Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection

The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 7; no. 5; p. e2239
Main Authors Adelman, Zach N., Anderson, Michelle A. E., Wiley, Michael R., Murreddu, Marta G., Samuel, Glady Hazitha, Morazzani, Elaine M., Myles, Kevin M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1935-2735
1935-2727
1935-2735
DOI10.1371/journal.pntd.0002239

Cover

Abstract The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
AbstractList Background: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Methodology/Principal Findings: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. Conclusions/Significance: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.BACKGROUNDThe impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.METHODOLOGY/PRINCIPAL FINDINGSWe utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.CONCLUSIONS/SIGNIFICANCEThis data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
  Background The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Methodology/Principal Findings We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. Conclusions/Significance This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
Although a link between the increased susceptibility of mosquitoes for arthropod-borne viruses and exposure to lower rearing temperatures has been known for many years, the molecular basis of this has remained unknown. We investigated this phenomenon using an engineered strain of mosquito where the expression of a reporter was dependant on the status of the RNA interference pathway (RNAi). Our studies indicate a correlation between the virus-susceptibility phenotype and temperature-dependent deficiencies in antiviral immunity. Specifically, we demonstrate that RNAi, a critical antiviral immune pathway in mosquito vectors of human disease, is impaired in insects reared at cooler temperatures. This suggests for the first time a molecular explanation for previously described observations, findings that may lead to a better understanding of how global climate change will affect the transmission of mosquito-borne viruses, and new criteria for evaluating genetic control strategies based on RNAi. Our studies also suggest a novel mechanism for arbovirus adaptation to otherwise incompetent vector species.
The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
Audience Academic
Author Morazzani, Elaine M.
Adelman, Zach N.
Samuel, Glady Hazitha
Murreddu, Marta G.
Anderson, Michelle A. E.
Wiley, Michael R.
Myles, Kevin M.
AuthorAffiliation Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
United States Army Medical Research Institute of Infectious Diseases, United States of America
AuthorAffiliation_xml – name: Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
– name: United States Army Medical Research Institute of Infectious Diseases, United States of America
Author_xml – sequence: 1
  givenname: Zach N.
  surname: Adelman
  fullname: Adelman, Zach N.
– sequence: 2
  givenname: Michelle A. E.
  surname: Anderson
  fullname: Anderson, Michelle A. E.
– sequence: 3
  givenname: Michael R.
  surname: Wiley
  fullname: Wiley, Michael R.
– sequence: 4
  givenname: Marta G.
  surname: Murreddu
  fullname: Murreddu, Marta G.
– sequence: 5
  givenname: Glady Hazitha
  surname: Samuel
  fullname: Samuel, Glady Hazitha
– sequence: 6
  givenname: Elaine M.
  surname: Morazzani
  fullname: Morazzani, Elaine M.
– sequence: 7
  givenname: Kevin M.
  surname: Myles
  fullname: Myles, Kevin M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23738025$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A_9B6IDgnizazKZZDK9EJatH4WqoLW3IZM52U3JJtsko1T88Wa629IVQZmLDCfPeXPevDks9px3UBRPMZpi0uDXl34ITtrp2qV-ihCqKtI-KA5wS-ikagjdu_e_XxzGeIkQbSnHj4r9ijSEo4oeFL_m3lsI5Tms1hBkGgLE8gRikp2x5ieUXz7NylOXIGgI4BSU0vW5oALICOXXISpYJzPC6br0ujwx8WbnAlTyofzo49Vgks-qyZcXJkibu3XeNN49Lh5qaSM82a5Hxbd3b8_nHyZnn9-fzmdnE0Vblia6qwjGuMKyJQjVmCLGgGoOvOFKNbXGddcTTUgDvGMsm-4q4JIxTHupAZGj4vlGd219FNuLiwITxjPDGcvE6YbovbwU62BWMlwLL424KfiwEDIkoywIBEzTimumm7auKXQkn0oq6BFWNenG0-hGa3Bref1DWnsniJEYs7sdQYzZiW12ue_NdsqhW0GvwKUg7c4wuzvOLMXCfxeEsabhTRZ4tRUI_mrIGYqVyfFYKx344cYvbXlNG57RFxt0IbMl47TPimrExYyQGtUVIaOT6V-o_PWwMio_R21yfafh5b2GJUibltHbYQw77oLP7nu9M3n7MDNwvAFU8DEG0EKZJEedPIKx_7rJ-o_m_wrgN-0oDjk
CitedBy_id crossref_primary_10_1371_journal_pone_0220753
crossref_primary_10_1038_s41598_024_63625_4
crossref_primary_10_21615_cesmedicina_33_1_5
crossref_primary_10_3390_v11090867
crossref_primary_10_3390_v14050880
crossref_primary_10_1021_acs_jafc_3c08665
crossref_primary_10_1186_s12979_024_00465_w
crossref_primary_10_1186_s13071_019_3391_1
crossref_primary_10_3389_fmicb_2020_00901
crossref_primary_10_1128_mbio_02021_22
crossref_primary_10_1186_s13071_024_06594_x
crossref_primary_10_3390_challe14010008
crossref_primary_10_1073_pnas_2213701120
crossref_primary_10_1038_s41598_021_00432_1
crossref_primary_10_1093_jme_tjv145
crossref_primary_10_1098_rspb_2014_1078
crossref_primary_10_1038_emi_2017_82
crossref_primary_10_1111_1365_2435_12487
crossref_primary_10_3390_microorganisms9081653
crossref_primary_10_3389_finsc_2023_1144072
crossref_primary_10_1098_rspb_2018_0795
crossref_primary_10_1016_j_pt_2023_04_007
crossref_primary_10_1038_s41579_024_01026_0
crossref_primary_10_3390_v11111013
crossref_primary_10_3389_fmicb_2019_00022
crossref_primary_10_3390_ijerph13070734
crossref_primary_10_3390_v10030118
crossref_primary_10_1016_j_celrep_2023_112257
crossref_primary_10_1098_rspb_2017_1506
crossref_primary_10_1186_s12870_021_03324_8
crossref_primary_10_1128_jvi_00165_22
crossref_primary_10_1111_ele_14228
crossref_primary_10_3390_v10020084
crossref_primary_10_3390_v12010104
crossref_primary_10_2807_1560_7917_ES_2018_23_29_1800033
crossref_primary_10_1186_s12870_018_1344_z
crossref_primary_10_3390_insects14120950
crossref_primary_10_1002_ecs2_4297
crossref_primary_10_1098_rstb_2013_0551
crossref_primary_10_1093_jme_tjy073
crossref_primary_10_1111_mve_12251
crossref_primary_10_1371_journal_ppat_1006788
crossref_primary_10_1093_nar_gkv152
crossref_primary_10_3390_v8060163
crossref_primary_10_1586_14760584_2014_990387
crossref_primary_10_1371_journal_pone_0266128
crossref_primary_10_1038_s41598_022_10977_4
crossref_primary_10_3390_v13101889
crossref_primary_10_1080_22221751_2019_1707125
crossref_primary_10_1016_j_cois_2016_06_005
crossref_primary_10_1093_jme_tjv088
crossref_primary_10_1093_jme_tjw013
crossref_primary_10_3390_v17020217
crossref_primary_10_3389_fphys_2019_00890
crossref_primary_10_1016_j_cbpa_2024_111703
crossref_primary_10_1093_jme_tjx182
crossref_primary_10_3389_fmicb_2017_02050
crossref_primary_10_1016_j_virol_2015_05_009
crossref_primary_10_3390_pathogens12111368
crossref_primary_10_1186_s13071_018_3013_3
crossref_primary_10_1016_j_amc_2021_126446
crossref_primary_10_1016_j_actatropica_2013_09_023
crossref_primary_10_3389_fmicb_2020_584846
crossref_primary_10_1093_jme_tjw209
crossref_primary_10_3390_v14122644
Cites_doi 10.1186/gb-2009-10-3-r25
10.1603/0022-2585-39.1.99
10.1089/vbz.2009.0035
10.1371/journal.pone.0007468
10.1111/j.1365-2583.2010.01005.x
10.4269/ajtmh.1990.43.543
10.1186/1471-2180-8-47
10.1016/j.coi.2010.01.007
10.1093/jmedent/10.1.1
10.1093/emboj/cdg74
10.1038/nri2824
10.1093/jmedent/43.3.484
10.1073/pnas.0803408105
10.1104/pp.105.066563
10.1371/journal.pone.0001168
10.2307/3435012
10.1371/journal.ppat.1002470
10.1089/vbz.2007.0649
10.1371/journal.ppat.1000299
10.1093/jmedent/35.3.289
10.1016/j.trstmh.2008.07.025
10.4269/ajtmh.1987.36.143
10.1016/j.virol.2008.04.021
10.1126/science.1125694
10.1017/S0950268809002052
10.1126/science.272.5263.884
10.1111/j.1365-2915.2008.00783.x
10.4269/ajtmh.1983.32.1130
10.1371/journal.ppat.0030201
10.1073/pnas.1014378107
10.1016/j.ibmb.2008.04.002
10.1073/pnas.0600479103
10.4269/ajtmh.1993.49.672
10.1128/JVI.80.10.4992-4997.2006
10.1242/jeb.037564
10.1258/ebm.2011.010402
10.1371/journal.pntd.0001470
10.4269/ajtmh.1980.29.963
10.1371/journal.pone.0030861
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Adelman et al 2013 Adelman et al
2013 Adelman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Adelman ZN, Anderson MAE, Wiley MR, Murreddu MG, Samuel GH, et al. (2013) Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLoS Negl Trop Dis 7(5): e2239. doi:10.1371/journal.pntd.0002239
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Adelman et al 2013 Adelman et al
– notice: 2013 Adelman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Adelman ZN, Anderson MAE, Wiley MR, Murreddu MG, Samuel GH, et al. (2013) Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLoS Negl Trop Dis 7(5): e2239. doi:10.1371/journal.pntd.0002239
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pntd.0002239
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Temperature-induced Destabilization of RNAi
EISSN 1935-2735
ExternalDocumentID 1368615866
oai_doaj_org_article_0e6f528f6f79445eb3e8b32ed01c43b0
10.1371/journal.pntd.0002239
PMC3667787
A334042330
23738025
10_1371_journal_pntd_0002239
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI085091
– fundername: NIAID NIH HHS
  grantid: R01 AI085091
– fundername: NIAID NIH HHS
  grantid: R01 AI077726
– fundername: NIAID NIH HHS
  grantid: AI077726
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
ECGQY
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
ITC
KQ8
M1P
M48
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RNS
RPM
SV3
TR2
TUS
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
ADTOC
UNPAY
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c596t-fb2311121a9300415066e5f8e878cc74f14bd3f337e8b66935b2e8a6615dafe03
IEDL.DBID M48
ISSN 1935-2735
1935-2727
IngestDate Sun Oct 01 00:20:32 EDT 2023
Wed Aug 27 01:30:58 EDT 2025
Wed Oct 01 16:41:41 EDT 2025
Tue Sep 30 16:12:58 EDT 2025
Fri Sep 05 12:58:39 EDT 2025
Tue Jun 17 20:59:57 EDT 2025
Tue Jun 10 20:43:31 EDT 2025
Thu May 22 21:21:26 EDT 2025
Mon Jul 21 05:48:40 EDT 2025
Wed Oct 01 04:18:59 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Green Fluorescent Proteins
Cold Temperature
Gene Expression
Animals
RNA Interference
Disease Vectors
Immunity, Innate
Aedes
Genes, Reporter
Gene Knockdown Techniques
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-fb2311121a9300415066e5f8e878cc74f14bd3f337e8b66935b2e8a6615dafe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: ZNA KMM. Performed the experiments: ZNA MAEA MRW MGM GHS EMM KMM. Analyzed the data: ZNA MRW KMM. Contributed reagents/materials/analysis tools: ZNA MAEA MRW MGM GHS EMM KMM. Wrote the paper: ZNA KMM.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0002239
PMID 23738025
PQID 1365984578
PQPubID 23479
ParticipantIDs plos_journals_1368615866
doaj_primary_oai_doaj_org_article_0e6f528f6f79445eb3e8b32ed01c43b0
unpaywall_primary_10_1371_journal_pntd_0002239
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3667787
proquest_miscellaneous_1365984578
gale_infotracmisc_A334042330
gale_infotracacademiconefile_A334042330
gale_healthsolutions_A334042330
pubmed_primary_23738025
crossref_citationtrail_10_1371_journal_pntd_0002239
crossref_primary_10_1371_journal_pntd_0002239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS neglected tropical diseases
PublicationTitleAlternate PLoS Negl Trop Dis
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References CL Campbell (ref17) 2008; 8
I Sanchez-Vargas (ref18) 2009; 5
N Vodovar (ref20) 2012; 7
B Langmead (ref29) 2009; 10
P Reiter (ref4) 2008; 27
MJ Turell (ref9) 1990; 43
HM Yang (ref34) 2009; 137
ref1
MJ Turell (ref10) 1993; 49
D Vezzani (ref37) 2009; 23
NC Davis (ref7) 1932; 16
CJ Westbrook (ref11) 2009; 10
KE Olson (ref41) 1996; 272
JL Hardy (ref15) 1980; 29
SW Ding (ref23) 2010; 10
G Szittya (ref31) 2003; 22
ZN Adelman (ref25) 2008; 38
AW Franz (ref42) 2006; 103
KA Tsetsarkin (ref39) 2007; 3
M Vazeille (ref40) 2007; 2
DJ Gubler (ref2) 2001; 109 Suppl 2
WJ Tabachnick (ref5) 2010; 213
MA Anderson (ref27) 2010; 19
H Delatte (ref38) 2008; 8
KM Myles (ref16) 2008; 105
DM Watts (ref33) 1987; 36
KM Myles (ref26) 2006; 80
HL Chotkowski (ref30) 2008; 377
P Chellappan (ref32) 2005; 138
LR Sabin (ref24) 2010; 22
EM Morazzani (ref19) 2012; 8
KT Thai (ref6) 2011; 236
R Barrera (ref36) 2006; 43
E Descloux (ref35) 2012; 6
LD Kramer (ref12) 1983; 32
BH Kay (ref14) 2002; 39
HS Hurlbut (ref8) 1973; 10
XH Wang (ref21) 2006; 312
EA Gould (ref3) 2009; 103
LD Kramer (ref13) 1998; 35
NE Plaskon (ref28) 2009; 4
S Mueller (ref22) 2010; 107
19725768 - Vector Borne Zoonotic Dis. 2010 Apr;10(3):241-7
16641290 - J Virol. 2006 May;80(10):4992-7
6625067 - Am J Trop Med Hyg. 1983 Sep;32(5):1130-9
16556799 - Science. 2006 Apr 21;312(5772):452-4
22348154 - PLoS Negl Trop Dis. 2012;6(2):e1470
16739405 - J Med Entomol. 2006 May;43(3):484-92
19192323 - Epidemiol Infect. 2009 Aug;137(8):1179-87
20456509 - Insect Mol Biol. 2010 Aug;19(4):441-9
16040661 - Plant Physiol. 2005 Aug;138(4):1828-41
18366655 - BMC Microbiol. 2008;8:47
22241995 - PLoS Pathog. 2012 Jan;8(1):e1002470
18171104 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):25-34
19847293 - PLoS One. 2009;4(10):e7468
12554663 - EMBO J. 2003 Feb 3;22(3):633-40
3812879 - Am J Trop Med Hyg. 1987 Jan;36(1):143-52
18819667 - Rev Sci Tech. 2008 Aug;27(2):383-98
22292064 - PLoS One. 2012;7(1):e30861
8629025 - Science. 1996 May 10;272(5263):884-6
20137906 - Curr Opin Immunol. 2010 Feb;22(1):4-9
20706278 - Nat Rev Immunol. 2010 Sep;10(9):632-44
8279634 - Am J Trop Med Hyg. 1993 Dec;49(6):672-6
18000540 - PLoS One. 2007;2(11):e1168
18799177 - Trans R Soc Trop Med Hyg. 2009 Feb;103(2):109-21
18501400 - Virology. 2008 Jul 20;377(1):197-206
9615548 - J Med Entomol. 1998 May;35(3):289-95
19261174 - Genome Biol. 2009;10(3):R25
16537508 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4198-203
19047642 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19938-43
11359689 - Environ Health Perspect. 2001 May;109 Suppl 2:223-33
21737578 - Exp Biol Med (Maywood). 2011 Aug;236(8):944-54
4697417 - J Med Entomol. 1973 Jan 31;10(1):1-12
19214215 - PLoS Pathog. 2009 Feb;5(2):e1000299
7435796 - Am J Trop Med Hyg. 1980 Sep;29(5):963-8
18069894 - PLoS Pathog. 2007 Dec;3(12):e201
18549956 - Insect Biochem Mol Biol. 2008 Jul;38(7):705-13
2173434 - Am J Trop Med Hyg. 1990 Nov;43(5):543-50
19239617 - Med Vet Entomol. 2009 Mar;23(1):78-84
20190119 - J Exp Biol. 2010 Mar 15;213(6):946-54
11931278 - J Med Entomol. 2002 Jan;39(1):99-105
20978209 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19390-5
References_xml – volume: 10
  start-page: R25
  year: 2009
  ident: ref29
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– ident: ref1
– volume: 39
  start-page: 99
  year: 2002
  ident: ref14
  article-title: Enhancement or modulation of the vector competence of Ochlerotatus vigilax (Diptera: Culicidae) for Ross River virus by temperature
  publication-title: J Med Entomol
  doi: 10.1603/0022-2585-39.1.99
– volume: 10
  start-page: 241
  year: 2009
  ident: ref11
  article-title: Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus
  publication-title: Vector Borne Zoonotic Dis
  doi: 10.1089/vbz.2009.0035
– volume: 4
  start-page: e7468
  year: 2009
  ident: ref28
  article-title: Accurate strand-specific quantification of viral RNA
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007468
– volume: 19
  start-page: 441
  year: 2010
  ident: ref27
  article-title: Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2010.01005.x
– volume: 43
  start-page: 543
  year: 1990
  ident: ref9
  article-title: Effect of environmental temperature on the vector competence of Aedes aegypti and Ae. taeniorhynchus for Ockelbo virus
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1990.43.543
– volume: 8
  start-page: 47
  year: 2008
  ident: ref17
  article-title: Aedes aegypti uses RNA interference in defense against Sindbis virus infection
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-8-47
– volume: 22
  start-page: 4
  year: 2010
  ident: ref24
  article-title: Innate antiviral immunity in Drosophila
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2010.01.007
– volume: 10
  start-page: 1
  year: 1973
  ident: ref8
  article-title: The effect of environmental temperature upon the transmission of St. Louis encephalitis virus by Culex pipiens quinquefasciatus
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/10.1.1
– volume: 22
  start-page: 633
  year: 2003
  ident: ref31
  article-title: Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation
  publication-title: Embo J
  doi: 10.1093/emboj/cdg74
– volume: 10
  start-page: 632
  year: 2010
  ident: ref23
  article-title: RNA-based antiviral immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2824
– volume: 43
  start-page: 484
  year: 2006
  ident: ref36
  article-title: Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/43.3.484
– volume: 105
  start-page: 19938
  year: 2008
  ident: ref16
  article-title: Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0803408105
– volume: 138
  start-page: 1828
  year: 2005
  ident: ref32
  article-title: Effect of temperature on geminivirus-induced RNA silencing in plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.066563
– volume: 2
  start-page: e1168
  year: 2007
  ident: ref40
  article-title: Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001168
– volume: 109 Suppl 2
  start-page: 223
  year: 2001
  ident: ref2
  article-title: Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases
  publication-title: Environ Health Perspect
  doi: 10.2307/3435012
– volume: 8
  start-page: e1002470
  year: 2012
  ident: ref19
  article-title: Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002470
– volume: 8
  start-page: 25
  year: 2008
  ident: ref38
  article-title: Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event
  publication-title: Vector Borne Zoonotic Dis
  doi: 10.1089/vbz.2007.0649
– volume: 5
  start-page: e1000299
  year: 2009
  ident: ref18
  article-title: Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000299
– volume: 35
  start-page: 289
  year: 1998
  ident: ref13
  article-title: Characterization of modulation of western equine encephalomyelitis virus by Culex tarsalis (Diptera: Culicidae) maintained at 32 degrees C following parenteral infection
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/35.3.289
– volume: 103
  start-page: 109
  year: 2009
  ident: ref3
  article-title: Impact of climate change and other factors on emerging arbovirus diseases
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2008.07.025
– volume: 36
  start-page: 143
  year: 1987
  ident: ref33
  article-title: Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1987.36.143
– volume: 377
  start-page: 197
  year: 2008
  ident: ref30
  article-title: West Nile virus infection of Drosophila melanogaster induces a protective RNAi response
  publication-title: Virology
  doi: 10.1016/j.virol.2008.04.021
– volume: 312
  start-page: 452
  year: 2006
  ident: ref21
  article-title: RNA interference directs innate immunity against viruses in adult Drosophila
  publication-title: Science
  doi: 10.1126/science.1125694
– volume: 137
  start-page: 1179
  year: 2009
  ident: ref34
  article-title: Assessing the effects of temperature on dengue transmission
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268809002052
– volume: 272
  start-page: 884
  year: 1996
  ident: ref41
  article-title: Genetically engineered resistance to dengue-2 virus transmission in mosquitoes
  publication-title: Science
  doi: 10.1126/science.272.5263.884
– volume: 23
  start-page: 78
  year: 2009
  ident: ref37
  article-title: The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers
  publication-title: Med Vet Entomol
  doi: 10.1111/j.1365-2915.2008.00783.x
– volume: 32
  start-page: 1130
  year: 1983
  ident: ref12
  article-title: Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1983.32.1130
– volume: 27
  start-page: 383
  year: 2008
  ident: ref4
  article-title: Climate change and mosquito-borne disease: knowing the horse before hitching the cart
  publication-title: Rev Sci Tech
– volume: 3
  start-page: e201
  year: 2007
  ident: ref39
  article-title: A single mutation in chikungunya virus affects vector specificity and epidemic potential
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030201
– volume: 107
  start-page: 19390
  year: 2010
  ident: ref22
  article-title: RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1014378107
– volume: 38
  start-page: 705
  year: 2008
  ident: ref25
  article-title: A transgenic sensor strain for monitoring the RNAi pathway in the yellow fever mosquito, Aedes aegypti
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2008.04.002
– volume: 103
  start-page: 4198
  year: 2006
  ident: ref42
  article-title: Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0600479103
– volume: 49
  start-page: 672
  year: 1993
  ident: ref10
  article-title: Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for Rift Valley fever and Venezuelan equine encephalitis viruses
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1993.49.672
– volume: 80
  start-page: 4992
  year: 2006
  ident: ref26
  article-title: Effects of an Opal Termination Codon Preceding the nsP4 Gene Sequence in the O'Nyong-Nyong Virus Genome on Anopheles gambiae Infectivity
  publication-title: J Virol
  doi: 10.1128/JVI.80.10.4992-4997.2006
– volume: 213
  start-page: 946
  year: 2010
  ident: ref5
  article-title: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world
  publication-title: J Exp Biol
  doi: 10.1242/jeb.037564
– volume: 236
  start-page: 944
  year: 2011
  ident: ref6
  article-title: The role of climate variability and change in the transmission dynamics and geographic distribution of dengue
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1258/ebm.2011.010402
– volume: 6
  start-page: e1470
  year: 2012
  ident: ref35
  article-title: Climate-based models for understanding and forecasting dengue epidemics
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001470
– volume: 29
  start-page: 963
  year: 1980
  ident: ref15
  article-title: Effect of rearing temperature on transovarial transmission of St. Louis encephalitis virus in mosquitoes
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1980.29.963
– volume: 7
  start-page: e30861
  year: 2012
  ident: ref20
  article-title: Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030861
– volume: 16
  start-page: 163
  year: 1932
  ident: ref7
  article-title: The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Ae. aegypti
  publication-title: Am J Hyg
– reference: 18819667 - Rev Sci Tech. 2008 Aug;27(2):383-98
– reference: 16641290 - J Virol. 2006 May;80(10):4992-7
– reference: 18000540 - PLoS One. 2007;2(11):e1168
– reference: 8629025 - Science. 1996 May 10;272(5263):884-6
– reference: 9615548 - J Med Entomol. 1998 May;35(3):289-95
– reference: 18366655 - BMC Microbiol. 2008;8:47
– reference: 19847293 - PLoS One. 2009;4(10):e7468
– reference: 11931278 - J Med Entomol. 2002 Jan;39(1):99-105
– reference: 19214215 - PLoS Pathog. 2009 Feb;5(2):e1000299
– reference: 21737578 - Exp Biol Med (Maywood). 2011 Aug;236(8):944-54
– reference: 16556799 - Science. 2006 Apr 21;312(5772):452-4
– reference: 12554663 - EMBO J. 2003 Feb 3;22(3):633-40
– reference: 22348154 - PLoS Negl Trop Dis. 2012;6(2):e1470
– reference: 4697417 - J Med Entomol. 1973 Jan 31;10(1):1-12
– reference: 22241995 - PLoS Pathog. 2012 Jan;8(1):e1002470
– reference: 2173434 - Am J Trop Med Hyg. 1990 Nov;43(5):543-50
– reference: 16537508 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4198-203
– reference: 6625067 - Am J Trop Med Hyg. 1983 Sep;32(5):1130-9
– reference: 8279634 - Am J Trop Med Hyg. 1993 Dec;49(6):672-6
– reference: 22292064 - PLoS One. 2012;7(1):e30861
– reference: 20190119 - J Exp Biol. 2010 Mar 15;213(6):946-54
– reference: 18069894 - PLoS Pathog. 2007 Dec;3(12):e201
– reference: 20978209 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19390-5
– reference: 11359689 - Environ Health Perspect. 2001 May;109 Suppl 2:223-33
– reference: 18799177 - Trans R Soc Trop Med Hyg. 2009 Feb;103(2):109-21
– reference: 18501400 - Virology. 2008 Jul 20;377(1):197-206
– reference: 20706278 - Nat Rev Immunol. 2010 Sep;10(9):632-44
– reference: 3812879 - Am J Trop Med Hyg. 1987 Jan;36(1):143-52
– reference: 19047642 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19938-43
– reference: 20456509 - Insect Mol Biol. 2010 Aug;19(4):441-9
– reference: 19192323 - Epidemiol Infect. 2009 Aug;137(8):1179-87
– reference: 19725768 - Vector Borne Zoonotic Dis. 2010 Apr;10(3):241-7
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 19239617 - Med Vet Entomol. 2009 Mar;23(1):78-84
– reference: 20137906 - Curr Opin Immunol. 2010 Feb;22(1):4-9
– reference: 18549956 - Insect Biochem Mol Biol. 2008 Jul;38(7):705-13
– reference: 18171104 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):25-34
– reference: 16040661 - Plant Physiol. 2005 Aug;138(4):1828-41
– reference: 7435796 - Am J Trop Med Hyg. 1980 Sep;29(5):963-8
– reference: 16739405 - J Med Entomol. 2006 May;43(3):484-92
SSID ssj0059581
Score 2.3435647
Snippet The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne...
Background: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of...
Although a link between the increased susceptibility of mosquitoes for arthropod-borne viruses and exposure to lower rearing temperatures has been known for...
  Background The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2239
SubjectTerms Aedes - immunology
Aedes - radiation effects
Aedes - virology
Animals
Biology
Climate change
Cold Temperature
Disease transmission
Disease Vectors
Gene Expression - radiation effects
Gene Knockdown Techniques
Genes, Reporter
Genetic aspects
Genetic susceptibility
Green Fluorescent Proteins - biosynthesis
Green Fluorescent Proteins - genetics
Immunity, Innate - radiation effects
Infections
Mosquitoes
Proteins
RNA Interference - radiation effects
Viral infections
Virus-vector relationships
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kDupFfG901RYET5lN-p3juLgswu5BXNhbSDodFGIyTjIuu_jjrer0hAkK68HLHNKVDPVIVXW66itC3qWpM7CSxbJ2IhYps3HJdBIz56yrIEaJChuFz87V6YX4dCkv90Z9YU3YCA88Cu4ocaqWzNSqBssREvZ-zpScwXNSK3jpd-sQxnabqdEHy0z68aSQnWDHFdOhaY7r9CjoaLluh2rp8V9wUPheUPLY_ZOHXqybrv9b-vlnFeW9bbsurq-KptkLUScPyYOQW9LVyNMjcse1j8nds3B6_oT8Ou66xm0owlEFLOWeVvBvHmX3xtHP5yuK-BGb0ARIi7aCC5hY9o72297XwPhy2mva1TSc7tCf_tM__d71P7bgIeCpQ0exerihu2Kv9im5OPn45fg0DtMXYiszNcR1CakfZGNpkXlULgnJiZO1cUYba7WoU1FWvOZcg0KUAkmXzJkC4r2sitol_BlZtF3rDgiVSidaWcEKYYTg8GOFY2UmUpexpNQR4Tvx5zZAk-OEjCb3520atiijBHNUWh6UFpF4ums9QnPcQv8BNTvRIrC2vwDmlgdzy28zt4i8QbvIxy7VyT3kK84FlhhxoHjvKdBBABO2CH0OIAqE2ppRHs4o4cW2s-UDtL0dLz1wpgxI1ygVkbc7e8zxLiyUa1239TQyMwL8cESej_Y5McwQxQpy3IjomeXOJDJfab999ZDjXCHQIChqOdn4P8n8xf-Q-Utyn_khJFhmekgWw2brXkEqOJSv_Vv_G9ayXac
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-6B-qL3-dVT40g-tRe26Rp-rieHoewi-jtcT6VNk3xsLTrtUXuEPzXnUmzxfqB-uDLUppJ2PySTCadmV8IeRoEWkJJ4kal5i4PQuXmYey7odZKF7BH8QIThRdLcbjir0-iE3tVKebCWAThjFg1rfHk40PdFe2ehXIPCYsG96kXsDjYVPHWIOUZQheWPDOUQ_hprMMMpMtkS6ADaka2Vss38_eDqxmTscydrvaZRTa37netTvYuQ_E_KvIZ_s1fWak_B1te7et1dv45q6rvdrKDG-TrBoMhgOWj13e5py5-oIf8fyDdJNetEUznQyu3yCVd3yZXFtbNf4d82W-aSp_RIw1G_UD63FI8IRs64AtN3y7n1HzLtNmKNKsLeIEWcKvpu741wTom7vecNiV9Obih6LHxUdBF037qQZVBq11Dj08BMKg9RKXVd8nq4NXR_qFrr4lwVZSIzi1zsFHBbAyyxNCHRWBF6aiUWsZSqZiXAc8LVjIWa5kLAWOdh1pmYJhERVZqn22TWd3UeofQSMR-LBQPMy45Z_CjuA7zhAc6Cf08dgjbTIBUWQ51vMqjSo1jMIaz1IBgijinFmeHuGOt9cAh8gf5Fzi3RllkADcvYKRTO8Cpr0UZhbIUJWhUHumcQe9YCOsrUJzlvkMe48xMh3TaUY-lc8Y4xkIxkHhuJFCTQSdUZhMyAAqcPRPJ3YkkaCA1Kd7B-bfpSws9ExLQlUI45MlmRaRYCyP6at30RiZKJIcNwyH3hhUydjhEui0wxh0ST9bOBJFpSX36wXCjM4GMiDBQ3rjK_grz-_9a4QG5FpqbUTD2dZfMurNePwT7tMsfWSXzDakClGo
  priority: 102
  providerName: Unpaywall
Title Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/23738025
https://www.proquest.com/docview/1365984578
https://pubmed.ncbi.nlm.nih.gov/PMC3667787
https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0002239&type=printable
https://doaj.org/article/0e6f528f6f79445eb3e8b32ed01c43b0
http://dx.doi.org/10.1371/journal.pntd.0002239
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: KQ8
  dateStart: 20070830
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: ABDBF
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: BENPR
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: 7X7
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database (NC LIVE)
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: 8C1
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1935-2735
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0059581
  issn: 1935-2727
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtCltfxr7rrcs0GOzJwda3H8ZIQ0sZJJSyQPZk_CF3A89O46Rbxv74nRTZzKxjffGDdHK40-l0zt39DqG3YagVzEQ-LzTzWUgyPyUy8InWmc7hjmK5KRSezsT5nH1c8MUeanu2OgE2t37amX5S81U5-nG9_QAH_r3t2iDDdtFoWa3zkUV0odE-OoC7iRg9n7IursAjbtuWgtdiKrGIdMV0_3pL77KymP6d5R4sy7q5zS39O7vy_qZaJtvvSVn-cXWdPUQPnM-JxzsleYT2dPUY3Zu6qPoT9GtS16VeYQNT5TCWG5zDr1n03Z8aX87G2OBKrFxxIE6qHAaMw9lo3Gwamxtj02y3uC6wi_rgGxsSwN_q5noDlgPeuq6xySoucZsEVj1F87PTT5Nz33Vl8DMeibVfpOASgpcWJpFF6-LgtGheKK2kyjLJipClOS0olVqlQoCkU6JVAn4Az5NCB_QZGlR1pY8Q5kIGUmSMJEwxRuGRMU3SiIU6IkEqPURb8ceZgyw3nTPK2MbhJHy67CQYm02L3aZ5yO9WLXeQHf-hPzE729EawG07UK-uYnd-40CLghNViAIMGOM6pcAdJaDOYcZoGnjotdGLeFe92pmNeEwpM6lHFCjeWQqjysBElrj6BxCFgeDqUR73KOHAZ73pI6N7LS8NcCYUSFcJ4aE3rT7GZpVJoKt0vbE0PFIM7LOHnu_0s2OYGHQr8H09JHua25NIf6b6-sVCkVNhAAhho0adjt9J5i_uLIyX6JDYDiQmx_QYDdarjX4FfuA6HaJ9uZDwVJNwiA5OTmcXl0P7n8rQHnoYm88uxp9_A0kTZOA
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-6B-qL3-dVT40g-tRe26Rp-rieHoewi-jtcT6VNk3xsLTrtUXuEPzXnUmzxfqB-uDLUppJ2PySTCadmV8IeRoEWkJJ4kal5i4PQuXmYey7odZKF7BH8QIThRdLcbjir0-iE3tVKebCWAThjFg1rfHk40PdFe2ehXIPCYsG96kXsDjYVPHWIOUZQheWPDOUQ_hprMMMpMtkS6ADaka2Vss38_eDqxmTscydrvaZRTa37netTvYuQ_E_KvIZ_s1fWak_B1te7et1dv45q6rvdrKDG-TrBoMhgOWj13e5py5-oIf8fyDdJNetEUznQyu3yCVd3yZXFtbNf4d82W-aSp_RIw1G_UD63FI8IRs64AtN3y7n1HzLtNmKNKsLeIEWcKvpu741wTom7vecNiV9Obih6LHxUdBF037qQZVBq11Dj08BMKg9RKXVd8nq4NXR_qFrr4lwVZSIzi1zsFHBbAyyxNCHRWBF6aiUWsZSqZiXAc8LVjIWa5kLAWOdh1pmYJhERVZqn22TWd3UeofQSMR-LBQPMy45Z_CjuA7zhAc6Cf08dgjbTIBUWQ51vMqjSo1jMIaz1IBgijinFmeHuGOt9cAh8gf5Fzi3RllkADcvYKRTO8Cpr0UZhbIUJWhUHumcQe9YCOsrUJzlvkMe48xMh3TaUY-lc8Y4xkIxkHhuJFCTQSdUZhMyAAqcPRPJ3YkkaCA1Kd7B-bfpSws9ExLQlUI45MlmRaRYCyP6at30RiZKJIcNwyH3hhUydjhEui0wxh0ST9bOBJFpSX36wXCjM4GMiDBQ3rjK_grz-_9a4QG5FpqbUTD2dZfMurNePwT7tMsfWSXzDakClGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooler+temperatures+destabilize+RNA+interference+and+increase+susceptibility+of+disease+vector+mosquitoes+to+viral+infection&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Adelman%2C+Zach+N&rft.au=Anderson%2C+Michelle+A.E&rft.au=Wiley%2C+Michael+R&rft.au=Murreddu%2C+Marta+G&rft.date=2013-05-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.volume=7&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pntd.0002239&rft.externalDocID=A334042330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon