Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm

Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Result...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 15; no. 1; p. 49
Main Authors Chen, Kun-Huang, Wang, Kung-Jeng, Tsai, Min-Lung, Wang, Kung-Min, Adrian, Angelia Melani, Cheng, Wei-Chung, Yang, Tzu-Sen, Teng, Nai-Chia, Tan, Kuo-Pin, Chang, Ku-Shang
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.02.2014
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-15-49

Cover

Abstract Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Results To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Conclusion Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
AbstractList In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data.BACKGROUNDIn the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data.To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets.RESULTSTo achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets.Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.CONCLUSIONBased on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
Doc number: 49 Abstract Background: In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Results: To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Conclusion: Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Results To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Conclusion Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification. Keywords: Gene expression, Cancer, Particle swarm optimization, Decision tree classifier
Background: In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Results: To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Conclusion: Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various computational intelligence methods to analyzed gene expression data. Results To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a decision tree as the classifier. This study also compares the performance of our proposed method with other well-known benchmark classification methods (support vector machine, self-organizing map, back propagation neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and conducts experiments on 11 gene expression cancer datasets. Conclusion Based on statistical analysis, our proposed method outperforms other popular classifiers for all test datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on cancer classification.
ArticleNumber 49
Audience Academic
Author Tsai, Min-Lung
Adrian, Angelia Melani
Yang, Tzu-Sen
Wang, Kung-Jeng
Chen, Kun-Huang
Chang, Ku-Shang
Wang, Kung-Min
Tan, Kuo-Pin
Cheng, Wei-Chung
Teng, Nai-Chia
AuthorAffiliation 8 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
7 Taiwan Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University Taipei 110, Taiwan, R.O.C
5 Genomic Research Center, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
1 Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C
3 Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
6 School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
9 MBA, School of Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C
4 Pediatric Neurosurgery, Department of Surgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan, R.O.C
2 Department of Food Science, Yuanpei University, No. 306, Yuanpei Street, Hsinchu 300, Taiwan, R.O.C
AuthorAffiliation_xml – name: 4 Pediatric Neurosurgery, Department of Surgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan, R.O.C
– name: 1 Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C
– name: 8 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
– name: 9 MBA, School of Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C
– name: 5 Genomic Research Center, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
– name: 2 Department of Food Science, Yuanpei University, No. 306, Yuanpei Street, Hsinchu 300, Taiwan, R.O.C
– name: 6 School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
– name: 7 Taiwan Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University Taipei 110, Taiwan, R.O.C
– name: 3 Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
Author_xml – sequence: 1
  givenname: Kun-Huang
  surname: Chen
  fullname: Chen, Kun-Huang
  email: khchen@mail.ntust.edu.tw
  organization: Department of Industrial Management, National Taiwan University of Science and Technology
– sequence: 2
  givenname: Kung-Jeng
  surname: Wang
  fullname: Wang, Kung-Jeng
  organization: Department of Industrial Management, National Taiwan University of Science and Technology
– sequence: 3
  givenname: Min-Lung
  surname: Tsai
  fullname: Tsai, Min-Lung
  organization: Department of Food Science, Yuanpei University
– sequence: 4
  givenname: Kung-Min
  surname: Wang
  fullname: Wang, Kung-Min
  organization: Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital
– sequence: 5
  givenname: Angelia Melani
  surname: Adrian
  fullname: Adrian, Angelia Melani
  organization: Department of Industrial Management, National Taiwan University of Science and Technology
– sequence: 6
  givenname: Wei-Chung
  surname: Cheng
  fullname: Cheng, Wei-Chung
  organization: Pediatric Neurosurgery, Department of Surgery, Cheng Hsin General Hospital, Genomic Research Center, National Yang-Ming University
– sequence: 7
  givenname: Tzu-Sen
  surname: Yang
  fullname: Yang, Tzu-Sen
  organization: School of Dental Technology, Taipei Medical University, Taiwan Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University
– sequence: 8
  givenname: Nai-Chia
  surname: Teng
  fullname: Teng, Nai-Chia
  organization: School of Dentistry, College of Oral Medicine, Taipei Medical University
– sequence: 9
  givenname: Kuo-Pin
  surname: Tan
  fullname: Tan, Kuo-Pin
  organization: MBA, School of Management, National Taiwan University of Science and Technology
– sequence: 10
  givenname: Ku-Shang
  surname: Chang
  fullname: Chang, Ku-Shang
  organization: Department of Food Science, Yuanpei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24555567$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZocssYFFWtuxMwmLSlUFpVIlJB5ry3FuUleOHWyHYfj1OJ2hnakANV7Esr9zfH18D7M96yxk2UuCjwmpyhPCFiSnBPOc8JzVT7KDu5W9rfl-dhjCDcZkUWH-LNunjKevXBxk_gIsoAAGVNTOos55pKRV4JFuwUbdaSXnnXdIohaUDjMVPQAaXAsGwTC6JXhoUbNCo_RRK5MMl9IPyI1RD_rXrR5J0zuv4_XwPHvaSRPgxeZ_lH378P7r-cf86tPF5fnZVa54Xca8YRUtcSUr3BCCZaq8YhygaThVdYtxVzMsMWkZ7ijGrG3lQgEuGJOsWKiuKI4yvPad7ChXS2mMGL0epF8JgsUcn5gDEnNAgnDB6iQ5XUvGqRmgVSkAL-9lTmqxu2P1tejdD1HULMnLZPBmY-Dd9wlCFIMOCoyRFtwU0jGEFrSu6segmFNeUjajrx-gN27yNoU3U6xi6S70nuqlAaFt51KJajYVZzwVWBJSzqkc_4VKo4VBq9RdnU7rO4K3O4LERPgZezmFIC6_fN5lX23ndxfcn35LwMkaUN6F4KF7xJPwBwql421Hpbq1-Y9u8_ohnWB78FuZ_UPyG_0zBII
CitedBy_id crossref_primary_10_1155_2015_931256
crossref_primary_10_3390_app8091521
crossref_primary_10_4018_IJOCI_2017100103
crossref_primary_10_1002_1878_0261_12563
crossref_primary_10_1016_j_imu_2017_10_004
crossref_primary_10_1186_s12859_017_1729_2
crossref_primary_10_1186_s12859_021_04443_7
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_1038_s41392_022_00994_0
crossref_primary_10_1155_2015_178572
crossref_primary_10_1186_s12859_022_04848_y
crossref_primary_10_1016_j_neucom_2021_07_047
crossref_primary_10_1038_s41598_022_11143_6
crossref_primary_10_1186_s13040_018_0184_6
crossref_primary_10_1016_j_asoc_2017_10_024
crossref_primary_10_1038_srep22120
crossref_primary_10_1016_j_bspc_2022_104080
crossref_primary_10_1016_j_asoc_2018_06_019
crossref_primary_10_1109_TNB_2022_3194091
crossref_primary_10_1155_adce_9363110
crossref_primary_10_1007_s10586_018_2082_6
crossref_primary_10_3390_ijms231911024
crossref_primary_10_1007_s11517_017_1751_6
crossref_primary_10_1016_j_csbj_2020_10_011
crossref_primary_10_1007_s12652_020_02155_z
crossref_primary_10_3389_fcimb_2021_707905
crossref_primary_10_1016_j_imu_2020_100422
crossref_primary_10_1007_s11227_023_05643_z
crossref_primary_10_1016_j_asoc_2017_03_002
crossref_primary_10_3389_fendo_2021_641888
crossref_primary_10_1016_j_future_2018_10_008
crossref_primary_10_1109_TCBB_2019_2921961
crossref_primary_10_1016_j_seps_2021_101146
crossref_primary_10_1068_b130213p
crossref_primary_10_1186_s40537_025_01116_7
crossref_primary_10_1016_j_gene_2019_04_060
crossref_primary_10_29130_dubited_464092
crossref_primary_10_1016_j_chemolab_2018_08_016
crossref_primary_10_1016_j_neucom_2016_08_089
crossref_primary_10_3390_pr12020313
crossref_primary_10_1016_j_gpb_2017_08_002
crossref_primary_10_1186_1471_2105_15_274
crossref_primary_10_3389_fmolb_2022_907150
crossref_primary_10_1038_s41598_021_03316_6
crossref_primary_10_1016_j_csbj_2022_09_033
crossref_primary_10_1155_2017_5745724
crossref_primary_10_1080_24701556_2019_1653321
crossref_primary_10_1016_j_cmpb_2019_06_029
crossref_primary_10_1038_s41598_021_82864_3
crossref_primary_10_1007_s00500_018_3555_5
crossref_primary_10_1109_ACCESS_2020_3008750
crossref_primary_10_1109_ACCESS_2022_3185226
crossref_primary_10_1016_j_mlwa_2024_100576
crossref_primary_10_2174_1574893614666190204150918
crossref_primary_10_1016_j_eswa_2016_04_020
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1109_TCBB_2017_2712607
crossref_primary_10_1016_j_cose_2023_103675
crossref_primary_10_3233_JIFS_179115
crossref_primary_10_3390_bdcc8030033
crossref_primary_10_1016_j_eswa_2014_08_014
crossref_primary_10_48175_IJARSCT_1204
crossref_primary_10_1155_2017_1813494
crossref_primary_10_1016_j_compbiolchem_2017_10_009
Cites_doi 10.1093/bioinformatics/btn253
10.1186/1471-2105-11-421
10.1080/01621459.1975.10479865
10.1109/ICNN.1995.488968
10.1016/j.ygeno.2011.04.011
10.1093/bioinformatics/btq207
10.1016/j.compbiolchem.2007.10.001
10.1016/j.patrec.2004.08.015
10.1016/S0014-5793(00)01772-5
10.1006/jmbi.2001.4580
10.1016/j.neunet.2005.07.002
10.1186/1471-2105-10-S4-S7
10.1037/h0072400
10.1016/j.eswa.2004.12.023
10.1093/nar/gkm368
10.1073/pnas.97.1.262
10.1016/S0004-3702(97)00043-X
10.1007/s00521-011-0632-4
10.1007/s10115-007-0114-2
10.1093/bioinformatics/btp107
10.1007/s00500-007-0272-x
10.1198/016214502753479248
10.1186/1471-2105-5-64
10.1093/nar/gkh563
10.1111/j.2517-6161.1974.tb00994.x
10.1186/1471-2105-10-S1-S21
10.1016/j.ygeno.2004.09.007
10.1093/bioinformatics/bts108
10.1093/bioinformatics/btg179
10.1126/science.286.5439.531
10.1109/TAP.2004.823969
ContentType Journal Article
Copyright Chen et al.; licensee BioMed Central Ltd. 2014
COPYRIGHT 2014 BioMed Central Ltd.
2014 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Copyright © 2014 Chen et al.; licensee BioMed Central Ltd. 2014 Chen et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Chen et al.; licensee BioMed Central Ltd. 2014
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: Copyright © 2014 Chen et al.; licensee BioMed Central Ltd. 2014 Chen et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-15-49
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Engineering Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 49
ExternalDocumentID 10.1186/1471-2105-15-49
PMC3944936
3239598991
A539461163
24555567
10_1186_1471_2105_15_49
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c596t-b482608a80b110a780845eebb52c9d00f940a01d40f2004dda7ce0344a437cf33
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 03:59:24 EDT 2025
Tue Sep 30 15:47:09 EDT 2025
Tue Oct 07 09:28:09 EDT 2025
Thu Sep 04 15:03:49 EDT 2025
Mon Oct 06 18:29:31 EDT 2025
Mon Oct 20 22:05:52 EDT 2025
Mon Oct 20 16:24:24 EDT 2025
Thu Oct 16 14:30:41 EDT 2025
Thu Apr 03 06:57:49 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Wed Oct 01 04:15:23 EDT 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Decision tree classifier
Gene expression
Particle swarm optimization
Cancer
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-b482608a80b110a780845eebb52c9d00f940a01d40f2004dda7ce0344a437cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-15-49
PMID 24555567
PQID 1504841862
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2105_15_49
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3944936
proquest_miscellaneous_1512329896
proquest_miscellaneous_1505256246
proquest_journals_1504841862
gale_infotracmisc_A539461163
gale_infotracacademiconefile_A539461163
gale_incontextgauss_ISR_A539461163
pubmed_primary_24555567
crossref_primary_10_1186_1471_2105_15_49
crossref_citationtrail_10_1186_1471_2105_15_49
springer_journals_10_1186_1471_2105_15_49
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-20
PublicationDateYYYYMMDD 2014-02-20
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References J Robinson (6322_CR17) 2004; 52
E Alba (6322_CR1) 2007; 9
R Kahavi (6322_CR5) 1997; 97
L Li (6322_CR15) 2005; 85
R Batuwita (6322_CR26) 2009; 25
S Geisser (6322_CR39) 1975; 70
J Kennedy (6322_CR16) 1995; 4
S Tan (6322_CR37) 2005; 28
L Li (6322_CR14) 2001; 4
Y Wang (6322_CR27) 2011; 98
F Mosteller (6322_CR42) 1963; 58
WC Cheng (6322_CR22) 2010; 11
Y Su (6322_CR4) 2003; 19
TOM laboratory (6322_CR34) 2013
Y Shi (6322_CR36) 1998
S Dudoit (6322_CR24) 2002; 97
C Cortes (6322_CR43) 1995; 20
I Kononenko (6322_CR44) 1995
S Li (6322_CR2) 2008; 12
P Jiang (6322_CR25) 2007; 35
MS Mohamad (6322_CR19) 2009
A Brazma (6322_CR31) 2000; 480
MP Brown (6322_CR8) 2000; 97
6322_CR23
TR Golub (6322_CR32) 1999; 286
X Li (6322_CR6) 2004; 32
S Hua (6322_CR10) 2001; 308
L Evers (6322_CR9) 2008; 24
L Nanni (6322_CR28) 2008; 28
I Park (6322_CR29) 2010; 26
A Ahmad (6322_CR3) 2005; 26
M Stone (6322_CR38) 1974; 36
LF Chen (6322_CR18) 2011; 21
Y Saeys (6322_CR12) 2004; 5
W Zhao (6322_CR33) 2011; 3
Q Shen (6322_CR20) 2008; 32
JH Oh (6322_CR11) 2009; 10
X Wu (6322_CR21) 2008; 14
XM Zhao (6322_CR7) 2005; 18
Y Zhu (6322_CR13) 2009; 10
PN Tan (6322_CR30) 2005
J Kennedy (6322_CR35) 2001
S Larson (6322_CR40) 1931; 22
F Mosteller (6322_CR41) 1968
References_xml – volume: 24
  start-page: 1632
  year: 2008
  ident: 6322_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn253
– volume: 3
  start-page: 184
  year: 2011
  ident: 6322_CR33
  publication-title: Int J Adv Comput Technol
– volume: 11
  start-page: 421
  year: 2010
  ident: 6322_CR22
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-11-421
– volume: 70
  start-page: 320
  year: 1975
  ident: 6322_CR39
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1975.10479865
– start-page: 762
  volume-title: Particle swarm optimization for gene selection in classifying cancer classes
  year: 2009
  ident: 6322_CR19
– volume: 4
  start-page: 1942
  year: 1995
  ident: 6322_CR16
  publication-title: IEEE Int Conf Neural Networks - Conf Proc
  doi: 10.1109/ICNN.1995.488968
– volume: 98
  start-page: 73
  year: 2011
  ident: 6322_CR27
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.04.011
– volume: 26
  start-page: 1506
  year: 2010
  ident: 6322_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq207
– volume: 32
  start-page: 52
  year: 2008
  ident: 6322_CR20
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 26
  start-page: 43
  year: 2005
  ident: 6322_CR3
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2004.08.015
– volume: 480
  start-page: 2
  year: 2000
  ident: 6322_CR31
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)01772-5
– volume: 58
  start-page: 275
  year: 1963
  ident: 6322_CR42
  publication-title: J Am Stat Assoc
– volume: 9
  start-page: 284
  year: 2007
  ident: 6322_CR1
  publication-title: IEEE C Evol Computat
– volume: 308
  start-page: 397
  year: 2001
  ident: 6322_CR10
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4580
– volume: 18
  start-page: 1019
  year: 2005
  ident: 6322_CR7
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2005.07.002
– start-page: 69
  volume-title: A Modified Particle Swarm Optimizer
  year: 1998
  ident: 6322_CR36
– volume: 20
  start-page: 273
  year: 1995
  ident: 6322_CR43
  publication-title: Mach Learn
– volume: 10
  start-page: S7
  year: 2009
  ident: 6322_CR11
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-S4-S7
– ident: 6322_CR23
– volume: 22
  start-page: 45
  year: 1931
  ident: 6322_CR40
  publication-title: J Educat Psychol
  doi: 10.1037/h0072400
– volume-title: TOM laboratory
  year: 2013
  ident: 6322_CR34
– volume: 28
  start-page: 667
  year: 2005
  ident: 6322_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.023
– volume: 35
  start-page: W339
  year: 2007
  ident: 6322_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm368
– volume-title: Data analysis, including statistics. Handbook of Social Psychology
  year: 1968
  ident: 6322_CR41
– volume: 97
  start-page: 262
  year: 2000
  ident: 6322_CR8
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.1.262
– volume: 97
  start-page: 273
  year: 1997
  ident: 6322_CR5
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 21
  start-page: 2087
  issue: 8
  year: 2011
  ident: 6322_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0632-4
– volume: 14
  start-page: 1
  year: 2008
  ident: 6322_CR21
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– volume: 25
  start-page: 989
  year: 2009
  ident: 6322_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp107
– volume: 12
  start-page: 1039
  year: 2008
  ident: 6322_CR2
  publication-title: Soft Comput
  doi: 10.1007/s00500-007-0272-x
– volume: 97
  start-page: 77
  year: 2002
  ident: 6322_CR24
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502753479248
– volume: 5
  start-page: 64
  year: 2004
  ident: 6322_CR12
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-5-64
– volume: 4
  start-page: 727
  year: 2001
  ident: 6322_CR14
  publication-title: Comb Chem High T Scr
– volume: 32
  start-page: 2685
  year: 2004
  ident: 6322_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh563
– volume-title: Michael Steinbach, and Vipin Kumar. Introduction to Data Mining
  year: 2005
  ident: 6322_CR30
– volume: 36
  start-page: 111
  year: 1974
  ident: 6322_CR38
  publication-title: J Royal Stat Soc
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 10
  start-page: S21
  year: 2009
  ident: 6322_CR13
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-S1-S21
– start-page: 31
  volume-title: A counter example to the stronger version of the binary tree hypothesis
  year: 1995
  ident: 6322_CR44
– volume-title: Swarm Intelligence
  year: 2001
  ident: 6322_CR35
– volume: 85
  start-page: 16
  year: 2005
  ident: 6322_CR15
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2004.09.007
– volume: 28
  start-page: 1151
  year: 2008
  ident: 6322_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts108
– volume: 19
  start-page: 1578
  year: 2003
  ident: 6322_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg179
– volume: 286
  start-page: 531
  year: 1999
  ident: 6322_CR32
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 52
  start-page: 397
  year: 2004
  ident: 6322_CR17
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.2004.823969
SSID ssj0017805
Score 2.4625053
Snippet Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the...
In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the occurrence of...
Background In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the...
Doc number: 49 Abstract Background: In the application of microarray data, how to select a small number of informative genes from thousands of genes that may...
Background: In the application of microarray data, how to select a small number of informative genes from thousands of genes that may contribute to the...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Atoms & subatomic particles
Bayes Theorem
Bioinformatics
Biomedical and Life Sciences
Cancer
Cloning
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Factual
Decision Trees
Deoxyribonucleic acid
DNA
Female
Gene expression
Gene Expression Profiling - methods
Hospitals
Humans
Life Sciences
Male
Medical research
Methodology
Methodology Article
Microarrays
Neoplasms - classification
Neoplasms - genetics
Neoplasms - metabolism
Neural networks
Reproducibility of Results
Science
Statistical analysis
Statistical methods
Studies
Support Vector Machine
Transcriptome analysis
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8IH5TGMggJNhDtvw4JzESQgNtGkhUaDBpb5ZjJ9ukNilNq6r_PXepE5pJG331JU3vzucvte_7GHsH1qaaiG6zwoQeGAleBjr0MNRFCibObdMo_GMUH5_C9zNxtsVGbS8MHatsa2JTqG1l6D_yfQQukEKAAPzz9I9HqlG0u9pKaGgnrWA_NRRjt9h2SMxYA7b95XD086TbVyAGf0fwg7faD7A0e2gnvEB4RKe5sTZdrdAbS9TV45PdHuo9dmdRTvVqqcfjjWXq6AG77_AlP1gnxEO2lZeP2O214uTqMZsRzTSvG_EbjAhHyMoNBX7GL607ONTE6iPX3Dr9HU4717zRzOHEZLUkfU-erfjU5R2vl3o24RWWn4nr6-R6fI7um19MnrDTo8PfX489J7vgGSHjOcYKXzn8VKd-hthAo8tSEHmeZSI00vp-IcHXfmDBL2iKWasTEh0D0BAlpoiip2xQVmX-nHFtUz9PrG9NmIFNEongwUImEfZZEWTFkO21DlfGcZKTNMZYNe8maawoQooipAKhQA7Zh-6C6ZqO43rTtxRBRSQXJZ2iOdeLulbffp2oAxFJiAOEokP23hkVFX6x0a4pAR-feLF6ljs9S5yFpj_cJopyVaBW_3J2yN50w3QlnWwr82rR2AiEnSHEN9kQ8JWpRJtn69zrfn0IAj9xMmRJLys7A-IP74-UlxcNjzj1RMsI77nb5u_Go1_n1N0uwf8XgBc3u-Qlu4vgExp6AH-HDeazRf4KAd48e-1m7V91X022
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgCAEPiN8EBjIICfaQ4SRnJ-ZtmpgGEjwAk_YWOXayVWqTKmlV9b_nLnWjZmIg8upz4vjOvs8633eMvQPnMkNEt0Vl4xCshrAAE4eo6ioDq0rXJwp_-65Oz-DruTz3JEmUC7Mbv48y9THCzTPEY4kMIxmCvsluoYdSfVRWHQ_hAiLm97w9f-g0cjlXN94dz3P1VuQQGr3H7izruVmvzHS6431OHrD7Hjbyo42eH7IbZf2I3d4Uklw_Zi2xR_Our2mDE80RiXJL-mz5xPn7QL0KPnHDnS-rwykgzftSOJwIqlZUtpMXaz735sS7lWlnvMFdZebTNbmZXjTtZHE5e8LOTj7_Oj4NfTWF0EqtFqgCPEmIzGSiQJdvcMoykGVZFDK22glRaRBGRA5ERSvHOZNSLTEAA0lqqyR5yvbqpi6fM25cJsrUCWfjAlyaasQEDgqNaM7JqKgCdrid8Nx6qnGqeDHN-yNHpnLSUE4ayiOZgw7Yh6HDfMOycb3oW9JgTtwVNV2OuTDLrsu__PyRH8lEg4oQYQbsvReqGvywNT7XAIdPdFcjyf2RJC4uO27eGkruF3eH48BtD3BsccDeDM3Uky6s1WWz7GUkoskY1N9kCM_qTKPMs43tDX8fg8RHpQFLR1Y5CBAt-Lilnlz29OCU6qwTfOfB1n53hn7dpB4MBv4vBbz4j_e-ZHcRYEJPASD22d6iXZavEMQtitf9Av4Nm20-Vg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBw4P0oLMggJNhDuk5iJzG3CrFakFgQUGk5RX4kuxVtUqWtqvLrmUncqKlYEBK9-nPj2DPjz4rnG0JecmsThUK3OjeBx43knuYq8GCp84SbKLN1ovDH0-hkxD-cibM98mmTC6OnRo9LJxqKQsWD7TT0SZPlgFUUsupoZvPG6ZPoyIcg68HxRXi-8Li8QvYjAeS8R_ZHp5-H3-scI4dwAj-_6dXZm3Yj9NYWtXt9sv2GeoNcWxYztV6pyWRrmzq-RWabF2xup_wYLBd6YH7uaD_-xxm4TW46SkuHjQ3eIXtZcZdcbYpcru-RCpWt6byutwNGQOGJ1KCtVXRs3V2l2jzeUEWtK_lD8WM5rcv0UBTPWmFJUarXdOZMnc5XqprSEiLe1KWSUjU5L6vx4mJ6n4yO3317e-K5Sg-egVVagHnAKYclKmEa6IiKE5ZwkWVai8BIy1guOVPMt5zl6NXWqhjrnHGueBibPAwfkF5RFtkjQpVNWBZbZk2guY1jCXzFci2BaVrh67xPBps1To2TQcdqHJO0Pg4lUYoTmeJEpr5IueyT122HWaMAcjn0BRpNiroaBV7cOVfL-Tx9__VLOhSh5JEP7LdPXjlQXsKDjXJ5EDB8lOLqIA86SHB8023e2GbqAs8cxgEhmcPYgj553jZjT7xMV2TlssYIYLoBj_6EQa4tEwmYh425t28fcAG_KO6TuOMILQAly7stxfiili7HNGwZwn8eblxma-iXTeph61N_W4DH_4B9Qq4D-eW1PAE7IL1FtcyeAsFc6GcuaPwC5Z919w
  priority: 102
  providerName: Unpaywall
Title Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm
URI https://link.springer.com/article/10.1186/1471-2105-15-49
https://www.ncbi.nlm.nih.gov/pubmed/24555567
https://www.proquest.com/docview/1504841862
https://www.proquest.com/docview/1505256246
https://www.proquest.com/docview/1512329896
https://pubmed.ncbi.nlm.nih.gov/PMC3944936
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-15-49
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJgQ8IL4pjMogBOwhI0kvH0ZCqFQbo9KqaaNS9xQ5drJNatOuHyr977lz3ayZNqAPqVSfU-fubJ9j3-_H2HvQOpYEdJvmyndACXBSkL6Dps5jUGGmTaLwYSc86EK7F_SuqEqtAic3Lu2IT6o77u_-vlx8ww7_1XT4OPzs4QDr4NIlcLzAAfFhdOkQqxTtvlqKjQ22hTOXIGqHQ7jaZSA8f5N9ZOtb6J8b7lmZta6P3WuT1_WDleXu6gN2b1aM5GIu-_21CWz_EXtoI0_eXLrKY3YnK56wu0suysVTNiYAaj4xtDhoK47BLFfkEmN-oe2RImPFL1xybZl5OO1pc8Omwwnjak7Mnzxd8JH1SD6Zy_GAD3FgGtiMTy77Z6i46fngGevu7_1qHTiWkMFRgQinaEVcjLixjN0UowaJ6oshyLI0DXwltOvmAlzpehrcnDqf1jIiOjIACY1I5Y3Gc7ZZDIvsJeNSx24WaVcrPwUdRQLDCg2pwIBQB16a19juSuGJsmjlRJrRT8yqJQ4TslBCFkq8IAFRY5_KCqMlUMftou_IggnBXxR0vuZMziaT5OfJcdIMGgJCD4PUGvtohfIh_rGSNl0Bm0-IWRXJ7Yok9k9VLV45SrJyb2wHjpyAbfNr7G1ZTDXpzFuRDWdGJsCA1IfwbzIUEotYoMyLpe-VT-9DgJ8wqrGo4pWlACGLV0uKi3ODME7Z0qKB99xZ-e9a029T6k7p4P8ywKv_eJ7X7D7GpmDQA9xttjkdz7I3GP9N0zrbiHoRXuP9H3W21Wy2T9r4_X2vc3SMv7bCVt28Wambzo4l3c5R8_QPICFdYQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamITT2gPhNxwCDQLCHsCQ9JzESQhMwtezHA2xS34xjJ9ukNi1Nq6r_FH8jd6kT2kkbT-urL63r-3z-HPu-Y-wNWJtoErpNcxN6YCR4KejQQ1fnCZgos1Wi8NFx1DmF7z3RW2N_6lwYulZZx8QqUNuhoXfku0hcIIEACfjn0W-PqkbR6WpdQmMBi4NsPsMtW_mp-xX9-zYM97-dfOl4rqqAZ4SMJtgVZNR-ohM_xaVPx4mfgMiyNBWhkdb3cwm-9gMLfk4IslbHVFMLQEM7Njm9AMWQfwvaGEtw_sS9ZoMXUH0AJx-EHd0NMPB7uKUSXiA8EutcWvkux_-lBfDy5czmhHaTbUyLkZ7PdL-_tAju32N3HXvlewu43WdrWfGA3V7Us5w_ZGMSseZlVVoH_c2REHNDsBrzC-uuJVVI-Mg1t666D6dzcV5V5OGkkzWj6qE8nfORQzUvZ3o84EMMbgOXNcp1_wydMzkfPGKnNzL8j9l6MSyyp4xrm_hZbH1rwhRsHEukJhZSiaTSiiDNW-xDPeDKOMVzKrzRV9XOJ4kUeUiRh1QgFMgWe988MFqIfVxt-po8qEhCo6A7Omd6Wpaq-_OH2hNtCVGARLfF3jmjfIg_bLRLecDuk-rWiuX2iiXOcbPaXANFuRhTqn8zosVeNc30JN2bK7LhtLIRSGpDiK6zIVotE4k2TxbYa_59CAI_Udxi8QoqGwNSJ19tKS7OK5VyyriWbfzOnRq_S12_alB3GoD_zwFb1w_JS7bROTk6VIfd44Nn7A7SXKiECPxttj4ZT7PnSCUn6Ytq_nL266YDxl-jjoLB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxDeFAQYhwR7CkvScxLxNhWrjY0LApL1Zjp1sldq0alJV_e-5S5yomRiIvPqcOL47-2f57neMvQFrE01Et2luQg-MBC8FHXqo6jwBE2W2ThT-dhwdnsDnU3HqYnPKNtq9vZJschqIpamo9hc2b1w8ifYDXFI9PKwILxAeyKvsGuDWRgUMRtGou0Qgun7H5vOHTr2N6OJyvLUfXYyV7C5Mb7Obq2KhN2s9nW7tSeO77I4Dk_yg0f49diUr7rPrTXnJzQO2JE5pXtaVbnD6OeJTbkjLSz6xLkqoVswHrrl1xXY4XVPzukAOJ9qqNRXz5OmGL5yR8XKtlzM-x7Vm5pI4uZ6ezZeT6nz2kJ2MP_0aHXquxoJnhIwqVAyeL_xEJ36KQEDjlCUgsixNRWik9f1cgq_9wIKfkz9Zq2OqMAagYRibfDh8xHaKeZE9YVzbxM9i61sTpmDjWCJSsJBKxHhWBGk-YO_bCVfGEZBTHYypqg8iSaRIQ4o0pAKhQA7Yu67DouHeuFz0NWlQEaNFQSEzZ3pVluro5w91IIYSogBx54C9dUL5HD9stMtAwOETCVZPcrcniS5n-s2toSjn8iWOAxdDwLGFA_aqa6aeFMZWZPNVLSMQY4YQ_U2GUK5MJMo8bmyv-_sQBD5RPGBxzyo7ASIL77cUk_OaNJwSoOUQ37nX2u_W0C-b1L3OwP-lgKf_8d6X7Mb3j2P19ej4yzN2CxEo1BwB_i7bqZar7DmivCp9Ufvyb4rnSYw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBw4P0oLMggJNhDuk5iJzG3CrFakFgQUGk5RX4kuxVtUqWtqvLrmUncqKlYEBK9-nPj2DPjz4rnG0JecmsThUK3OjeBx43knuYq8GCp84SbKLN1ovDH0-hkxD-cibM98mmTC6OnRo9LJxqKQsWD7TT0SZPlgFUUsupoZvPG6ZPoyIcg68HxRXi-8Li8QvYjAeS8R_ZHp5-H3-scI4dwAj-_6dXZm3Yj9NYWtXt9sv2GeoNcWxYztV6pyWRrmzq-RWabF2xup_wYLBd6YH7uaD_-xxm4TW46SkuHjQ3eIXtZcZdcbYpcru-RCpWt6byutwNGQOGJ1KCtVXRs3V2l2jzeUEWtK_lD8WM5rcv0UBTPWmFJUarXdOZMnc5XqprSEiLe1KWSUjU5L6vx4mJ6n4yO3317e-K5Sg-egVVagHnAKYclKmEa6IiKE5ZwkWVai8BIy1guOVPMt5zl6NXWqhjrnHGueBibPAwfkF5RFtkjQpVNWBZbZk2guY1jCXzFci2BaVrh67xPBps1To2TQcdqHJO0Pg4lUYoTmeJEpr5IueyT122HWaMAcjn0BRpNiroaBV7cOVfL-Tx9__VLOhSh5JEP7LdPXjlQXsKDjXJ5EDB8lOLqIA86SHB8023e2GbqAs8cxgEhmcPYgj553jZjT7xMV2TlssYIYLoBj_6EQa4tEwmYh425t28fcAG_KO6TuOMILQAly7stxfiili7HNGwZwn8eblxma-iXTeph61N_W4DH_4B9Qq4D-eW1PAE7IL1FtcyeAsFc6GcuaPwC5Z919w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+for+cancer+identification%3A+a+decision+tree+model+empowered+by+particle+swarm+optimization+algorithm&rft.jtitle=BMC+bioinformatics&rft.au=Chen%2C+Kun-Huang&rft.au=Wang%2C+Kung-Jeng&rft.au=Tsai%2C+Min-Lung&rft.au=Wang%2C+Kung-Min&rft.date=2014-02-20&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=15&rft.issue=1&rft.spage=49&rft.epage=49&rft_id=info:doi/10.1186%2F1471-2105-15-49&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon