Dictionary Learning Algorithms for Sparse Representation

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtainin...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 15; no. 2; pp. 349 - 396
Main Authors Kreutz-Delgado, Kenneth, Murray, Joseph F., Rao, Bhaskar D., Engan, Kjersti, Lee, Te-Won, Sejnowski, Terrence J.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.02.2003
Subjects
Online AccessGet full text
ISSN0899-7667
1530-888X
1530-888X
DOI10.1162/089976603762552951

Cover

Abstract Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
AbstractList Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
Author Sejnowski, Terrence J.
Murray, Joseph F.
Kreutz-Delgado, Kenneth
Engan, Kjersti
Rao, Bhaskar D.
Lee, Te-Won
Author_xml – sequence: 1
  givenname: Kenneth
  surname: Kreutz-Delgado
  fullname: Kreutz-Delgado, Kenneth
– sequence: 2
  givenname: Joseph F.
  surname: Murray
  fullname: Murray, Joseph F.
  email: jfmurray@ucsd.edu
– sequence: 3
  givenname: Bhaskar D.
  surname: Rao
  fullname: Rao, Bhaskar D.
  email: brao@ece.ucsd.edu
– sequence: 4
  givenname: Kjersti
  surname: Engan
  fullname: Engan, Kjersti
  email: kjersti.engan@tn.his.no
  organization: Stavanger University College, School of Science and Technology Ullandhaug, N-4091 Stavanger, Norway, kjersti.engan@tn.his.no
– sequence: 5
  givenname: Te-Won
  surname: Lee
  fullname: Lee, Te-Won
  organization: Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute, La Jolla, California 92037, U.S.A., tewon@salk.edu
– sequence: 6
  givenname: Terrence J.
  surname: Sejnowski
  fullname: Sejnowski, Terrence J.
  organization: Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute, La Jolla, California 92037, U.S.A., terry@salk.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14582951$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12590811$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFF2CBsoFdyrUdO_YGqWopII2ExI_EznIcZ-oqsYOdFJWnx6NEGn6qipUX_r7jc69P0JEP3iL0HMMZxpy8BiFlzTnQmhPGiGT4EdpgRqEUQnw7Qps9UGaiPkYnKd0AAMfAnqBjTJgEgfEGiUtnJhe8jnfF1urond8V5_0uRDddD6noQiw-jzomW3yyY7TJ-knvhafocaf7ZJ-t5yn6evX2y8X7cvvx3YeL821pmORT2VacNxLXlGNR8xq6llZM0rY1YAgxhFLLaytbohstTWcgVxMNaFJ3QgJu6CmiS-7sR333Q_e9GqMbcl-FQe33oP7dQ7beLNY4N4NtTW4d9cEM2qk_b7y7Vrtwq4isKiCQA16tATF8n22a1OCSsX2vvQ1zUjWFilBWZ_DF7y8dyq0rzsDLFdDJ6L6L2huXDlzFxFqZLJyJIaVou_-bU_wlGbf8T57K9Q-rZ4s6uEndhDn6_I0PC1f3CN6acIuZI4oCoUIoAgTnjJygfrrxvqBfzV7M6g
CitedBy_id crossref_primary_10_1002_sca_21127
crossref_primary_10_1016_j_sigpro_2008_12_005
crossref_primary_10_1016_j_ymssp_2020_107434
crossref_primary_10_1109_TSP_2014_2328981
crossref_primary_10_1016_j_ymssp_2010_07_019
crossref_primary_10_3390_rs11222608
crossref_primary_10_1109_TIP_2015_2409565
crossref_primary_10_1186_1687_6180_2011_58
crossref_primary_10_1109_TMI_2014_2336860
crossref_primary_10_1109_TIT_2016_2517011
crossref_primary_10_1109_TSP_2007_896242
crossref_primary_10_1007_s10955_024_03359_9
crossref_primary_10_1007_s11263_015_0799_8
crossref_primary_10_1109_TIP_2013_2282900
crossref_primary_10_1162_NECO_a_00672
crossref_primary_10_4028_www_scientific_net_AMM_556_562_3658
crossref_primary_10_1016_j_sigpro_2012_09_011
crossref_primary_10_1137_07070156X
crossref_primary_10_1139_cgj_2023_0457
crossref_primary_10_1785_0220180302
crossref_primary_10_1016_j_bspc_2013_05_003
crossref_primary_10_1137_15M1030376
crossref_primary_10_1049_iet_spr_2019_0242
crossref_primary_10_36548_jtcsst_2021_3_003
crossref_primary_10_1016_j_neunet_2012_08_013
crossref_primary_10_1177_1475921716664515
crossref_primary_10_1162_neco_a_01325
crossref_primary_10_1007_s00500_015_1959_z
crossref_primary_10_1016_j_cor_2012_12_002
crossref_primary_10_1002_etep_2405
crossref_primary_10_3934_ipi_2011_5_815
crossref_primary_10_1109_TBC_2016_2638620
crossref_primary_10_1109_MSP_2013_2253354
crossref_primary_10_1364_OPTICA_506813
crossref_primary_10_1155_2018_1532868
crossref_primary_10_1155_2017_7483639
crossref_primary_10_1109_JPROC_2022_3155904
crossref_primary_10_1007_s11042_019_08424_0
crossref_primary_10_1002_mrm_27521
crossref_primary_10_1002_ima_20231
crossref_primary_10_1007_s13246_024_01507_9
crossref_primary_10_1016_j_measurement_2021_109810
crossref_primary_10_1016_j_specom_2013_01_005
crossref_primary_10_3389_fnimg_2022_963125
crossref_primary_10_1007_s10851_008_0120_3
crossref_primary_10_1137_120863307
crossref_primary_10_1109_TNNLS_2016_2532358
crossref_primary_10_1016_j_sigpro_2016_02_008
crossref_primary_10_1109_TSP_2008_919392
crossref_primary_10_1007_s11682_015_9359_7
crossref_primary_10_1016_j_neucom_2015_05_036
crossref_primary_10_1007_s11265_006_9774_5
crossref_primary_10_1109_TIT_2006_876348
crossref_primary_10_1109_LSP_2015_2454991
crossref_primary_10_1109_TSP_2015_2405503
crossref_primary_10_1002_mp_13337
crossref_primary_10_1109_TBME_2017_2737785
crossref_primary_10_1155_2021_8864981
crossref_primary_10_1186_s13634_018_0538_8
crossref_primary_10_1016_j_jvcir_2012_04_003
crossref_primary_10_1016_j_cam_2016_03_011
crossref_primary_10_1016_j_dsp_2011_10_006
crossref_primary_10_1016_j_bspc_2023_105856
crossref_primary_10_1109_LSP_2014_2345761
crossref_primary_10_1109_MAP_2020_3043469
crossref_primary_10_1007_s00034_021_01675_z
crossref_primary_10_1109_TIP_2017_2686014
crossref_primary_10_1109_JSTSP_2011_2161264
crossref_primary_10_1109_TCYB_2016_2612686
crossref_primary_10_1109_TWC_2019_2952843
crossref_primary_10_1109_TWC_2018_2843786
crossref_primary_10_2478_amns_2023_1_00337
crossref_primary_10_1016_j_neucom_2007_08_034
crossref_primary_10_1016_j_ymssp_2018_07_036
crossref_primary_10_1007_s11265_006_0003_z
crossref_primary_10_1109_TSP_2021_3100305
crossref_primary_10_1162_neco_a_01304
crossref_primary_10_1109_TASL_2007_909434
crossref_primary_10_1109_TGRS_2016_2594952
crossref_primary_10_1109_TNN_2005_853426
crossref_primary_10_1109_TSP_2015_2472372
crossref_primary_10_1109_TIP_2013_2246175
crossref_primary_10_1109_TGRS_2015_2484619
crossref_primary_10_1002_mrm_21202
crossref_primary_10_1016_j_sigpro_2005_06_007
crossref_primary_10_1007_s11517_015_1382_8
crossref_primary_10_1088_0031_9155_58_16_5803
crossref_primary_10_3390_electronics14020353
crossref_primary_10_3390_s21082602
crossref_primary_10_1016_j_bspc_2017_08_007
crossref_primary_10_1016_j_oceaneng_2021_109013
crossref_primary_10_1177_1687814017703008
crossref_primary_10_1162_neco_2009_08_08_846
crossref_primary_10_1016_j_imavis_2013_12_015
crossref_primary_10_1109_TSP_2012_2218807
crossref_primary_10_1109_ACCESS_2020_3007150
crossref_primary_10_1137_19M126044X
crossref_primary_10_1016_j_patcog_2017_11_002
crossref_primary_10_1109_ACCESS_2019_2930236
crossref_primary_10_1109_TCSVT_2016_2539778
crossref_primary_10_1109_TMI_2015_2418734
crossref_primary_10_1142_S021945542340028X
crossref_primary_10_1109_TNN_2010_2049370
crossref_primary_10_1016_j_imavis_2014_02_007
crossref_primary_10_1109_TIT_2016_2556702
crossref_primary_10_1038_srep37862
crossref_primary_10_1137_090770783
crossref_primary_10_1016_j_neucom_2011_02_002
crossref_primary_10_1109_ACCESS_2019_2932098
crossref_primary_10_1089_neur_2023_0059
crossref_primary_10_1007_s13042_018_0856_z
crossref_primary_10_1007_s10851_013_0431_x
crossref_primary_10_1049_iet_spr_2014_0072
crossref_primary_10_1109_TCSVT_2014_2317886
crossref_primary_10_3390_jimaging4050068
crossref_primary_10_1007_s11460_009_0009_y
crossref_primary_10_1109_TCBB_2023_3321593
crossref_primary_10_1186_s13634_018_0533_0
crossref_primary_10_1016_j_jappgeo_2024_105475
crossref_primary_10_1109_JPROC_2009_2030345
crossref_primary_10_1088_1742_6596_1237_3_032021
crossref_primary_10_1016_j_neucom_2014_03_034
crossref_primary_10_1109_TSP_2020_3012946
crossref_primary_10_1109_JSEN_2023_3325364
crossref_primary_10_1109_TNSRE_2014_2319334
crossref_primary_10_1016_j_acha_2014_01_005
crossref_primary_10_1109_JSTSP_2010_2042410
crossref_primary_10_1016_j_sigpro_2025_109886
crossref_primary_10_1109_TIP_2007_901813
crossref_primary_10_1016_j_cageo_2016_03_009
crossref_primary_10_1121_1_2982414
crossref_primary_10_1016_j_optcom_2012_10_014
crossref_primary_10_1109_ACCESS_2019_2954693
crossref_primary_10_1016_j_compgeo_2023_105328
crossref_primary_10_1109_TIP_2013_2290871
crossref_primary_10_1109_TSP_2011_2157146
crossref_primary_10_1007_s11042_021_10516_9
crossref_primary_10_1109_TBME_2016_2533722
crossref_primary_10_1109_TNNLS_2014_2323985
crossref_primary_10_1137_060657704
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1049_iet_cvi_2016_0186
crossref_primary_10_1364_AO_51_003941
crossref_primary_10_1162_089976604773717586
crossref_primary_10_1007_s41365_022_01014_0
crossref_primary_10_1088_1742_6596_1592_1_012066
crossref_primary_10_1109_TSP_2009_2026610
crossref_primary_10_1109_TIT_2010_2048466
crossref_primary_10_3390_app13095749
crossref_primary_10_1007_s11760_013_0429_2
crossref_primary_10_1016_j_ress_2018_02_010
crossref_primary_10_1016_j_neucom_2011_06_033
crossref_primary_10_1109_TIT_2011_2165821
crossref_primary_10_1155_2019_3280961
crossref_primary_10_1080_10589759_2011_577428
crossref_primary_10_1121_1_5133944
crossref_primary_10_1002_mp_13415
crossref_primary_10_1049_iet_ipr_2012_0554
crossref_primary_10_1007_s11042_018_6090_6
crossref_primary_10_1016_j_sigpro_2013_11_032
crossref_primary_10_1016_j_ndteint_2007_05_002
crossref_primary_10_1109_JSTARS_2017_2754553
crossref_primary_10_1016_j_dsp_2009_02_001
crossref_primary_10_1109_TIP_2006_881969
crossref_primary_10_1007_s10586_017_0823_6
crossref_primary_10_1109_TBME_2018_2806958
crossref_primary_10_1146_annurev_neuro_062111_150410
crossref_primary_10_1016_j_jmapro_2023_08_040
crossref_primary_10_1063_5_0202931
crossref_primary_10_1121_1_2215407
crossref_primary_10_1109_TUFFC_2015_007048
crossref_primary_10_1109_TVLSI_2014_2301733
crossref_primary_10_1145_3141770
crossref_primary_10_1007_s11042_022_13444_4
crossref_primary_10_1016_j_ijhydene_2023_03_373
crossref_primary_10_1109_TSP_2008_2007605
crossref_primary_10_1162_NECO_a_00907
crossref_primary_10_1109_TSP_2020_2971948
crossref_primary_10_1117_1_OE_57_7_073102
crossref_primary_10_1109_TMI_2010_2097275
crossref_primary_10_1016_j_cam_2016_09_019
crossref_primary_10_1016_j_sigpro_2018_10_010
crossref_primary_10_3390_math11122674
crossref_primary_10_1109_TSP_2009_2016257
crossref_primary_10_1007_s10712_024_09828_w
crossref_primary_10_1016_j_eswa_2013_11_036
crossref_primary_10_1109_TIP_2017_2681436
crossref_primary_10_1137_18M121976X
crossref_primary_10_3390_jmse9111245
crossref_primary_10_1109_TSP_2008_928160
crossref_primary_10_1007_s11042_016_4134_3
crossref_primary_10_1038_s41598_017_18776_y
crossref_primary_10_1109_TBME_2013_2262099
crossref_primary_10_1016_j_sigpro_2009_04_001
crossref_primary_10_1137_16M1091447
crossref_primary_10_1109_TSIPN_2017_2710905
crossref_primary_10_1109_TWC_2019_2915955
crossref_primary_10_1016_j_compbiomed_2016_01_013
crossref_primary_10_1109_TCI_2017_2663321
crossref_primary_10_1109_ACCESS_2019_2959011
crossref_primary_10_1007_s11432_014_5258_6
crossref_primary_10_1016_j_jmr_2015_11_003
crossref_primary_10_1049_rsn2_12348
crossref_primary_10_1103_PhysRevE_106_024136
crossref_primary_10_1109_TSP_2010_2040671
crossref_primary_10_3390_e20030150
crossref_primary_10_1007_s11440_024_02475_w
crossref_primary_10_1109_TSP_2006_873367
crossref_primary_10_1007_s11042_020_09850_1
crossref_primary_10_1016_j_acha_2013_10_001
crossref_primary_10_1109_TIP_2010_2081679
crossref_primary_10_1177_20552076241302234
crossref_primary_10_1016_j_ultras_2011_10_001
crossref_primary_10_1109_TSP_2010_2044251
crossref_primary_10_3390_bdcc6020044
crossref_primary_10_1109_TPAMI_2013_236
crossref_primary_10_1177_10775463231212528
crossref_primary_10_1523_JNEUROSCI_1563_06_2006
crossref_primary_10_1002_mrc_4532
crossref_primary_10_1109_JSTSP_2009_2039171
crossref_primary_10_1016_j_jneumeth_2024_110323
crossref_primary_10_1016_j_neucom_2012_10_024
crossref_primary_10_1109_TNNLS_2013_2238682
crossref_primary_10_1109_ACCESS_2015_2430359
crossref_primary_10_1029_2023JB027016
crossref_primary_10_3934_ipi_2012_6_447
crossref_primary_10_1016_j_wavemoti_2024_103375
crossref_primary_10_1109_TNN_2007_891681
crossref_primary_10_3934_ipi_2016012
crossref_primary_10_1088_1751_8121_ad2299
crossref_primary_10_1103_PhysRevE_107_064308
crossref_primary_10_1016_j_measurement_2017_02_031
crossref_primary_10_1364_BOE_10_001660
crossref_primary_10_1016_j_dsp_2018_09_007
crossref_primary_10_1016_j_laa_2005_06_035
crossref_primary_10_1016_j_rinam_2024_100516
crossref_primary_10_1007_s10589_017_9913_x
crossref_primary_10_1016_j_acha_2016_08_002
crossref_primary_10_1016_j_conb_2010_07_004
crossref_primary_10_1109_TSP_2018_2807422
crossref_primary_10_1111_j_1467_8659_2009_01495_x
crossref_primary_10_1016_j_sigpro_2005_08_009
crossref_primary_10_1002_mp_12097
crossref_primary_10_1093_imaiai_iaad008
crossref_primary_10_1051_matecconf_20165602008
crossref_primary_10_1109_TPAMI_2014_2353631
crossref_primary_10_5802_crphys_236
crossref_primary_10_1109_TCYB_2013_2278548
crossref_primary_10_3390_info13030111
crossref_primary_10_1016_j_ins_2014_08_066
crossref_primary_10_1016_j_image_2019_04_006
crossref_primary_10_1016_j_sigpro_2017_01_004
crossref_primary_10_1190_geo2013_0252_1
crossref_primary_10_2200_S00640ED1V01Y201504IVM018
crossref_primary_10_1109_TPAMI_2012_215
crossref_primary_10_1017_jfm_2016_616
crossref_primary_10_1109_TSP_2013_2277834
crossref_primary_10_1016_j_neuroimage_2015_05_088
crossref_primary_10_1109_TIP_2009_2022459
crossref_primary_10_1088_1742_6596_1982_1_012162
crossref_primary_10_3390_s18103513
crossref_primary_10_1109_TSP_2019_2952046
crossref_primary_10_1016_j_patcog_2011_05_002
crossref_primary_10_1109_ACCESS_2019_2933550
crossref_primary_10_7498_aps_63_189501
crossref_primary_10_1016_j_neucom_2023_126895
crossref_primary_10_1109_TSP_2012_2183129
crossref_primary_10_1007_s00521_014_1607_z
crossref_primary_10_1016_j_ultramic_2021_113451
crossref_primary_10_1587_transcom_E96_B_685
crossref_primary_10_1016_j_patcog_2021_107815
crossref_primary_10_1371_journal_pone_0262219
crossref_primary_10_1007_s00041_020_09738_6
crossref_primary_10_1007_s11517_016_1556_z
crossref_primary_10_1016_j_neucom_2008_11_027
crossref_primary_10_1109_ACCESS_2019_2944484
crossref_primary_10_1109_TSP_2007_895998
crossref_primary_10_1109_COMST_2017_2664421
crossref_primary_10_1162_neco_2007_19_9_2301
crossref_primary_10_3724_SP_J_1004_2008_00142
crossref_primary_10_1109_MSP_2010_939537
crossref_primary_10_1109_TIT_2011_2162174
crossref_primary_10_3233_ICA_190603
crossref_primary_10_1145_2167076_2167077
crossref_primary_10_1109_TSP_2013_2250968
crossref_primary_10_1109_JSEN_2020_3029707
crossref_primary_10_1109_TSP_2005_861743
crossref_primary_10_1109_TSP_2024_3418971
crossref_primary_10_1038_srep22804
crossref_primary_10_1016_j_bspc_2018_08_016
crossref_primary_10_1016_j_jvcir_2011_09_008
crossref_primary_10_1016_j_measurement_2021_109104
crossref_primary_10_1109_TNNLS_2022_3153310
crossref_primary_10_1016_j_patrec_2010_12_009
crossref_primary_10_1109_TIT_2018_2799931
crossref_primary_10_1109_TIP_2009_2018575
crossref_primary_10_1137_20M1326246
crossref_primary_10_1109_TSP_2012_2215026
crossref_primary_10_1371_journal_pone_0169663
crossref_primary_10_1002_mrm_21757
crossref_primary_10_1007_s10618_016_0461_2
crossref_primary_10_1118_1_4754304
crossref_primary_10_1186_s12888_022_04509_7
crossref_primary_10_1117_1_JRS_10_042003
crossref_primary_10_1016_j_advengsoft_2018_12_004
crossref_primary_10_1016_j_geoen_2024_213230
crossref_primary_10_1088_1742_5468_ac7e4c
crossref_primary_10_1016_j_sigpro_2018_01_001
crossref_primary_10_1371_journal_pone_0184667
crossref_primary_10_1049_ip_rsn_20050147
crossref_primary_10_1109_TSP_2015_2486743
crossref_primary_10_1016_j_icarus_2018_09_005
crossref_primary_10_1109_ACCESS_2022_3218032
crossref_primary_10_1007_s10334_022_01029_z
crossref_primary_10_1016_j_sigpro_2016_08_015
crossref_primary_10_1109_JSTSP_2011_2158063
crossref_primary_10_1109_JSTSP_2011_2157892
crossref_primary_10_1109_JPROC_2015_2461601
crossref_primary_10_1007_s13246_014_0276_7
crossref_primary_10_1016_j_ijleo_2014_01_003
crossref_primary_10_1109_TSP_2006_881199
crossref_primary_10_1007_s11227_015_1386_z
crossref_primary_10_1186_s40068_015_0052_z
crossref_primary_10_1109_ACCESS_2018_2880967
crossref_primary_10_1109_TIP_2016_2623484
crossref_primary_10_1115_1_4037419
crossref_primary_10_1107_S1600576721000194
crossref_primary_10_1109_TSA_2005_860346
crossref_primary_10_3390_aerospace8050134
crossref_primary_10_1073_pnas_2314697121
crossref_primary_10_1162_NECO_a_00763
crossref_primary_10_1109_TSP_2013_2278158
crossref_primary_10_1109_TSP_2016_2634546
crossref_primary_10_1016_j_neucom_2018_09_090
crossref_primary_10_1007_s11042_018_7071_5
crossref_primary_10_1016_j_csl_2008_06_002
crossref_primary_10_1038_s41598_017_18860_3
crossref_primary_10_1145_2750780
crossref_primary_10_1016_j_bspc_2015_03_002
crossref_primary_10_1063_5_0135245
crossref_primary_10_1109_TIM_2019_2905043
crossref_primary_10_1088_1361_6501_ac407a
crossref_primary_10_1117_1_JEI_25_6_063013
crossref_primary_10_1080_09298210903171178
crossref_primary_10_1109_TASLP_2023_3265199
crossref_primary_10_1186_s43593_024_00078_2
crossref_primary_10_1016_j_patcog_2012_10_010
crossref_primary_10_1121_1_2126935
crossref_primary_10_1631_jzus_2007_A0620
crossref_primary_10_1016_j_cviu_2008_09_003
crossref_primary_10_1080_17499518_2023_2278136
crossref_primary_10_1016_j_image_2016_09_008
crossref_primary_10_1049_iet_spr_2012_0365
crossref_primary_10_1155_2015_560171
crossref_primary_10_1109_TMI_2013_2266259
crossref_primary_10_1109_TNN_2008_2003980
crossref_primary_10_1016_j_compgeo_2023_105953
crossref_primary_10_1016_j_ultras_2006_07_005
crossref_primary_10_1016_j_promfg_2021_06_071
crossref_primary_10_3847_1538_4357_abf48f
crossref_primary_10_1016_j_eswa_2021_116192
crossref_primary_10_1109_TMI_2017_2699225
crossref_primary_10_3390_s17020233
crossref_primary_10_1016_j_engappai_2016_08_015
crossref_primary_10_3390_app8122569
crossref_primary_10_1016_j_compag_2017_11_013
crossref_primary_10_1109_TPAMI_2017_2723882
crossref_primary_10_1016_j_dsp_2013_01_004
crossref_primary_10_1016_j_probengmech_2020_103082
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_1142_S0129065720500409
crossref_primary_10_1109_TGRS_2014_2325067
crossref_primary_10_1016_j_measurement_2020_107798
crossref_primary_10_1109_TSP_2012_2187642
crossref_primary_10_1088_0031_9155_52_11_018
crossref_primary_10_1162_neco_2008_03_07_486
crossref_primary_10_1002_adfm_201906041
crossref_primary_10_1109_TIT_2015_2424238
crossref_primary_10_1016_j_advwatres_2011_09_002
crossref_primary_10_1109_JPROC_2010_2040551
crossref_primary_10_1049_iet_cvi_2014_0018
Cites_doi 10.1038/381607a0
10.1049/ip-vis:19981928
10.1162/neco.1994.6.4.559
10.1109/78.558475
10.1109/78.258082
10.1016/0013-4694(95)00107-A
10.1016/0165-1684(94)90029-9
10.1162/neco.1997.9.8.1627
10.1109/78.542183
10.1162/neco.1995.7.6.1129
10.1162/089976600300015826
10.1016/S0042-6989(00)00290-X
10.1109/78.738251
10.1162/089976699300016458
10.1109/18.119732
10.1016/S0042-6989(97)00169-7
10.1109/18.382009
10.1137/0914086
10.1162/089976601753196003
10.1162/089976601300014385
10.1109/97.551687
10.1088/0954-898X/5/4/006
10.1016/0031-3203(81)90094-7
10.1162/089976699300016719
10.1364/JOSAA.16.001587
10.1088/0954-898X/5/4/008
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright_xml – notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1162/089976603762552951
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1530-888X
EndPage 396
ExternalDocumentID oai:pubmedcentral.nih.gov:2944020
PMC2944020
12590811
14582951
10_1162_089976603762552951
089976603762552951.pdf
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
6IK
AAJGR
AALMD
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ABMYL
ACGFO
ADIYS
AEGXH
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
AAYXX
ABAZT
ABVLG
ACUHS
ADMLS
AMVHM
CITATION
41~
53G
AAFWJ
ACYGS
AEILP
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c596t-d466b91736187670fd34593ddc0c22c233e67e9d2aba9cfc01258b0a27f8901b3
IEDL.DBID UNPAY
ISSN 0899-7667
1530-888X
IngestDate Sun Oct 26 04:00:25 EDT 2025
Tue Sep 30 16:50:43 EDT 2025
Thu Oct 02 10:08:04 EDT 2025
Fri May 30 10:50:32 EDT 2025
Mon Jul 21 09:17:02 EDT 2025
Wed Oct 01 02:03:00 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Mon Mar 11 05:40:57 EDT 2024
Tue Mar 01 17:17:49 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Stochastic model
Compression
Dictionaries
Description
Word
Noise
Complete
Elements
Generalization
Image
Mean square error
Learning
Probability density
Accuracy
Schur concavity
Gaussian noise
Noise source
Coding
Efficiency
Test
Bayesian model
A posteriori estimation
Sparse representation
Performance analysis
Component
Learning algorithm
Vector
Concept
Dictionary learning algorithm
Vector quantization
Use
Independent component analysis
Data
Representation
Neural network
Algorithm
Neurophysiology
Domains
Analysis method
Algorithm performance
Sparse set
Environment
Density function
Models
Maximum likelihood
Pixel
Signal to noise ratio
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-d466b91736187670fd34593ddc0c22c233e67e9d2aba9cfc01258b0a27f8901b3
Notes February, 2003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1162/089976603762552951
PMID 12590811
PQID 73042357
PQPubID 23479
PageCount 48
ParticipantIDs unpaywall_primary_10_1162_089976603762552951
mit_journals_10_1162_089976603762552951
proquest_miscellaneous_73042357
pubmed_primary_12590811
crossref_citationtrail_10_1162_089976603762552951
mit_journals_necov15i2_302388_2021_11_08_zip_089976603762552951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944020
crossref_primary_10_1162_089976603762552951
pascalfrancis_primary_14582951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-02-01
PublicationDateYYYYMMDD 2003-02-01
PublicationDate_xml – month: 02
  year: 2003
  text: 2003-02-01
  day: 01
PublicationDecade 2000
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: Cambridge, MA
– name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2003
Publisher MIT Press
Publisher_xml – name: MIT Press
References p_41
p_42
p_40
p_16
p_38
p_17
p_39
p_2
p_18
p_19
p_4
p_34
p_35
p_57
p_6
p_58
p_5
p_15
p_53
p_32
p_54
p_11
p_33
p_55
p_50
p_51
References_xml – ident: p_39
  doi: 10.1038/381607a0
– ident: p_51
  doi: 10.1049/ip-vis:19981928
– ident: p_15
  doi: 10.1162/neco.1994.6.4.559
– ident: p_18
  doi: 10.1109/78.558475
– ident: p_35
  doi: 10.1109/78.258082
– ident: p_17
  doi: 10.1016/0013-4694(95)00107-A
– ident: p_6
  doi: 10.1016/0165-1684(94)90029-9
– ident: p_57
  doi: 10.1162/neco.1997.9.8.1627
– ident: p_41
  doi: 10.1109/78.542183
– ident: p_4
  doi: 10.1162/neco.1995.7.6.1129
– ident: p_34
  doi: 10.1162/089976600300015826
– ident: p_42
  doi: 10.1016/S0042-6989(00)00290-X
– ident: p_50
  doi: 10.1109/78.738251
– ident: p_2
  doi: 10.1162/089976699300016458
– ident: p_5
  doi: 10.1109/18.119732
– ident: p_40
  doi: 10.1016/S0042-6989(97)00169-7
– ident: p_11
  doi: 10.1109/18.382009
– ident: p_19
  doi: 10.1137/0914086
– ident: p_16
  doi: 10.1162/089976601753196003
– ident: p_58
  doi: 10.1162/089976601300014385
– ident: p_54
  doi: 10.1109/97.551687
– ident: p_53
  doi: 10.1088/0954-898X/5/4/006
– ident: p_55
  doi: 10.1016/0031-3203(81)90094-7
– ident: p_32
  doi: 10.1162/089976699300016719
– ident: p_33
  doi: 10.1364/JOSAA.16.001587
– ident: p_38
  doi: 10.1088/0954-898X/5/4/008
SSID ssj0006105
Score 2.3359642
Snippet Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 349
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Biological and medical sciences
Computer science; control theory; systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Models. Methods
Learning - physiology
Learning and adaptive systems
Mathematical foundations
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Probability and statistics
Sciences and techniques of general use
Statistics
Stochastic Processes
Vertebrates: nervous system and sense organs
Title Dictionary Learning Algorithms for Sparse Representation
URI https://direct.mit.edu/neco/article/doi/10.1162/089976603762552951
https://www.ncbi.nlm.nih.gov/pubmed/12590811
https://www.proquest.com/docview/73042357
https://pubmed.ncbi.nlm.nih.gov/PMC2944020
http://doi.org/10.1162/089976603762552951
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-888X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagfYAXNn53bCUPSDxAtsRO7PgJVRvThNiEGJXKk-XYzhbRpVWTDm1_PWcnbRe1GvCcuyg5n-3vfOfvEHpnzxUkl9SH9RcCFEq1zxVO_TBLSawV09ox3pye0ZNh9GUUj1Zk0XfT9yHFBzYpxSgNYBoA9sXcXpbu0hhgdwd1h2ffBj8dSuTcBylWc6MGPkR1o8UFmY0vaW1CD6_yypZEyhKsktXtLDbhzfWyyUfzYipvfsvx-M6edLxVV3OVjsrQlqL82p9X6b66XSd6_PvvbqMnDTL1BrUrPUUPTPEMbS26PnjNIvAcJUe5uwshZzdew8564Q3GF5NZXl1elR6gYO98CvGy8b67MtvmdlPxAg2PP_84PPGb_gu-AgtXvoahSyGcIzSENZMFmSZRzInWKlAYK0yIocxwjWUqucoU7HVxkgYSsywBmJGSl6hTTArzGnmR5NhQmsTGMNvUXCqDIxMnNhwyjLAeChcDIlRDTm57ZIyFC1IoFuum6aEPS51pTc1xr_R7GGfRzNDyXslPLcnCqMl1GOdY2AZLSSIw4CJQBlVxm083vqHf8qbV59kspRN4u3AvAdPZ5mhkYSbzUjB7vERiMMir2tlWuti2pw9Bl7XccClgicLbT4r80hGGYx7ZY4Ie-rh02H-w2M7_ib9Bj12ho6to30WdajY3ewDYqrSPuoOj06_n_WbK_gEqtSxu
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage4AXNn53jJEHJB4gW2LHdvw0VcA0ITEhoFJ5shzb2SK6tGrSoe2v39lJ20WtBjznLkrOZ_s73_k7hN66cwUlFAth_YUAhTETCo2zMM4zQo3mxnjGm6-n7GSYfBnR0Yos-nb6Pmb40CWlOGMRTAPAvli4y9JbjALs7qGt4em3wS-PEoUIQYo33KhRCFHdaHFBZuNLOpvQ_YuidiWRqgKr5E07i014c71s8sG8nKqrP2o8vrUnHW831VyVpzJ0pSi_D-Z1dqCv14ke__67O-hRi0yDQeNKj9E9Wz5B24uuD0G7CDxF6afC34VQs6ugZWc9Cwbjs8msqM8vqgBQcPBjCvGyDb77Mtv2dlP5DA2PP__8eBK2_RdCDRauQwNDl0E4R1gMayaPckMSKogxOtIYa0yIZdwKg1WmhM417HU0zSKFeZ4CzMjIc9QrJ6V9iYJECWwZS6m13DU1V9rixNLUhUOWE95H8WJApG7JyV2PjLH0QQrDct00ffR-qTNtqDnulH4H4yzbGVrdKXnUkSytnlzGtMDSNVhKU4kBF4EyqMrrYrrxDfsdb1p9nstSeoE3C_eSMJ1djkaVdjKvJHfHS4SCQV40zrbSxa49fQy6vOOGSwFHFN59UhbnnjAci8QdE_TRh6XD_oPFdv9P_BV66AsdfUX7HurVs7l9DYCtzvbbqXoDz3Iq2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dictionary+learning+algorithms+for+sparse+representation&rft.jtitle=Neural+computation&rft.au=Kreutz-Delgado%2C+Kenneth&rft.au=Murray%2C+Joseph+F&rft.au=Rao%2C+Bhaskar+D&rft.au=Engan%2C+Kjersti&rft.date=2003-02-01&rft.issn=0899-7667&rft.volume=15&rft.issue=2&rft.spage=349&rft_id=info:doi/10.1162%2F089976603762552951&rft_id=info%3Apmid%2F12590811&rft.externalDocID=12590811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon