Hessian-Regularized Co-Training for Social Activity Recognition

Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be co...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 9; p. e108474
Main Authors Liu, Weifeng, Li, Yang, Lin, Xu, Tao, Dacheng, Wang, Yanjiang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.09.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0108474

Cover

Abstract Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.
AbstractList Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.
Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.
Author Wang, Yanjiang
Tao, Dacheng
Li, Yang
Lin, Xu
Liu, Weifeng
AuthorAffiliation Banner Alzheimer's Institute, United States of America
4 Centre for Quantum Computation and Intelligent Systems, and Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, New South Wales, Australia
1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, China
3 The Chinese University of Hong Kong, Hong Kong, China
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
AuthorAffiliation_xml – name: 1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong, China
– name: Banner Alzheimer's Institute, United States of America
– name: 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– name: 3 The Chinese University of Hong Kong, Hong Kong, China
– name: 4 Centre for Quantum Computation and Intelligent Systems, and Faculty of Engineering and Information Technology, University of Technology, Sydney, Ultimo, New South Wales, Australia
Author_xml – sequence: 1
  givenname: Weifeng
  surname: Liu
  fullname: Liu, Weifeng
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 3
  givenname: Xu
  surname: Lin
  fullname: Lin, Xu
– sequence: 4
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
– sequence: 5
  givenname: Yanjiang
  surname: Wang
  fullname: Wang, Yanjiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25259945$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1rFDEUHaRiP_QfiC744susuZOvGR-UslRbKAi1PodM5s6YJZusyUxl_fWd3Z2Wtoj4koSbcw7nHO5xduCDxyx7DWQOVMKHZRii126-HsdzAqRkkj3LjqCiRS4KQg8evA-z45SWhHBaCvEiOyx4wauK8aPs8zmmZLXPr7AbnI72DzazRcivo7be-m7Whjj7HozVbnZqentj-83sCk3ovO1t8C-z5612CV9N90n248vZ9eI8v_z29WJxepkbXok-57VhWKLUBbBWlzU1vOWGNLQkCICkAWm4AcEqkKVAIARKw4AR1GAq2dKT7O1ed-1CUlP2pIALLqoxFx0RF3tEE_RSraNd6bhRQVu1G4TYKR17axwqLtuqoZzU48FETTVBAZyKtiilRFKPWnyvNfi13vzWzt0LAlHb-u8sqG39aqp_5H2aXA71ChuDvo_aPTLz-Mfbn6oLN4qNsWEn8H4SiOHXgKlXK5sMOqc9hmGXV5QFSChH6Lsn0L-38uaho3srdxswAtgeYGJIKWL7v0k_PqEZ2-vtRoy5rPs3-Rb6atsF
CitedBy_id crossref_primary_10_1016_j_ymeth_2016_06_017
crossref_primary_10_1016_j_image_2018_09_008
crossref_primary_10_1080_21642583_2018_1545610
crossref_primary_10_1007_s11042_015_3221_1
crossref_primary_10_1109_TCYB_2015_2443857
crossref_primary_10_1016_j_cviu_2024_104269
crossref_primary_10_1007_s12145_023_00986_w
crossref_primary_10_1016_j_neucom_2015_04_087
crossref_primary_10_1109_ACCESS_2020_2972068
crossref_primary_10_1155_2020_8852404
crossref_primary_10_1109_ACCESS_2019_2900267
crossref_primary_10_1007_s11042_015_2643_0
crossref_primary_10_1109_TCYB_2015_2389232
Cites_doi 10.1016/j.ins.2012.01.004
10.1145/1991996.1992025
10.1145/1015330.1015350
10.1145/279943.279962
10.1109/TIP.2013.2261307
10.1145/1143844.1143862
10.1109/TIP.2014.2328894
10.1090/cbms/050
10.1109/TIP.2013.2277813
10.1109/TIP.2013.2255302
10.1109/TIP.2012.2183882
10.1145/354756.354805
10.1073/pnas.1031596100
10.1109/TSMCB.2011.2157998
10.1007/s11263-014-0703-y
10.1109/TPAMI.2011.157
ContentType Journal Article
Copyright 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2014 Liu et al 2014 Liu et al
Copyright_xml – notice: 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2014 Liu et al 2014 Liu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0108474
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Hessian-Regularized Co-Training
EISSN 1932-6203
ExternalDocumentID 1565690533
oai_doaj_org_article_57f9d350bd3546b3a0e61536f2877e0b
10.1371/journal.pone.0108474
PMC4178174
3444419181
25259945
10_1371_journal_pone_0108474
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: CSRD VA
  grantid: I01 CX002096
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PV9
RIG
RZL
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c596t-5bc4e8e7a214fa8b3c5f5c0d380e11e0d17c5c16491786e10018c4140ea1c97f3
IEDL.DBID UNPAY
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:13 EST 2021
Fri Oct 03 12:52:58 EDT 2025
Sun Oct 26 03:46:36 EDT 2025
Tue Sep 30 16:46:06 EDT 2025
Mon Sep 08 14:29:11 EDT 2025
Tue Oct 07 07:19:24 EDT 2025
Wed Feb 19 02:30:04 EST 2025
Thu Apr 24 23:14:42 EDT 2025
Wed Oct 01 05:09:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-5bc4e8e7a214fa8b3c5f5c0d380e11e0d17c5c16491786e10018c4140ea1c97f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: WL YL DT YW. Performed the experiments: WL YL XL. Analyzed the data: WL YL DT YW. Contributed reagents/materials/analysis tools: WL YL DT YW. Contributed to the writing of the manuscript: WL YL DT YW. Baseline evaluations: WL XL.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108474&type=printable
PMID 25259945
PQID 1565690533
PQPubID 1436336
ParticipantIDs plos_journals_1565690533
doaj_primary_oai_doaj_org_article_57f9d350bd3546b3a0e61536f2877e0b
unpaywall_primary_10_1371_journal_pone_0108474
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4178174
proquest_miscellaneous_1566821718
proquest_journals_1565690533
pubmed_primary_25259945
crossref_primary_10_1371_journal_pone_0108474
crossref_citationtrail_10_1371_journal_pone_0108474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-26
PublicationDateYYYYMMDD 2014-09-26
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref13
L Liu (ref25) 2014
ref12
ref34
ref15
ref14
ref10
ref32
Z Zhang (ref26) 2012; 34(3)
Y Fu (ref22) 2012
KI Kim (ref20) 2009; 22
ref17
DL Donoho (ref21) 2003; 100(10)
ref16
ref19
ref18
D Tao (ref27) 2013; 23(10)
D Tao (ref3) 2014; 10(1)
W Liu (ref31) 2014; 118
D Tao (ref4) 2007; 29(10)
F Zhu (ref9) 2014; 109(1–2)
R Yan (ref2) 2013; 22(12)
L Shao (ref24) 2014; 24(3)
C Xu (ref11) 2014; 36(8)
M Belkin (ref28) 2006; 7
M Song (ref8) 2012; 193
D Tao (ref30) 2013; 15(4)
M Zhang (ref33) 2011; 41(6)
ref5
Y Fu (ref23) 2014; 36(2)
M Song (ref6) 2012; 21(5)
L Zhang (ref1) 2014; 23(8)
W Liu (ref29) 2013; 22(7)
M Song (ref7) 2013; 22(8)
References_xml – volume: 193
  start-page: 233
  year: 2012
  ident: ref8
  article-title: Image-based facial sketch-to-photo synthesis via online coupled dictionary learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.01.004
– volume: 29(10)
  start-page: 1700
  year: 2007
  ident: ref4
  article-title: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE Trans. Pattern Anal. Mach. Intell
– ident: ref34
  doi: 10.1145/1991996.1992025
– ident: ref13
  doi: 10.1145/1015330.1015350
– volume: 10(1)
  start-page: 813
  year: 2014
  ident: ref3
  article-title: Rank Preserving Discriminant Analysis for Human Behavior Recognition on Wireless Sensor Networks. IEEE Trans Industr. Inform
– ident: ref5
  doi: 10.1145/279943.279962
– volume: 24(3)
  start-page: 504
  year: 2014
  ident: ref24
  article-title: Efficient Search and Localization of Human Actions in Video Databases, IEEE Trans Circuits Syst. Video Technol
– volume: 22(8)
  start-page: 3283
  year: 2013
  ident: ref7
  article-title: Joint Sparse Learning for 3-D Facial Expression Generation. IEEE Trans
  publication-title: Image Process
  doi: 10.1109/TIP.2013.2261307
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref28
  article-title: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
  publication-title: Journal of Machine Learning Research
– year: 2012
  ident: ref22
  article-title: Attribute Learning for Understanding Unstructured Social Activity-annotated
  publication-title: Paper presented at the European Conference on Computer Vision
– ident: ref15
  doi: 10.1145/1143844.1143862
– volume: 23(8)
  start-page: 3241
  year: 2014
  ident: ref1
  article-title: Learning Object-to-Class Kernels for Scene Classification. IEEE Trans
  publication-title: Image Process
  doi: 10.1109/TIP.2014.2328894
– ident: ref19
– ident: ref32
  doi: 10.1090/cbms/050
– volume: 15(4)
  start-page: 833
  year: 2013
  ident: ref30
  article-title: Hessian Regularized Support Vector Machines for Mobile Image Annotation on the Cloud. IEEE Trans
  publication-title: on Multimedia
– ident: ref17
– volume: 118
  start-page: 50
  year: 2014
  ident: ref31
  article-title: Multiview Hessian discriminative sparse coding for image annotation. Comput. Vis. Image Underst
– volume: 22(12)
  start-page: 4689
  year: 2013
  ident: ref2
  article-title: Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image Denoising. IEEE Trans
  publication-title: Image Process
  doi: 10.1109/TIP.2013.2277813
– volume: 22(7)
  start-page: 2676
  year: 2013
  ident: ref29
  article-title: Multiview Hessian Regularization for Image Annotation. IEEE Trans
  publication-title: Image Process
  doi: 10.1109/TIP.2013.2255302
– volume: 21(5)
  start-page: 2887
  year: 2012
  ident: ref6
  article-title: Three-dimensional face reconstruction from a single image by a coupled RBF network. IEEE Trans
  publication-title: Image Process
  doi: 10.1109/TIP.2012.2183882
– volume: 36(2)
  start-page: 303
  year: 2014
  ident: ref23
  article-title: Learning Multi-modal Latent Attributes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– ident: ref12
  doi: 10.1145/354756.354805
– volume: 100(10)
  start-page: 5591
  year: 2003
  ident: ref21
  article-title: Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1031596100
– volume: 41(6)
  start-page: 1612
  year: 2011
  ident: ref33
  article-title: COTRADE: Confident Co-Training With Data Editing. IEEE Trans
  publication-title: Syst. Man Cybern. B Cybern
  doi: 10.1109/TSMCB.2011.2157998
– volume: 36(8)
  start-page: 1559
  year: 2014
  ident: ref11
  article-title: Large-Margin Multi-view Information Bottleneck. IEEE Trans. Pattern Anal. Mach. Intell
– volume: 22
  start-page: 979
  year: 2009
  ident: ref20
  article-title: Semi-supervised Regression using Hessian Energy with an Application to Semi-supervised Dimensionality Reduction
  publication-title: Adv. Neural Inf. Process Syst
– volume: 23(10)
  start-page: 1675
  year: 2013
  ident: ref27
  article-title: Person Re-Identification by Regularized Smoothing KISS Metric Learning. IEEE Trans. Circuits Syst. Video Techn
– year: 2014
  ident: ref25
  article-title: Realistic Action Recognition via Sparsely-Constructed Gaussian Processes
  publication-title: Pattern Recognition
– ident: ref18
– ident: ref16
– ident: ref10
– volume: 109(1–2)
  start-page: 42
  year: 2014
  ident: ref9
  article-title: Weakly-Supervised Cross-Domain Dictionary Learning for Visual Recognition
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-014-0703-y
– ident: ref14
– volume: 34(3)
  start-page: 436
  year: 2012
  ident: ref26
  article-title: Slow Feature Analysis for Human Action Recognition, IEEE Trans
  publication-title: Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2011.157
SSID ssj0053866
Score 2.5001814
Snippet Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e108474
SubjectTerms Activity recognition
Algorithms
Artificial Intelligence
Classifiers
Clustering
Computer and Information Sciences
Datasets
Engineering
Geometry
Hypotheses
International conferences
Learning
Manifolds
Multimedia
Pattern Recognition, Automated
Regularization
Social interactions
Training
Weddings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hLuWCCrQlFKog9dAevMQbf-VUtQi04sCpSNwi23FUpFWy2g8h-us7kzgRqyLRQy97iB1tPDO230vGbwA-0zbgpdWMtEIYImLLijp4pv3U4oZfOO26bItbNbsTN_fy_lmpL8oJ6-WBe8MhYa-LKpeZwx-hXG6zQBhF1Qj1dcgcrb6ZKQYy1a_BOIuVigflcs0vol8mi7YJE2QguCSLrY2o0-snfdN5u3oJa_6dMvlm0yzs06Odz5_tR9dvYT8CyfR7P4AD2AnNIRzEqbpKv0Q96a9H8G1Gqa62Ycuu7vzy4XeoUt-yoTpEirg17d-dp3TMgapJpGNiUdu8g7vrq5-XMxbrJjAvC7Vm0nkRTNB2ykVtjcu9rKXPqtxkgfOQVVx76ZEnIVUzKpAKk_ECmVaw3Be6zt_DboOWOoZUe66d15moHQKn4NDmBCicsZVTUrsE8sGIpY-i4vT087L7UqaRXPTmKMn0ZTR9Amy8a9GLarzS_wf5Z-xLktjdBQyUMgZK-VqgJHBM3h3-YFVywrIFnUVO4HTw-MvN52MzTj76omKb0G66PsogqeMmgQ99gIwPOZXILAshE9BbobM1iu2W5uFXJ_At0C-chj0Zg-yf7HTyP-z0EfYQFArKiZmqU9hdLzfhDIHX2n3q5tgf798sqw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4IFoeDRQUJA5w8DYPP5IDqtqq1YrDCq1aqbfIdpxSaZUs-xCCX89M4oSuqIBLDrGjxPOwv4nH3wC8p2XACq0YcYUwRMSa5ZWzTNlE44KfG2XabIupnFzxz9fiegem_VkYSqvs58R2oi4bS__Ij2JCHjmdHD1efGNUNYp2V_sSGtqXVig_tRRjD2A3IWasEeyenk-_zPq5Gb1bSn-ALlXxkdfXeNHUboyRCU7VfGuBann8ifd03qzuw6B_plI-3NQL_eO7ns_vrFMXT-GJB5jhSWcRe7Dj6n14fId2cB_2vEOvwg-edfrjMzieUEKsrtmsrU6_vP3pyvCsYZe-hkSI6DbsDvOGJ7arORHO-vSjpn4OVxfnl2cT5qsrMCtyuWbCWO4yp3QS80pnJrWiEjYq0yxyceyiMlZWWIymMKDLpCOupsxyjMecjm2uqvQFjGqU2wGEysbKWBXxyiC8ciZDyI6ww2S6NFIoE0Dai7SwnnqcKmDMi3Y_TWEI0gmnIEUUXhEBsOGpRUe98Y_-p6StoS8RZ7c3muVN4f2wEKrKy1REBi9cmlRHjiCvrDByVC7CTz0gXfcvWBW_7S6Aw17_9ze_G5rRRWnfRdeu2bR9ZIahX5wF8LIzl-EjE4HxZ85FAGrLkLZGsd1S335tacA56iWmYY8Hk_svOb36-zhewyMEhZxyYhJ5CKP1cuPeIPBam7fem34BcyovGw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAFMb6WMVCQOMDBVdz4Kwc0AWKqkOBEpd0i23FgUpSUtBVsfz3vOU60ik5w6aG2Ved99P1e_Px7hLzGMOCEURS5QiggYkOL2juq3NxAwC-ssqHa4qtcLPnnC3FxQMaerVGA672pHfaTWvbN7PfPqzNw-Heha4Ni46LZqmv9DPIL-MPld8hdiFUFNnP4wqdzBfBuKeMFuttWIj2wgKSgwBtON2JVoPRHCtSmW--Do39XVd7btitz9cs0zY2Qdf6QPIhYM30_GMcROfDtI3IUvXmdvomU028fk7MFVsOalvahNX1_ee2r1HV0bCCRArRNh9frKd6EwIYT6VR71LVPyPL807ePCxpbK1AnCrmhwjrutVdmznhttM2dqIXLqlxnnjGfVUw54SCVgmxOS49ETdpxSMa8Ya5Qdf6UHLYgtGOSKseUdSrjtQVs5a0GvA6Yw2pTWSmUTUg-CrF0kXccd9-U4TBNQf4xiKNELZRRCwmh06rVwLvxj_kfUD_TXGTNDl90_fcyOmEpVF1UucgsfHBpc5N5xLuyhrRR-Qy2eozaHX9gXTKEuwVeV07I6ajx_cOvpmHwTzx0Ma3vtmGO1JD3MZ2QZ4OBTJsc7Swhasd0dp5id6S9_BE4wDnoheFjzyYj-y85ndy6iefkPoBBjrUwc3lKDjf91r8AwLWxL4MP_QE0dCp_
  priority: 102
  providerName: Scholars Portal
Title Hessian-Regularized Co-Training for Social Activity Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/25259945
https://www.proquest.com/docview/1565690533
https://www.proquest.com/docview/1566821718
https://pubmed.ncbi.nlm.nih.gov/PMC4178174
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108474&type=printable
https://doaj.org/article/57f9d350bd3546b3a0e61536f2877e0b
http://dx.doi.org/10.1371/journal.pone.0108474
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa29gCXwfi1wqiChBAcnMWJHTsn1FUrFRLVVK1SOaDIdh2YqNJqbYXYgb-d9xKnojAEHLhYVW2n9nuv9vfi9z4T8hy3ASu0pMgVQgERa5oVzlJpYw0bfmakqaItRulwwt9OxXSPfGhyYbwEwUecL1bVST5-WJTuxEvyBPmK6tPTkCWSNT3CJTQKwbuA5Za_qBiH8M3YGhOQ9kk7FQDVW6Q9GZ333tcnzTFN4yjx6XS_e9LOdlWx-iMLKgzpJkT6a2DlrU251F-_6Pn8h11rcId8a-ZbB6t8DjdrE9rrn6gg_5tA7pIDj3eDXv2UQ7Lnynvk0K8oq-Clp71-dZ-8HmJEri7p2H3E2NjLazcL-gt64S-xCABeB3U2cdCz9aUXwbiJf1qUD8hkcHbRH1J_vQO1oIw1FcZyp5zUMeOFViaxohA2miUqcoy5aMakFRbcOfAoVeqQLEpZDg6h08xmskgeklYJczwigbRMGisjXhjAd84o8BkA9xilZyYV0nRI0mgxt577HK_gmOfVgZ4EH6gWR45Cy73QOoRuey1r7o8_tD9FA9m2Rebu6gvQWu61lQtZZLNERAYKnppERw4xd1qA6ypdBEM9QgU3P7DKGULuDFOmO-S4Mbmbq59tq2GNwIMfXbrFpmqTKvA9meqQR7WFbgcZC3CAMy46RO7Y7s4sdmvKy08VDzkHvTCcdri18r-S0-N_7fCE3AacyjFMJ06PSWt9tXFPAQuuTZfsy6mEUvUZloM3XdI-PRudj7vV2xUo33HV9f_774Mqacc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcKloeTSmwSCDBwek-_Ng9oKoUqpSWHqpUym1re72lUrQbmkRV-VH8Rmb2RSMq4NJLDrGTrGfGM98Xj2cA3lAYsEIrRrVCGCJizZLcWaZsqDHgJ0aZKtviWA5O-ZeRGC3Bz_YuDKVVtj6xctRZaek_8u2AkEdCN0d3Jt8ZdY2i09W2hUZtFofu-gop2_TDwSfU79sw3P883BuwpqsAsyKRMyaM5S52SocBz3VsIityYf0sin0XBM7PAmWFRRaBRCaWjmoUxZYjD3E6sInKI_zee3CfR-hLcP-oUUfw0HdI2VzPi1Sw3VhDf1IWro-8BwMBXwh_VZcAqqo6Lqe3Idw_EzVX5sVEX1_p8fhGFNx_BKsNfPV2a3tbgyVXrMPDG0UN12GtcRdT711T0_r9Y9gZULqtLtiJO6fE14sfLvP2SjZsOlR4iJ29-qqwt2vrjhbeSZvcVBZP4PROpPwUlguU2wZ4ygbKWOXz3CB4cyZGQoCgxsQ6M1Io04OoFWlqm8Lm1F9jnFandQoJTi2clBSRNoroAes-NakLe_xj_kfSVjeXynJXb5SX52mzy1Oh8iSLhG_whUsTad8RoJY58lLlfHzUDdJ1-wPT9LdV92Cr1f_tw6-7YXQAdKqjC1fOqzkyRmIZxD14VptL95ChQHabcNEDtWBIC6tYHCkuvlVFxjnqJaBl9zuT-y85bf59Ha9gZTD8epQeHRwfPocHCD85Zd-EcguWZ5dz9wIh3sy8rPaVB2d3vZF_AU8sZLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIfHxgNj4WGFAkECCB7dxEsfJA5rGRtUxNKFpk_qW2Y4zJlVJWVtN40_jr-MuccIqJuBlL32o3Ta-O9_9fvX5DuANhQEjlGRUK4QhIlYsLaxh0gQKA36qpa6zLQ7i0XH0eSzGK_CzvQtDaZWtT6wddV4Z-o98wAl5pHRzdFC4tIivu8Ot6XdGHaTopLVtp9GYyL69vED6Nvuwt4u6fhsEw09HOyPmOgwwI9J4zoQ2kU2sVAGPCpXo0IhCGD8PE99ybv2cSyMMMgokNUlsqV5RYiLkJFZxk8oixO-9BbdlGKaUTijHHdlDPxLH7qpeKPnAWUZ_WpW2jxwIg0K0FArrjgFUYXVSza5Du38mbd5dlFN1eaEmkysRcfgQHjgo6203trcGK7Zch_tXChyuw5pzHTPvnatv_f4RbI0o9VaV7NCeUhLs2Q-bezsVO3LdKjzE0V5zbdjbNk13C--wTXSqysdwfCNSfgKrJcptAzxpuNRG-lGhEchZnSA5QICjE5XrWEjdg7AVaWZckXPqtTHJ6pM7iWSnEU5GisicInrAuk9NmyIf_5j_kbTVzaUS3fUb1flp5nZ8JmSR5qHwNb5EsQ6VbwlcxwVyVGl9fNQN0nX7A7Pst4X3YLPV__XDr7thdAZ0wqNKWy3qOXGCJJMnPXjamEv3kIFApptGogdyyZCWVrE8Up59qwuOR6gXTsvudyb3X3J69vd1vII7uIWzL3sH-8_hHiLRiBJxgngTVufnC_sC0d5cv6y3lQcnN72PfwETAmj5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFegPFrgYGChBA8OIuTOE6eUJmYKh4mNK3SeECR7ThjokqqNdXEHvjbuUuciMIQ8MBLVdV2at9d7e96d58BXtAxYISSjLhCGCJixfLKGiZNpPDAz7XUXbbFUTqbJ-9PxekWfBpqYZwE0UdcNKsukk9vmtruO0nuE19RHz0NeCz5MCJYYqcAvQvcbpOXHeMQ_TPWUgHSDdhOBUL1CWzPjz5MP_aR5oilURi7crrfPWnjuOpY_YkFFad0HSL9NbHy5rpeqq-XarH44dQ6vAPfhvX2ySpfgnWrA3P1ExXkfxPIXbjt8K4_7Z-yA1u2vgc7bkdZ-a8c7fXr-_BmRhm5qmbH9oxyY8-vbOkfNOzEXWLhI7z2-2pif2r6Sy_84yH_qakfwPzw3cnBjLnrHZhBZbRMaJPYzEoV8aRSmY6NqIQJyzgLLec2LLk0wqA7hx5llloii8pMgg6hVdzksoofwqTGNe6CLw2X2sgwqTTiO6sz9BkQ9-hMlToVUnsQD1osjOM-pys4FkUX0JPoA_XiKEhohROaB2wctey5P_7Q_y0ZyNiXmLu7D1BrhdNWIWSVl7EINb4kqY5VaAlzpxW6rtKGONVdUvDwBauCE-TOqWTag73B5K5vfj424x5BgR9V22bd9Ukz9D155sGj3kLHSUYCHeA8ER7IDdvdWMVmS33-ueMhT1AvnJYdjFb-V3J6_K8DnsAtxKkJpelE6R5M2ou1fYpYsNXP3C_6O1X5Y8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hessian-regularized+co-training+for+social+activity+recognition&rft.jtitle=PloS+one&rft.au=Liu%2C+Weifeng&rft.au=Li%2C+Yang&rft.au=Lin%2C+Xu&rft.au=Tao%2C+Dacheng&rft.date=2014-09-26&rft.eissn=1932-6203&rft.volume=9&rft.issue=9&rft.spage=e108474&rft_id=info:doi/10.1371%2Fjournal.pone.0108474&rft_id=info%3Apmid%2F25259945&rft.externalDocID=25259945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon