Hessian-Regularized Co-Training for Social Activity Recognition
Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be co...
Saved in:
| Published in | PloS one Vol. 9; no. 9; p. e108474 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
26.09.2014
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0108474 |
Cover
| Abstract | Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms. |
|---|---|
| AbstractList | Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms. Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms. |
| Author | Wang, Yanjiang Tao, Dacheng Li, Yang Lin, Xu Liu, Weifeng |
| AuthorAffiliation | Banner Alzheimer's Institute, United States of America 4 Centre for Quantum Computation and Intelligent Systems, and Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, New South Wales, Australia 1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, China 3 The Chinese University of Hong Kong, Hong Kong, China 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China |
| AuthorAffiliation_xml | – name: 1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, China – name: Banner Alzheimer's Institute, United States of America – name: 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – name: 3 The Chinese University of Hong Kong, Hong Kong, China – name: 4 Centre for Quantum Computation and Intelligent Systems, and Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, New South Wales, Australia |
| Author_xml | – sequence: 1 givenname: Weifeng surname: Liu fullname: Liu, Weifeng – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang – sequence: 3 givenname: Xu surname: Lin fullname: Lin, Xu – sequence: 4 givenname: Dacheng surname: Tao fullname: Tao, Dacheng – sequence: 5 givenname: Yanjiang surname: Wang fullname: Wang, Yanjiang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25259945$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl1rFDEUHaRiP_QfiC744susuZOvGR-UslRbKAi1PodM5s6YJZusyUxl_fWd3Z2Wtoj4koSbcw7nHO5xduCDxyx7DWQOVMKHZRii126-HsdzAqRkkj3LjqCiRS4KQg8evA-z45SWhHBaCvEiOyx4wauK8aPs8zmmZLXPr7AbnI72DzazRcivo7be-m7Whjj7HozVbnZqentj-83sCk3ovO1t8C-z5612CV9N90n248vZ9eI8v_z29WJxepkbXok-57VhWKLUBbBWlzU1vOWGNLQkCICkAWm4AcEqkKVAIARKw4AR1GAq2dKT7O1ed-1CUlP2pIALLqoxFx0RF3tEE_RSraNd6bhRQVu1G4TYKR17axwqLtuqoZzU48FETTVBAZyKtiilRFKPWnyvNfi13vzWzt0LAlHb-u8sqG39aqp_5H2aXA71ChuDvo_aPTLz-Mfbn6oLN4qNsWEn8H4SiOHXgKlXK5sMOqc9hmGXV5QFSChH6Lsn0L-38uaho3srdxswAtgeYGJIKWL7v0k_PqEZ2-vtRoy5rPs3-Rb6atsF |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2016_06_017 crossref_primary_10_1016_j_image_2018_09_008 crossref_primary_10_1080_21642583_2018_1545610 crossref_primary_10_1007_s11042_015_3221_1 crossref_primary_10_1109_TCYB_2015_2443857 crossref_primary_10_1016_j_cviu_2024_104269 crossref_primary_10_1007_s12145_023_00986_w crossref_primary_10_1016_j_neucom_2015_04_087 crossref_primary_10_1109_ACCESS_2020_2972068 crossref_primary_10_1155_2020_8852404 crossref_primary_10_1109_ACCESS_2019_2900267 crossref_primary_10_1007_s11042_015_2643_0 crossref_primary_10_1109_TCYB_2015_2389232 |
| Cites_doi | 10.1016/j.ins.2012.01.004 10.1145/1991996.1992025 10.1145/1015330.1015350 10.1145/279943.279962 10.1109/TIP.2013.2261307 10.1145/1143844.1143862 10.1109/TIP.2014.2328894 10.1090/cbms/050 10.1109/TIP.2013.2277813 10.1109/TIP.2013.2255302 10.1109/TIP.2012.2183882 10.1145/354756.354805 10.1073/pnas.1031596100 10.1109/TSMCB.2011.2157998 10.1007/s11263-014-0703-y 10.1109/TPAMI.2011.157 |
| ContentType | Journal Article |
| Copyright | 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 Liu et al 2014 Liu et al |
| Copyright_xml | – notice: 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 Liu et al 2014 Liu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0108474 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Engineering |
| DocumentTitleAlternate | Hessian-Regularized Co-Training |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1565690533 oai_doaj_org_article_57f9d350bd3546b3a0e61536f2877e0b 10.1371/journal.pone.0108474 PMC4178174 3444419181 25259945 10_1371_journal_pone_0108474 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: CSRD VA grantid: I01 CX002096 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM PV9 RIG RZL 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c596t-5bc4e8e7a214fa8b3c5f5c0d380e11e0d17c5c16491786e10018c4140ea1c97f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:14:13 EST 2021 Fri Oct 03 12:52:58 EDT 2025 Sun Oct 26 03:46:36 EDT 2025 Tue Sep 30 16:46:06 EDT 2025 Mon Sep 08 14:29:11 EDT 2025 Tue Oct 07 07:19:24 EDT 2025 Wed Feb 19 02:30:04 EST 2025 Thu Apr 24 23:14:42 EDT 2025 Wed Oct 01 05:09:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c596t-5bc4e8e7a214fa8b3c5f5c0d380e11e0d17c5c16491786e10018c4140ea1c97f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: WL YL DT YW. Performed the experiments: WL YL XL. Analyzed the data: WL YL DT YW. Contributed reagents/materials/analysis tools: WL YL DT YW. Contributed to the writing of the manuscript: WL YL DT YW. Baseline evaluations: WL XL. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108474&type=printable |
| PMID | 25259945 |
| PQID | 1565690533 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1565690533 doaj_primary_oai_doaj_org_article_57f9d350bd3546b3a0e61536f2877e0b unpaywall_primary_10_1371_journal_pone_0108474 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4178174 proquest_miscellaneous_1566821718 proquest_journals_1565690533 pubmed_primary_25259945 crossref_primary_10_1371_journal_pone_0108474 crossref_citationtrail_10_1371_journal_pone_0108474 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-26 |
| PublicationDateYYYYMMDD | 2014-09-26 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | ref13 L Liu (ref25) 2014 ref12 ref34 ref15 ref14 ref10 ref32 Z Zhang (ref26) 2012; 34(3) Y Fu (ref22) 2012 KI Kim (ref20) 2009; 22 ref17 DL Donoho (ref21) 2003; 100(10) ref16 ref19 ref18 D Tao (ref27) 2013; 23(10) D Tao (ref3) 2014; 10(1) W Liu (ref31) 2014; 118 D Tao (ref4) 2007; 29(10) F Zhu (ref9) 2014; 109(1–2) R Yan (ref2) 2013; 22(12) L Shao (ref24) 2014; 24(3) C Xu (ref11) 2014; 36(8) M Belkin (ref28) 2006; 7 M Song (ref8) 2012; 193 D Tao (ref30) 2013; 15(4) M Zhang (ref33) 2011; 41(6) ref5 Y Fu (ref23) 2014; 36(2) M Song (ref6) 2012; 21(5) L Zhang (ref1) 2014; 23(8) W Liu (ref29) 2013; 22(7) M Song (ref7) 2013; 22(8) |
| References_xml | – volume: 193 start-page: 233 year: 2012 ident: ref8 article-title: Image-based facial sketch-to-photo synthesis via online coupled dictionary learning publication-title: Information Sciences doi: 10.1016/j.ins.2012.01.004 – volume: 29(10) start-page: 1700 year: 2007 ident: ref4 article-title: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE Trans. Pattern Anal. Mach. Intell – ident: ref34 doi: 10.1145/1991996.1992025 – ident: ref13 doi: 10.1145/1015330.1015350 – volume: 10(1) start-page: 813 year: 2014 ident: ref3 article-title: Rank Preserving Discriminant Analysis for Human Behavior Recognition on Wireless Sensor Networks. IEEE Trans Industr. Inform – ident: ref5 doi: 10.1145/279943.279962 – volume: 24(3) start-page: 504 year: 2014 ident: ref24 article-title: Efficient Search and Localization of Human Actions in Video Databases, IEEE Trans Circuits Syst. Video Technol – volume: 22(8) start-page: 3283 year: 2013 ident: ref7 article-title: Joint Sparse Learning for 3-D Facial Expression Generation. IEEE Trans publication-title: Image Process doi: 10.1109/TIP.2013.2261307 – volume: 7 start-page: 2399 year: 2006 ident: ref28 article-title: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples publication-title: Journal of Machine Learning Research – year: 2012 ident: ref22 article-title: Attribute Learning for Understanding Unstructured Social Activity-annotated publication-title: Paper presented at the European Conference on Computer Vision – ident: ref15 doi: 10.1145/1143844.1143862 – volume: 23(8) start-page: 3241 year: 2014 ident: ref1 article-title: Learning Object-to-Class Kernels for Scene Classification. IEEE Trans publication-title: Image Process doi: 10.1109/TIP.2014.2328894 – ident: ref19 – ident: ref32 doi: 10.1090/cbms/050 – volume: 15(4) start-page: 833 year: 2013 ident: ref30 article-title: Hessian Regularized Support Vector Machines for Mobile Image Annotation on the Cloud. IEEE Trans publication-title: on Multimedia – ident: ref17 – volume: 118 start-page: 50 year: 2014 ident: ref31 article-title: Multiview Hessian discriminative sparse coding for image annotation. Comput. Vis. Image Underst – volume: 22(12) start-page: 4689 year: 2013 ident: ref2 article-title: Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image Denoising. IEEE Trans publication-title: Image Process doi: 10.1109/TIP.2013.2277813 – volume: 22(7) start-page: 2676 year: 2013 ident: ref29 article-title: Multiview Hessian Regularization for Image Annotation. IEEE Trans publication-title: Image Process doi: 10.1109/TIP.2013.2255302 – volume: 21(5) start-page: 2887 year: 2012 ident: ref6 article-title: Three-dimensional face reconstruction from a single image by a coupled RBF network. IEEE Trans publication-title: Image Process doi: 10.1109/TIP.2012.2183882 – volume: 36(2) start-page: 303 year: 2014 ident: ref23 article-title: Learning Multi-modal Latent Attributes publication-title: IEEE Trans. Pattern Anal. Mach. Intell – ident: ref12 doi: 10.1145/354756.354805 – volume: 100(10) start-page: 5591 year: 2003 ident: ref21 article-title: Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1031596100 – volume: 41(6) start-page: 1612 year: 2011 ident: ref33 article-title: COTRADE: Confident Co-Training With Data Editing. IEEE Trans publication-title: Syst. Man Cybern. B Cybern doi: 10.1109/TSMCB.2011.2157998 – volume: 36(8) start-page: 1559 year: 2014 ident: ref11 article-title: Large-Margin Multi-view Information Bottleneck. IEEE Trans. Pattern Anal. Mach. Intell – volume: 22 start-page: 979 year: 2009 ident: ref20 article-title: Semi-supervised Regression using Hessian Energy with an Application to Semi-supervised Dimensionality Reduction publication-title: Adv. Neural Inf. Process Syst – volume: 23(10) start-page: 1675 year: 2013 ident: ref27 article-title: Person Re-Identification by Regularized Smoothing KISS Metric Learning. IEEE Trans. Circuits Syst. Video Techn – year: 2014 ident: ref25 article-title: Realistic Action Recognition via Sparsely-Constructed Gaussian Processes publication-title: Pattern Recognition – ident: ref18 – ident: ref16 – ident: ref10 – volume: 109(1–2) start-page: 42 year: 2014 ident: ref9 article-title: Weakly-Supervised Cross-Domain Dictionary Learning for Visual Recognition publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-014-0703-y – ident: ref14 – volume: 34(3) start-page: 436 year: 2012 ident: ref26 article-title: Slow Feature Analysis for Human Action Recognition, IEEE Trans publication-title: Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2011.157 |
| SSID | ssj0053866 |
| Score | 2.5001814 |
| Snippet | Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the... |
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e108474 |
| SubjectTerms | Activity recognition Algorithms Artificial Intelligence Classifiers Clustering Computer and Information Sciences Datasets Engineering Geometry Hypotheses International conferences Learning Manifolds Multimedia Pattern Recognition, Automated Regularization Social interactions Training Weddings |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hLuWCCrQlFKog9dAevMQbf-VUtQi04sCpSNwi23FUpFWy2g8h-us7kzgRqyLRQy97iB1tPDO230vGbwA-0zbgpdWMtEIYImLLijp4pv3U4oZfOO26bItbNbsTN_fy_lmpL8oJ6-WBe8MhYa-LKpeZwx-hXG6zQBhF1Qj1dcgcrb6ZKQYy1a_BOIuVigflcs0vol8mi7YJE2QguCSLrY2o0-snfdN5u3oJa_6dMvlm0yzs06Odz5_tR9dvYT8CyfR7P4AD2AnNIRzEqbpKv0Q96a9H8G1Gqa62Ycuu7vzy4XeoUt-yoTpEirg17d-dp3TMgapJpGNiUdu8g7vrq5-XMxbrJjAvC7Vm0nkRTNB2ykVtjcu9rKXPqtxkgfOQVVx76ZEnIVUzKpAKk_ECmVaw3Be6zt_DboOWOoZUe66d15moHQKn4NDmBCicsZVTUrsE8sGIpY-i4vT087L7UqaRXPTmKMn0ZTR9Amy8a9GLarzS_wf5Z-xLktjdBQyUMgZK-VqgJHBM3h3-YFVywrIFnUVO4HTw-MvN52MzTj76omKb0G66PsogqeMmgQ99gIwPOZXILAshE9BbobM1iu2W5uFXJ_At0C-chj0Zg-yf7HTyP-z0EfYQFArKiZmqU9hdLzfhDIHX2n3q5tgf798sqw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IFoeDRQUJA5w8DYPP5IDqtqq1YrDCq1aqbfIdpxSaZUs-xCCX89M4oSuqIBLDrGjxPOwv4nH3wC8p2XACq0YcYUwRMSa5ZWzTNlE44KfG2XabIupnFzxz9fiegem_VkYSqvs58R2oi4bS__Ij2JCHjmdHD1efGNUNYp2V_sSGtqXVig_tRRjD2A3IWasEeyenk-_zPq5Gb1bSn-ALlXxkdfXeNHUboyRCU7VfGuBann8ifd03qzuw6B_plI-3NQL_eO7ns_vrFMXT-GJB5jhSWcRe7Dj6n14fId2cB_2vEOvwg-edfrjMzieUEKsrtmsrU6_vP3pyvCsYZe-hkSI6DbsDvOGJ7arORHO-vSjpn4OVxfnl2cT5qsrMCtyuWbCWO4yp3QS80pnJrWiEjYq0yxyceyiMlZWWIymMKDLpCOupsxyjMecjm2uqvQFjGqU2wGEysbKWBXxyiC8ciZDyI6ww2S6NFIoE0Dai7SwnnqcKmDMi3Y_TWEI0gmnIEUUXhEBsOGpRUe98Y_-p6StoS8RZ7c3muVN4f2wEKrKy1REBi9cmlRHjiCvrDByVC7CTz0gXfcvWBW_7S6Aw17_9ze_G5rRRWnfRdeu2bR9ZIahX5wF8LIzl-EjE4HxZ85FAGrLkLZGsd1S335tacA56iWmYY8Hk_svOb36-zhewyMEhZxyYhJ5CKP1cuPeIPBam7fem34BcyovGw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAFMb6WMVCQOMDBVdz4Kwc0AWKqkOBEpd0i23FgUpSUtBVsfz3vOU60ik5w6aG2Ved99P1e_Px7hLzGMOCEURS5QiggYkOL2juq3NxAwC-ssqHa4qtcLPnnC3FxQMaerVGA672pHfaTWvbN7PfPqzNw-Heha4Ni46LZqmv9DPIL-MPld8hdiFUFNnP4wqdzBfBuKeMFuttWIj2wgKSgwBtON2JVoPRHCtSmW--Do39XVd7btitz9cs0zY2Qdf6QPIhYM30_GMcROfDtI3IUvXmdvomU028fk7MFVsOalvahNX1_ee2r1HV0bCCRArRNh9frKd6EwIYT6VR71LVPyPL807ePCxpbK1AnCrmhwjrutVdmznhttM2dqIXLqlxnnjGfVUw54SCVgmxOS49ETdpxSMa8Ya5Qdf6UHLYgtGOSKseUdSrjtQVs5a0GvA6Yw2pTWSmUTUg-CrF0kXccd9-U4TBNQf4xiKNELZRRCwmh06rVwLvxj_kfUD_TXGTNDl90_fcyOmEpVF1UucgsfHBpc5N5xLuyhrRR-Qy2eozaHX9gXTKEuwVeV07I6ajx_cOvpmHwTzx0Ma3vtmGO1JD3MZ2QZ4OBTJsc7Swhasd0dp5id6S9_BE4wDnoheFjzyYj-y85ndy6iefkPoBBjrUwc3lKDjf91r8AwLWxL4MP_QE0dCp_ priority: 102 providerName: Scholars Portal |
| Title | Hessian-Regularized Co-Training for Social Activity Recognition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25259945 https://www.proquest.com/docview/1565690533 https://www.proquest.com/docview/1566821718 https://pubmed.ncbi.nlm.nih.gov/PMC4178174 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108474&type=printable https://doaj.org/article/57f9d350bd3546b3a0e61536f2877e0b http://dx.doi.org/10.1371/journal.pone.0108474 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa29gCXwfi1wqiChBAcnMWJHTsn1FUrFRLVVK1SOaDIdh2YqNJqbYXYgb-d9xKnojAEHLhYVW2n9nuv9vfi9z4T8hy3ASu0pMgVQgERa5oVzlJpYw0bfmakqaItRulwwt9OxXSPfGhyYbwEwUecL1bVST5-WJTuxEvyBPmK6tPTkCWSNT3CJTQKwbuA5Za_qBiH8M3YGhOQ9kk7FQDVW6Q9GZ333tcnzTFN4yjx6XS_e9LOdlWx-iMLKgzpJkT6a2DlrU251F-_6Pn8h11rcId8a-ZbB6t8DjdrE9rrn6gg_5tA7pIDj3eDXv2UQ7Lnynvk0K8oq-Clp71-dZ-8HmJEri7p2H3E2NjLazcL-gt64S-xCABeB3U2cdCz9aUXwbiJf1qUD8hkcHbRH1J_vQO1oIw1FcZyp5zUMeOFViaxohA2miUqcoy5aMakFRbcOfAoVeqQLEpZDg6h08xmskgeklYJczwigbRMGisjXhjAd84o8BkA9xilZyYV0nRI0mgxt577HK_gmOfVgZ4EH6gWR45Cy73QOoRuey1r7o8_tD9FA9m2Rebu6gvQWu61lQtZZLNERAYKnppERw4xd1qA6ypdBEM9QgU3P7DKGULuDFOmO-S4Mbmbq59tq2GNwIMfXbrFpmqTKvA9meqQR7WFbgcZC3CAMy46RO7Y7s4sdmvKy08VDzkHvTCcdri18r-S0-N_7fCE3AacyjFMJ06PSWt9tXFPAQuuTZfsy6mEUvUZloM3XdI-PRudj7vV2xUo33HV9f_774Mqacc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcKloeTSmwSCDBwek-_Ng9oKoUqpSWHqpUym1re72lUrQbmkRV-VH8Rmb2RSMq4NJLDrGTrGfGM98Xj2cA3lAYsEIrRrVCGCJizZLcWaZsqDHgJ0aZKtviWA5O-ZeRGC3Bz_YuDKVVtj6xctRZaek_8u2AkEdCN0d3Jt8ZdY2i09W2hUZtFofu-gop2_TDwSfU79sw3P883BuwpqsAsyKRMyaM5S52SocBz3VsIityYf0sin0XBM7PAmWFRRaBRCaWjmoUxZYjD3E6sInKI_zee3CfR-hLcP-oUUfw0HdI2VzPi1Sw3VhDf1IWro-8BwMBXwh_VZcAqqo6Lqe3Idw_EzVX5sVEX1_p8fhGFNx_BKsNfPV2a3tbgyVXrMPDG0UN12GtcRdT711T0_r9Y9gZULqtLtiJO6fE14sfLvP2SjZsOlR4iJ29-qqwt2vrjhbeSZvcVBZP4PROpPwUlguU2wZ4ygbKWOXz3CB4cyZGQoCgxsQ6M1Io04OoFWlqm8Lm1F9jnFandQoJTi2clBSRNoroAes-NakLe_xj_kfSVjeXynJXb5SX52mzy1Oh8iSLhG_whUsTad8RoJY58lLlfHzUDdJ1-wPT9LdV92Cr1f_tw6-7YXQAdKqjC1fOqzkyRmIZxD14VptL95ChQHabcNEDtWBIC6tYHCkuvlVFxjnqJaBl9zuT-y85bf59Ha9gZTD8epQeHRwfPocHCD85Zd-EcguWZ5dz9wIh3sy8rPaVB2d3vZF_AU8sZLY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIfHxgNj4WGFAkECCB7dxEsfJA5rGRtUxNKFpk_qW2Y4zJlVJWVtN40_jr-MuccIqJuBlL32o3Ta-O9_9fvX5DuANhQEjlGRUK4QhIlYsLaxh0gQKA36qpa6zLQ7i0XH0eSzGK_CzvQtDaZWtT6wddV4Z-o98wAl5pHRzdFC4tIivu8Ot6XdGHaTopLVtp9GYyL69vED6Nvuwt4u6fhsEw09HOyPmOgwwI9J4zoQ2kU2sVAGPCpXo0IhCGD8PE99ybv2cSyMMMgokNUlsqV5RYiLkJFZxk8oixO-9BbdlGKaUTijHHdlDPxLH7qpeKPnAWUZ_WpW2jxwIg0K0FArrjgFUYXVSza5Du38mbd5dlFN1eaEmkysRcfgQHjgo6203trcGK7Zch_tXChyuw5pzHTPvnatv_f4RbI0o9VaV7NCeUhLs2Q-bezsVO3LdKjzE0V5zbdjbNk13C--wTXSqysdwfCNSfgKrJcptAzxpuNRG-lGhEchZnSA5QICjE5XrWEjdg7AVaWZckXPqtTHJ6pM7iWSnEU5GisicInrAuk9NmyIf_5j_kbTVzaUS3fUb1flp5nZ8JmSR5qHwNb5EsQ6VbwlcxwVyVGl9fNQN0nX7A7Pst4X3YLPV__XDr7thdAZ0wqNKWy3qOXGCJJMnPXjamEv3kIFApptGogdyyZCWVrE8Up59qwuOR6gXTsvudyb3X3J69vd1vII7uIWzL3sH-8_hHiLRiBJxgngTVufnC_sC0d5cv6y3lQcnN72PfwETAmj5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFegPFrgYGChBA8OIuTOE6eUJmYKh4mNK3SeECR7ThjokqqNdXEHvjbuUuciMIQ8MBLVdV2at9d7e96d58BXtAxYISSjLhCGCJixfLKGiZNpPDAz7XUXbbFUTqbJ-9PxekWfBpqYZwE0UdcNKsukk9vmtruO0nuE19RHz0NeCz5MCJYYqcAvQvcbpOXHeMQ_TPWUgHSDdhOBUL1CWzPjz5MP_aR5oilURi7crrfPWnjuOpY_YkFFad0HSL9NbHy5rpeqq-XarH44dQ6vAPfhvX2ySpfgnWrA3P1ExXkfxPIXbjt8K4_7Z-yA1u2vgc7bkdZ-a8c7fXr-_BmRhm5qmbH9oxyY8-vbOkfNOzEXWLhI7z2-2pif2r6Sy_84yH_qakfwPzw3cnBjLnrHZhBZbRMaJPYzEoV8aRSmY6NqIQJyzgLLec2LLk0wqA7hx5llloii8pMgg6hVdzksoofwqTGNe6CLw2X2sgwqTTiO6sz9BkQ9-hMlToVUnsQD1osjOM-pys4FkUX0JPoA_XiKEhohROaB2wctey5P_7Q_y0ZyNiXmLu7D1BrhdNWIWSVl7EINb4kqY5VaAlzpxW6rtKGONVdUvDwBauCE-TOqWTag73B5K5vfj424x5BgR9V22bd9Ukz9D155sGj3kLHSUYCHeA8ER7IDdvdWMVmS33-ueMhT1AvnJYdjFb-V3J6_K8DnsAtxKkJpelE6R5M2ou1fYpYsNXP3C_6O1X5Y8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hessian-regularized+co-training+for+social+activity+recognition&rft.jtitle=PloS+one&rft.au=Liu%2C+Weifeng&rft.au=Li%2C+Yang&rft.au=Lin%2C+Xu&rft.au=Tao%2C+Dacheng&rft.date=2014-09-26&rft.eissn=1932-6203&rft.volume=9&rft.issue=9&rft.spage=e108474&rft_id=info:doi/10.1371%2Fjournal.pone.0108474&rft_id=info%3Apmid%2F25259945&rft.externalDocID=25259945 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |