdBF037qQZVBq11Dj08BMKg9RKXVd8nq4NXR_qFrr4lwVZSIzi1zsFHBbAyyxNCHRWBF6aiUWsZSqZiXAc8LVjIWa5kLAWOdh1pmYJhERVZqn22TWd3UeofQSMR-LBQPMy45Z_CjuA7zhAc6Cf08dgjbTIBUWQ51vMqjSo1jMIaz1IBgijinFmeHuGOt9cAh8gf5Fzi3RllkADcvYKRTO8Cpr0UZhbIUJWhUHumcQe9YCOsrUJzlvkMe48xMh3TaUY-lc8Y4xkIxkHhuJFCTQSdUZhMyAAqcPRPJ3YkkaCA1Kd7B-bfpSws9ExLQlUI45MlmRaRYCyP6at30RiZKJIcNwyH3hhUydjhEui0wxh0ST9bOBJFpSX36wXCjM4GMiDBQ3rjK_grz-_9a4QG5FpqbUTD2dZfMurNePwT7tMsfWSXzDakClGo priority: 102 providerName: Unpaywall |
Title | Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23738025 https://www.proquest.com/docview/1365984578 https://pubmed.ncbi.nlm.nih.gov/PMC3667787 https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0002239&type=printable https://doaj.org/article/0e6f528f6f79445eb3e8b32ed01c43b0 http://dx.doi.org/10.1371/journal.pntd.0002239 |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: KQ8 dateStart: 20070830 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: ABDBF dateStart: 20090401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: BENPR dateStart: 20071001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: 7X7 dateStart: 20071001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database (NC LIVE) customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: 8C1 dateStart: 20071001 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1935-2735 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtCltfxr7rrcs0GOzJwda3H8ZIQ0sZJJSyQPZk_CF3A89O46Rbxv74nRTZzKxjffGDdHK40-l0zt39DqG3YagVzEQ-LzTzWUgyPyUy8InWmc7hjmK5KRSezsT5nH1c8MUeanu2OgE2t37amX5S81U5-nG9_QAH_r3t2iDDdtFoWa3zkUV0odE-OoC7iRg9n7IursAjbtuWgtdiKrGIdMV0_3pL77KymP6d5R4sy7q5zS39O7vy_qZaJtvvSVn-cXWdPUQPnM-JxzsleYT2dPUY3Zu6qPoT9GtS16VeYQNT5TCWG5zDr1n03Z8aX87G2OBKrFxxIE6qHAaMw9lo3Gwamxtj02y3uC6wi_rgGxsSwN_q5noDlgPeuq6xySoucZsEVj1F87PTT5Nz33Vl8DMeibVfpOASgpcWJpFF6-LgtGheKK2kyjLJipClOS0olVqlQoCkU6JVAn4Az5NCB_QZGlR1pY8Q5kIGUmSMJEwxRuGRMU3SiIU6IkEqPURb8ceZgyw3nTPK2MbhJHy67CQYm02L3aZ5yO9WLXeQHf-hPzE729EawG07UK-uYnd-40CLghNViAIMGOM6pcAdJaDOYcZoGnjotdGLeFe92pmNeEwpM6lHFCjeWQqjysBElrj6BxCFgeDqUR73KOHAZ73pI6N7LS8NcCYUSFcJ4aE3rT7GZpVJoKt0vbE0PFIM7LOHnu_0s2OYGHQr8H09JHua25NIf6b6-sVCkVNhAAhho0adjt9J5i_uLIyX6JDYDiQmx_QYDdarjX4FfuA6HaJ9uZDwVJNwiA5OTmcXl0P7n8rQHnoYm88uxp9_A0kTZOA |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-6B-qL3-dVT40g-tRe26Rp-rieHoewi-jtcT6VNk3xsLTrtUXuEPzXnUmzxfqB-uDLUppJ2PySTCadmV8IeRoEWkJJ4kal5i4PQuXmYey7odZKF7BH8QIThRdLcbjir0-iE3tVKebCWAThjFg1rfHk40PdFe2ehXIPCYsG96kXsDjYVPHWIOUZQheWPDOUQ_hprMMMpMtkS6ADaka2Vss38_eDqxmTscydrvaZRTa37netTvYuQ_E_KvIZ_s1fWak_B1te7et1dv45q6rvdrKDG-TrBoMhgOWj13e5py5-oIf8fyDdJNetEUznQyu3yCVd3yZXFtbNf4d82W-aSp_RIw1G_UD63FI8IRs64AtN3y7n1HzLtNmKNKsLeIEWcKvpu741wTom7vecNiV9Obih6LHxUdBF037qQZVBq11Dj08BMKg9RKXVd8nq4NXR_qFrr4lwVZSIzi1zsFHBbAyyxNCHRWBF6aiUWsZSqZiXAc8LVjIWa5kLAWOdh1pmYJhERVZqn22TWd3UeofQSMR-LBQPMy45Z_CjuA7zhAc6Cf08dgjbTIBUWQ51vMqjSo1jMIaz1IBgijinFmeHuGOt9cAh8gf5Fzi3RllkADcvYKRTO8Cpr0UZhbIUJWhUHumcQe9YCOsrUJzlvkMe48xMh3TaUY-lc8Y4xkIxkHhuJFCTQSdUZhMyAAqcPRPJ3YkkaCA1Kd7B-bfpSws9ExLQlUI45MlmRaRYCyP6at30RiZKJIcNwyH3hhUydjhEui0wxh0ST9bOBJFpSX36wXCjM4GMiDBQ3rjK_grz-_9a4QG5FpqbUTD2dZfMurNePwT7tMsfWSXzDakClGo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooler+temperatures+destabilize+RNA+interference+and+increase+susceptibility+of+disease+vector+mosquitoes+to+viral+infection&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Adelman%2C+Zach+N&rft.au=Anderson%2C+Michelle+A.E&rft.au=Wiley%2C+Michael+R&rft.au=Murreddu%2C+Marta+G&rft.date=2013-05-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.volume=7&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pntd.0002239&rft.externalDocID=A334042330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |