Model-Based Analysis of Tiling-Arrays for ChIP-Chip

We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChlP-chip). MAT models the baseline probe behavior by considering probe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 33; pp. 12457 - 12462
Main Authors Johnson, W. Evan, Li, Wei, Meyer, Clifford A., Gottardo, Raphael, Carroll, Jason S., Brown, Myles, Liu, X. Shirley
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.08.2006
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0601180103

Cover

Abstract We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChlP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChlP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChlP-chip to test their protocols and antibodies and allows established ChlP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/∼wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
AbstractList We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/ similar to wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChlP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChlP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChlP-chip to test their protocols and antibodies and allows established ChlP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/∼wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/∼wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/~wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms. [PUBLICATION ABSTRACT]
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/∼wli/MAT . The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/ approximately wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/ approximately wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/∼wli/MAT . The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms. functional genomics genome tiling microarrays model-based probe analysis transcription regulation
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip.dfci.harvard.edu/ approximately wli/MAT. The general framework presented here can be extended to other oligonucleotide microarrays and tiling array platforms.
Author Liu, X. Shirley
Brown, Myles
Meyer, Clifford A.
Gottardo, Raphael
Li, Wei
Carroll, Jason S.
Johnson, W. Evan
Author_xml – sequence: 1
  givenname: W. Evan
  surname: Johnson
  fullname: Johnson, W. Evan
– sequence: 2
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 3
  givenname: Clifford A.
  surname: Meyer
  fullname: Meyer, Clifford A.
– sequence: 4
  givenname: Raphael
  surname: Gottardo
  fullname: Gottardo, Raphael
– sequence: 5
  givenname: Jason S.
  surname: Carroll
  fullname: Carroll, Jason S.
– sequence: 6
  givenname: Myles
  surname: Brown
  fullname: Brown, Myles
– sequence: 7
  givenname: X. Shirley
  surname: Liu
  fullname: Liu, X. Shirley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16895995$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1vEzEQxS1URNPCmRNoxQGJw7Yz6_XXpVKI-KhUBIdytpxdb-PIWQd7F8h_j1eJCPRAOc1hfu_NvJkzctKH3hLyHOECQdDLbW_SBXBAlIBAH5EZgsKS1wpOyAygEqWsq_qUnKW0BgDFJDwhp8ilYkqxGaGfQmt9-dYk2xbz3vhdcqkIXXHrvOvvynmMZpeKLsRisbr-Ui5WbvuUPO6MT_bZoZ6Tr-_f3S4-ljefP1wv5jdlwxQfSmnqtpYVb6uaddhVjLeMoZC0U1XXiKWxTOByCW3DrKoFl4I3NVjODNCaQkPPCex9x35rdj-M93ob3cbEnUbQU3495dfH_FlytZdsx-XGto3th2iOsmCc_rvTu5W-C981Mi4UYDZ4fTCI4dto06A3LjXWe9PbMCadt2SCKfYgiIpipfjk-OoeuA5jzJdOusoDJUfkGXr5597HnIdHZeByDzQxpBRt9x-nYPcUjRvM4MIU3Pl_6IrDKlPjOIVqSjXmX4qMvHkA0d3o_WB_Dpl9sWfXaQjxN0wBGDDJ6S9iDdYV
CitedBy_id crossref_primary_10_1101_gr_078261_108
crossref_primary_10_1182_blood_2011_03_341446
crossref_primary_10_1371_journal_pone_0053666
crossref_primary_10_4137_CIN_S295
crossref_primary_10_1093_nar_gkt912
crossref_primary_10_1093_nar_gky929
crossref_primary_10_1186_1471_2164_11_478
crossref_primary_10_1016_j_molcel_2011_08_019
crossref_primary_10_1093_nar_gkp559
crossref_primary_10_1113_JP273570
crossref_primary_10_1152_ajprenal_00586_2010
crossref_primary_10_1038_gene_2009_66
crossref_primary_10_1016_j_ygeno_2017_01_006
crossref_primary_10_1016_j_neuron_2013_05_015
crossref_primary_10_1093_bioinformatics_btp471
crossref_primary_10_1093_nar_gkq643
crossref_primary_10_2174_0929867325666180530115711
crossref_primary_10_1016_j_cell_2008_02_039
crossref_primary_10_1007_s12041_019_1152_8
crossref_primary_10_1186_s12859_018_2356_2
crossref_primary_10_1371_journal_pone_0011471
crossref_primary_10_1038_embor_2008_44
crossref_primary_10_1186_1471_2164_11_481
crossref_primary_10_1093_nar_gkab1249
crossref_primary_10_1002_mrr_20228
crossref_primary_10_1074_jbc_M110_217745
crossref_primary_10_1371_journal_pgen_1004317
crossref_primary_10_1038_gene_2011_17
crossref_primary_10_1261_rna_2808411
crossref_primary_10_1371_journal_pone_0054507
crossref_primary_10_1016_j_canlet_2011_12_003
crossref_primary_10_2217_epi_2020_0435
crossref_primary_10_1038_msb_2009_42
crossref_primary_10_1093_nar_gkq410
crossref_primary_10_1093_bioinformatics_btp469
crossref_primary_10_1101_gad_1709008
crossref_primary_10_1016_j_bbrc_2009_06_055
crossref_primary_10_1073_pnas_0810067106
crossref_primary_10_1093_bioinformatics_btq314
crossref_primary_10_1101_gad_1883910
crossref_primary_10_1016_j_metabol_2014_01_007
crossref_primary_10_1002_0471142727_mb2113s79
crossref_primary_10_1158_0008_5472_CAN_11_2091
crossref_primary_10_1186_gb_2007_8_8_r178
crossref_primary_10_1016_j_molcel_2009_07_017
crossref_primary_10_1016_j_jim_2013_06_001
crossref_primary_10_1186_1471_2164_14_82
crossref_primary_10_1261_rna_1070208
crossref_primary_10_1101_gr_111534_110
crossref_primary_10_1371_journal_pgen_1001032
crossref_primary_10_1111_j_1365_2443_2010_01423_x
crossref_primary_10_1172_JCI65102
crossref_primary_10_1073_pnas_0712085105
crossref_primary_10_1371_journal_pgen_1001152
crossref_primary_10_1101_gad_1944810
crossref_primary_10_1093_bioinformatics_btm546
crossref_primary_10_1128_MCB_01038_08
crossref_primary_10_1111_j_1349_7006_2009_01299_x
crossref_primary_10_1111_j_1541_0420_2007_00899_x
crossref_primary_10_4049_jimmunol_182_1_44
crossref_primary_10_1073_pnas_1305823110
crossref_primary_10_1038_ncb2023
crossref_primary_10_1210_me_2009_0499
crossref_primary_10_1039_C7TX00163K
crossref_primary_10_1016_j_copbio_2007_11_005
crossref_primary_10_1371_journal_pbio_1000119
crossref_primary_10_1128_mBio_00972_13
crossref_primary_10_1158_1078_0432_CCR_09_2765
crossref_primary_10_1371_journal_pone_0103243
crossref_primary_10_1093_nar_gks139
crossref_primary_10_1214_07_AOAS116
crossref_primary_10_1186_1753_6561_5_S2_S8
crossref_primary_10_1038_nprot_2013_150
crossref_primary_10_1371_journal_pgen_1003560
crossref_primary_10_1186_1471_2105_10_173
crossref_primary_10_1016_j_ygeno_2008_09_012
crossref_primary_10_1016_j_cub_2011_08_036
crossref_primary_10_1111_j_1365_313X_2009_03940_x
crossref_primary_10_1016_j_copbio_2007_07_002
crossref_primary_10_1016_j_cell_2011_10_053
crossref_primary_10_1016_j_molmet_2016_11_003
crossref_primary_10_1186_gb_2009_10_10_r113
crossref_primary_10_1210_me_2010_0138
crossref_primary_10_1016_j_mce_2006_12_015
crossref_primary_10_1016_j_ymeth_2009_03_003
crossref_primary_10_1016_j_molcel_2008_10_016
crossref_primary_10_1371_journal_pcbi_1003525
crossref_primary_10_1128_MCB_05504_11
crossref_primary_10_1186_1471_2105_8_219
crossref_primary_10_1016_j_cell_2014_06_027
crossref_primary_10_1083_jcb_200901104
crossref_primary_10_1093_nar_gkl1157
crossref_primary_10_1101_gad_178079_111
crossref_primary_10_1371_journal_pone_0068712
crossref_primary_10_1093_bioinformatics_btq247
crossref_primary_10_1186_gb_2009_10_10_r107
crossref_primary_10_1186_1471_2105_11_194
crossref_primary_10_1371_journal_pone_0110973
crossref_primary_10_1101_gad_1897310
crossref_primary_10_1586_14789450_5_3_469
crossref_primary_10_1371_journal_pone_0086957
crossref_primary_10_1101_gr_085530_108
crossref_primary_10_1038_nature05563
crossref_primary_10_1242_dev_024398
crossref_primary_10_18632_oncotarget_2785
crossref_primary_10_1371_journal_pgen_1002179
crossref_primary_10_1016_j_ygeno_2011_12_005
crossref_primary_10_1371_journal_pgen_1003382
crossref_primary_10_1038_ncomms1551
crossref_primary_10_1158_0008_5472_CAN_11_1882
crossref_primary_10_1186_gb_2011_12_8_r83
crossref_primary_10_1016_j_molcel_2010_07_008
crossref_primary_10_1111_j_1600_065X_2008_00721_x
crossref_primary_10_1039_b906179g
crossref_primary_10_1089_cmb_2011_0102
crossref_primary_10_1002_pros_21311
crossref_primary_10_1016_j_cell_2008_01_018
crossref_primary_10_1186_gb_2008_9_9_r137
crossref_primary_10_1093_nar_gkr513
crossref_primary_10_1111_j_1541_0420_2010_01441_x
crossref_primary_10_1016_j_cell_2010_09_010
crossref_primary_10_3892_ijo_2017_4019
crossref_primary_10_1093_bioinformatics_btq023
crossref_primary_10_1038_nrg2270
crossref_primary_10_1016_j_csda_2009_09_035
crossref_primary_10_1371_journal_pcbi_1000039
crossref_primary_10_1177_1362361320971085
crossref_primary_10_1016_j_mce_2007_07_006
crossref_primary_10_1262_jrd_11_035A
crossref_primary_10_3389_fmolb_2016_00082
crossref_primary_10_1111_j_1541_0420_2008_01180_x
crossref_primary_10_1016_j_cell_2009_04_056
crossref_primary_10_1186_2040_2392_4_14
crossref_primary_10_1038_nature06634
crossref_primary_10_1186_1471_2105_9_453
crossref_primary_10_1091_mbc_e09_08_0707
crossref_primary_10_1007_s00335_021_09869_1
crossref_primary_10_1371_journal_pgen_1002277
crossref_primary_10_1093_nar_gku1377
crossref_primary_10_1186_gb_2007_8_5_r82
crossref_primary_10_1186_1471_2164_12_134
crossref_primary_10_1186_gb_2007_8_5_r81
crossref_primary_10_1016_j_ajog_2014_01_045
crossref_primary_10_1634_stemcells_2007_0964
crossref_primary_10_1101_gad_1819509
crossref_primary_10_1101_gr_093047_109
crossref_primary_10_1128_MCB_01464_10
crossref_primary_10_3389_fmolb_2016_00074
crossref_primary_10_1186_gb_2014_15_4_r62
crossref_primary_10_1038_s41380_021_01079_0
crossref_primary_10_4161_chim_1_1_12439
crossref_primary_10_1016_j_chest_2016_02_648
crossref_primary_10_1093_hmg_ddp152
crossref_primary_10_1073_pnas_0711758105
crossref_primary_10_1093_bib_bbs078
crossref_primary_10_1371_journal_pgen_1000489
crossref_primary_10_1371_journal_pgen_1003753
crossref_primary_10_1089_cmb_2010_0020
crossref_primary_10_1093_bioinformatics_btn571
crossref_primary_10_1158_0008_5472_CAN_09_0919
crossref_primary_10_1074_jbc_M110_165704
crossref_primary_10_1016_j_lfs_2010_02_001
crossref_primary_10_1093_bioinformatics_btn570
crossref_primary_10_1128_MCB_00781_10
crossref_primary_10_1089_cmb_2007_0141
crossref_primary_10_1038_nrc2591
crossref_primary_10_1371_journal_pgen_1003195
crossref_primary_10_1101_gr_6006107
crossref_primary_10_1186_1471_2164_12_313
crossref_primary_10_1016_j_bbrc_2010_07_132
crossref_primary_10_1210_me_2008_0100
crossref_primary_10_1371_journal_pone_0021667
crossref_primary_10_1101_gad_2029711
crossref_primary_10_1186_1471_2105_11_275
crossref_primary_10_1128_mBio_01714_14
crossref_primary_10_1016_j_cell_2010_05_028
crossref_primary_10_1128_MCB_00419_10
crossref_primary_10_1126_scitranslmed_3008326
crossref_primary_10_1038_s41598_020_71336_9
crossref_primary_10_1038_nbt1279
crossref_primary_10_1101_gr_084582_108
crossref_primary_10_1534_g3_113_007534
crossref_primary_10_1371_journal_pone_0006960
crossref_primary_10_1093_bioinformatics_btm592
crossref_primary_10_1093_nar_gkq012
crossref_primary_10_1186_gb_2010_11_11_140
crossref_primary_10_1371_journal_pcbi_1000201
crossref_primary_10_1073_pnas_0902573106
crossref_primary_10_1007_s11464_011_0125_x
crossref_primary_10_1186_1756_8935_3_6
crossref_primary_10_1093_bioinformatics_btp626
crossref_primary_10_1371_journal_pgen_1006331
crossref_primary_10_1093_nar_gkp282
crossref_primary_10_1128_MCB_00821_10
crossref_primary_10_1073_pnas_1011134107
crossref_primary_10_1128_JB_00961_12
crossref_primary_10_1534_genetics_112_146647
crossref_primary_10_1073_pnas_1003822107
crossref_primary_10_1101_gr_074070_107
crossref_primary_10_1038_ni_1721
crossref_primary_10_1093_nar_gkn515
crossref_primary_10_1186_1471_2164_9_S1_S20
crossref_primary_10_1371_journal_pgen_1000225
crossref_primary_10_1186_1471_2105_10_204
crossref_primary_10_1371_journal_pgen_1000224
crossref_primary_10_1111_j_1365_2443_2010_01404_x
crossref_primary_10_1186_gb_2011_12_2_r11
crossref_primary_10_1007_s11010_012_1269_z
crossref_primary_10_1104_pp_109_150185
crossref_primary_10_1371_journal_pone_0014686
crossref_primary_10_1210_en_2007_1096
crossref_primary_10_1002_dvg_20534
crossref_primary_10_1186_1471_2407_11_30
crossref_primary_10_1016_j_molcel_2011_03_026
crossref_primary_10_1016_j_bbrc_2010_01_089
crossref_primary_10_1016_j_molcel_2009_09_011
crossref_primary_10_1016_j_ccr_2008_10_001
crossref_primary_10_1016_j_ajhg_2010_02_008
crossref_primary_10_1261_rna_1319309
crossref_primary_10_1016_j_ygeno_2012_08_003
crossref_primary_10_1038_ijo_2015_38
crossref_primary_10_1038_ncomms2259
crossref_primary_10_1371_journal_pcbi_1000227
crossref_primary_10_1016_j_leukres_2010_10_032
crossref_primary_10_1016_j_leukres_2012_09_014
crossref_primary_10_1038_nbt_1508
crossref_primary_10_1038_nbt_1505
crossref_primary_10_1186_s13041_021_00894_4
crossref_primary_10_1101_gad_211011_112
crossref_primary_10_1016_j_ymeth_2012_03_022
crossref_primary_10_1186_1471_2105_8_221
crossref_primary_10_1101_pdb_top110
crossref_primary_10_1101_gr_110601_110
crossref_primary_10_1124_mol_107_039099
crossref_primary_10_1016_j_ygeno_2010_02_009
crossref_primary_10_1093_bioinformatics_bts142
crossref_primary_10_1186_1471_2105_10_305
crossref_primary_10_1093_bioinformatics_btm043
crossref_primary_10_1258_ebm_2012_011258
crossref_primary_10_1093_biostatistics_kxq055
crossref_primary_10_1128_MCB_02224_07
crossref_primary_10_1016_j_molcel_2007_06_039
crossref_primary_10_1371_journal_pone_0154836
crossref_primary_10_1038_ng_2416
crossref_primary_10_1093_bioinformatics_btm167
crossref_primary_10_1093_nar_gkq041
crossref_primary_10_1158_0008_5472_CAN_09_4407
crossref_primary_10_1038_nmeth_1985
crossref_primary_10_1038_nature07483
crossref_primary_10_4049_jimmunol_1000082
crossref_primary_10_1371_journal_pone_0093873
crossref_primary_10_1038_tp_2011_26
crossref_primary_10_1177_0962280209351924
crossref_primary_10_1016_j_devcel_2010_03_012
crossref_primary_10_1016_j_molcel_2007_04_015
crossref_primary_10_1101_gr_120162_110
crossref_primary_10_1371_journal_pgen_1000396
crossref_primary_10_1186_1471_2172_13_58
crossref_primary_10_1128_MCB_00020_09
crossref_primary_10_1186_gb_2010_11_5_r50
crossref_primary_10_1093_nar_gkv500
crossref_primary_10_1073_pnas_1012674107
crossref_primary_10_1073_pnas_1707957114
crossref_primary_10_1093_biostatistics_kxr013
crossref_primary_10_1186_gb_2009_10_12_r142
crossref_primary_10_1371_journal_pone_0015069
crossref_primary_10_4161_epi_6_4_14876
crossref_primary_10_1101_gr_7080508
crossref_primary_10_1093_bioinformatics_btp425
crossref_primary_10_1016_j_ydbio_2017_10_018
crossref_primary_10_1186_1471_2156_9_27
crossref_primary_10_1093_toxsci_kfq115
crossref_primary_10_1093_molehr_gav051
crossref_primary_10_1016_j_cell_2009_12_003
crossref_primary_10_1038_ng1901
crossref_primary_10_1523_JNEUROSCI_3714_13_2014
crossref_primary_10_1128_MCB_00799_08
crossref_primary_10_1371_journal_pone_0004159
crossref_primary_10_1073_pnas_0901676106
crossref_primary_10_1371_journal_pone_0057326
crossref_primary_10_1128_MCB_00918_13
crossref_primary_10_1016_j_ccr_2009_12_045
crossref_primary_10_1111_j_1541_0420_2009_01298_x
crossref_primary_10_1038_nature06929
crossref_primary_10_1101_gr_112755_110
crossref_primary_10_1111_j_1365_313X_2010_04236_x
crossref_primary_10_1186_1471_2105_14_188
crossref_primary_10_1371_journal_pone_0120296
crossref_primary_10_1016_j_gdata_2015_05_004
crossref_primary_10_1186_1741_7007_7_35
crossref_primary_10_1371_journal_pone_0017912
crossref_primary_10_1214_09_AOAS248
crossref_primary_10_1016_j_ymeth_2009_02_024
crossref_primary_10_1038_ncomms5719
crossref_primary_10_1101_gr_084970_108
crossref_primary_10_1186_1752_0509_5_67
crossref_primary_10_1371_journal_pone_0004721
crossref_primary_10_1038_ni_3257
crossref_primary_10_1101_gr_108217_110
crossref_primary_10_1073_pnas_1203028109
crossref_primary_10_1073_pnas_0910586106
crossref_primary_10_1186_1471_2105_11_207
crossref_primary_10_1523_JNEUROSCI_1314_10_2010
crossref_primary_10_4028_www_scientific_net_AMM_380_384_2569
crossref_primary_10_1038_ng_3635
crossref_primary_10_1007_s00439_011_0993_x
crossref_primary_10_1371_journal_pgen_1000814
crossref_primary_10_1128_JVI_01549_12
crossref_primary_10_1093_molbev_msm061
Cites_doi 10.1093/nar/27.2.573
10.1093/nar/gkg283
10.1016/j.cell.2005.05.008
10.1093/bioinformatics/19.2.185
10.1093/bioinformatics/bti593
10.1101/gr.187101
10.1038/nature02800
10.1038/35054095
10.1126/science.290.5500.2306
10.1038/ng569
10.1016/S0092-8674(04)00127-8
10.1093/bioinformatics/bti1046
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 15, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 15, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.0601180103
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database


Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12462
ExternalDocumentID oai:pubmedcentral.nih.gov:1567901
PMC1567901
1150974571
16895995
10_1073_pnas_0601180103
103_33_12457
30050586
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T90 DK070078
– fundername: NHGRI NIH HHS
  grantid: R01 HG004069
– fundername: NIDDK NIH HHS
  grantid: T90 DK070078-01
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
692
6TJ
79B
ACKIV
ADTOC
AFHIN
AFQQW
HGD
NEJ
NHB
UNPAY
VOH
ID FETCH-LOGICAL-c596t-8a4d4826d245f1f256d551783f92fc7bae571bb0dc5e9476876c40e65a03430c3
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 04:08:20 EDT 2025
Tue Sep 30 16:42:13 EDT 2025
Fri Sep 05 14:27:09 EDT 2025
Mon Oct 06 17:59:07 EDT 2025
Mon Jun 30 08:19:37 EDT 2025
Fri May 30 11:00:38 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Oct 01 04:31:07 EDT 2025
Wed Nov 11 00:29:51 EST 2020
Thu May 30 08:49:40 EDT 2019
Thu May 29 08:42:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-8a4d4826d245f1f256d551783f92fc7bae571bb0dc5e9476876c40e65a03430c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
Edited by Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved June 18, 2006
Author contributions: C.A.M., M.B., and X.S.L. designed research; W.E.J., W.L., and J.S.C. performed research; W.L., C.A.M., and R.G. contributed new reagents/analytic tools; W.E.J. and W.L. analyzed data; and W.E.J. and X.S.L. wrote the paper.
W.E.J., W.L., and C.A.M. contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1073/pnas.0601180103
PMID 16895995
PQID 201386116
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201386116
proquest_miscellaneous_19312961
crossref_primary_10_1073_pnas_0601180103
jstor_primary_30050586
unpaywall_primary_10_1073_pnas_0601180103
proquest_miscellaneous_68757595
pubmed_primary_16895995
pnas_primary_103_33_12457
pnas_primary_103_33_12457_fulltext
crossref_citationtrail_10_1073_pnas_0601180103
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1567901
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-15
PublicationDateYYYYMMDD 2006-08-15
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_6_2
Wu Z. (e_1_3_4_12_2) 2003
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_11_2
e_1_3_4_10_2
e_1_3_4_13_2
e_1_3_4_14_2
Keles S. (e_1_3_4_7_2) 2004
References_xml – volume-title: A Model Based Background Adjustment for Oligonucleotide Expression Arrays: Technical Report
  year: 2003
  ident: e_1_3_4_12_2
– ident: e_1_3_4_13_2
  doi: 10.1093/nar/27.2.573
– ident: e_1_3_4_11_2
  doi: 10.1093/nar/gkg283
– ident: e_1_3_4_9_2
  doi: 10.1016/j.cell.2005.05.008
– ident: e_1_3_4_10_2
  doi: 10.1093/bioinformatics/19.2.185
– ident: e_1_3_4_8_2
  doi: 10.1093/bioinformatics/bti593
– ident: e_1_3_4_14_2
  doi: 10.1101/gr.187101
– volume-title: Multiple Testing Methods For ChIP-Chip High Density Oligonucleotide Array Data
  year: 2004
  ident: e_1_3_4_7_2
– ident: e_1_3_4_4_2
  doi: 10.1038/nature02800
– ident: e_1_3_4_1_2
  doi: 10.1038/35054095
– ident: e_1_3_4_3_2
  doi: 10.1126/science.290.5500.2306
– ident: e_1_3_4_2_2
  doi: 10.1038/ng569
– ident: e_1_3_4_5_2
  doi: 10.1016/S0092-8674(04)00127-8
– ident: e_1_3_4_6_2
  doi: 10.1093/bioinformatics/bti1046
SSID ssj0009580
Score 2.3962147
Snippet We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription...
We propose a fast and powerful analysis algorithm, titled Model-based Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12457
SubjectTerms Algorithms
Antibodies
Behavior modeling
Biological Sciences
Chromatin
Chromosomes
Data analysis
DNA probes
Field programmable gate arrays
Genetic algorithms
Genomes
Genomics
Humans
Internet
Modeling
Models, Theoretical
Nucleotides
Oligonucleotide Array Sequence Analysis - instrumentation
Oligonucleotide Array Sequence Analysis - methods
Physical Sciences
Receptors, Estrogen - genetics
Receptors, Estrogen - metabolism
Software
Standardization
Statistical variance
Tiling
Transcription Factors - genetics
Transcription Factors - metabolism
Title Model-Based Analysis of Tiling-Arrays for ChIP-Chip
URI https://www.jstor.org/stable/30050586
http://www.pnas.org/content/103/33/12457.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16895995
https://www.proquest.com/docview/201386116
https://www.proquest.com/docview/19312961
https://www.proquest.com/docview/68757595
https://pubmed.ncbi.nlm.nih.gov/PMC1567901
http://doi.org/10.1073/pnas.0601180103
UnpaywallVersion submittedVersion
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gFegAGDMBgR4mF7cEniX8njNLENHqY9UKk8WY4dqxVVWjWp0PjrOSdpSlWqiWefreR8l_suPn8H8IlFziWRyYilmmOCklmieR4RGRnhA5Kwpqm2uBU3I_ZtzMebAtmt43tJPy9KXQ09ZUic-oYEB3AoOGLuARyObu8ufrT1G_iZZW33Wgx-RLAsWnP47K6wFX7aCkRPa4pC_4KYu5WSj1flQt__0rPZX2Ho6hlcry_ztNUnP4erOh-a37vcjg-84XN42iHR8KI1nSN4VJQv4Kjz9So86wipz18C9Q3TZsQHPBvqjsUknLuwnvrL7EQvl_q-ChH-hpeTr3fETKaLVzC6-vL98oZ0zRaIQY3WJNXMMsw1bMK4ix0iIYtgSqbUZYkzMtcFl3GeR9bwImOYpEhhWFQIriPKaGToMQzKeVm8gTBlLklcqhEpWpYUsS5wrtC4qGUaVw5guN4DZTomct8QY6aaE3FJlVeK2iglgLN-wqIl4dgvetxsai9Hm159qQggaEQ386miVCG84TKAj3vHlOuKcAI4WduH6vy8Uok_6BVxjMt_6EfRQf2piy6L-apSiJARU4l4v4TwTQV4hnp53Vrb5kFEmnlGuADklh32Ap4cfHuknE4aknDMyyVivQDOe4t9SHdv_0P2BJ60P6NSEvN3MKiXq-I9wrM6P4WD63F82nnoH8G5L8E
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5B9wAvsAGDsA0ixMP24C6JfyWP07QxeJj2QKXxZDl2rFZUadWkQuOv55ykKVWpJp59tpLzXe67-PwdwGcWOZdEJiOWao4JSmaJ5nlEZGSED0jCmqba4lbcjNi3e36_LpDdOL6X9Hxe6mroKUPi1DckeAp7giPmHsDe6Pbu4kdbv4GfWdZ2r8XgRwTLohWHz_YKG-GnrUD0tKYo9C-IuV0p-WxZzvXDLz2d_hWGrl_Cl9Vlnrb65OdwWedD83ub2_GRN9yHFx0SDS9a0zmAJ0X5Cg46X6_C046Q-uw1UN8wbUp8wLOh7lhMwpkL64m_zE70YqEfqhDhb3g5_npHzHgyfwOj66vvlzeka7ZADGq0JqlmlmGuYRPGXewQCVkEUzKlLkuckbkuuIzzPLKGFxnDJEUKw6JCcB1RRiNDD2FQzsriHYQpc0niUo1I0bKkiHWBc4XGRS3TuHIAw9UeKNMxkfuGGFPVnIhLqrxS1FopAZz2E-YtCcdu0cNmU3s52vTqS0UAQSO6nk8VpQrhDZcBfNo5plxXhBPA0co-VOfnlUr8Qa-IY1z-Yz-KDupPXXRZzJaVQoSMmErEuyWEbyrAM9TL29ba1g8i0swzwgUgN-ywF_Dk4Jsj5WTckIRjXi4R6wVw1lvsY7p7_x-yR_C8_RmVkpgfw6BeLIsThGd1_qHzzT-o7C7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+analysis+of+tiling-arrays+for+ChIP-chip&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=W.+Evan+Johnson&rft.au=Wei+Li&rft.au=Clifford+A.+Meyer&rft.au=Raphael+Gottardo&rft.date=2006-08-15&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=33&rft.spage=12457&rft_id=info:doi/10.1073%2Fpnas.0601180103&rft_id=info%3Apmid%2F16895995&rft.externalDBID=n%2Fa&rft.externalDocID=103_33_12457
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif