河套灌区土壤盐渍化微波雷达反演

目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而有潜力的方法。快速获取大范围地表土壤盐渍化的空间分布是一个迫切急需解决的科学难题。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据反演土壤盐渍化的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,基于SAR后向散射系数和土壤盐分实测值,利用多元线性回归(multiple linear regress,MLR)、地理加权回归(geographically weig...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 16; pp. 109 - 114
Main Author 刘全明 成秋明 王学 李相君
Format Journal Article
LanguageChinese
Published 内蒙古农业大学水利与土木建筑工程学院测绘工程系,呼和浩特,010018%加拿大约克大学地球空间科学与工程系,加拿大 安大略省 多伦多 M3J1P3 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.16.016

Cover

Abstract 目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而有潜力的方法。快速获取大范围地表土壤盐渍化的空间分布是一个迫切急需解决的科学难题。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据反演土壤盐渍化的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,基于SAR后向散射系数和土壤盐分实测值,利用多元线性回归(multiple linear regress,MLR)、地理加权回归(geographically weighted regression,GWR)和BP人工神经网络(back propagation artificial neural networks,BP ANN)方法建立土壤含盐量的定量反演模型,重点构建了8∶140∶1结构的3层BP ANN模型,经模型验证发现MLR、GWR模型均偏向于弱相关,其标准误差SE分别为0.55、0.47 mg/g,而ANN(BP)模型的内部、外部检验标准误差SE分别为0.24、0.33 mg/g,优于前2种模型,其反演的盐渍化面积占比65.4%,与地面验证结果基本一致。该文建立的考虑土壤水分影响、组合雷达后向散射系数反演土壤盐分的人工智能模型,无需复杂的介电常数模型,能够在一定程度上满足土壤盐渍化监测的需要,可促进微波遥感在土壤盐渍化监测中的开拓应用。
AbstractList S156.4; 目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而有潜力的方法。快速获取大范围地表土壤盐渍化的空间分布是一个迫切急需解决的科学难题。该文目的是试验与评价 C 波段 RADARSAT-2 SAR(synthetic aperture radar)数据反演土壤盐渍化的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,基于 SAR 后向散射系数和土壤盐分实测值,利用多元线性回归(multiple linear regress,MLR)、地理加权回归(geographically weighted regression,GWR)和 BP 人工神经网络(back propagation artificial neural networks,BP ANN)方法建立土壤含盐量的定量反演模型,重点构建了8∶140∶1结构的3层 BP ANN 模型,经模型验证发现 MLR、GWR 模型均偏向于弱相关,其标准误差 SE 分别为0.55、0.47 mg/g,而 ANN(BP)模型的内部、外部检验标准误差 SE 分别为0.24、0.33 mg/g,优于前2种模型,其反演的盐渍化面积占比65.4%,与地面验证结果基本一致。该文建立的考虑土壤水分影响、组合雷达后向散射系数反演土壤盐分的人工智能模型,无需复杂的介电常数模型,能够在一定程度上满足土壤盐渍化监测的需要,可促进微波遥感在土壤盐渍化监测中的开拓应用。
目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而有潜力的方法。快速获取大范围地表土壤盐渍化的空间分布是一个迫切急需解决的科学难题。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据反演土壤盐渍化的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,基于SAR后向散射系数和土壤盐分实测值,利用多元线性回归(multiple linear regress,MLR)、地理加权回归(geographically weighted regression,GWR)和BP人工神经网络(back propagation artificial neural networks,BP ANN)方法建立土壤含盐量的定量反演模型,重点构建了8∶140∶1结构的3层BP ANN模型,经模型验证发现MLR、GWR模型均偏向于弱相关,其标准误差SE分别为0.55、0.47 mg/g,而ANN(BP)模型的内部、外部检验标准误差SE分别为0.24、0.33 mg/g,优于前2种模型,其反演的盐渍化面积占比65.4%,与地面验证结果基本一致。该文建立的考虑土壤水分影响、组合雷达后向散射系数反演土壤盐分的人工智能模型,无需复杂的介电常数模型,能够在一定程度上满足土壤盐渍化监测的需要,可促进微波遥感在土壤盐渍化监测中的开拓应用。
Abstract_FL The expanding trend of soil salinization has become more and more severe especially in arid and semi-arid areas in the northwest China. Therefore it is specially important to dynamically monitor the soil salinization in the arid and semi-arid areas scientifically, accurately and rapidly. Microwave remote sensing technique has become a promising method to detect and monitor the soil salinity due to its many advantages. The aim of this study was to investigate the capability of C-band RADARSAT-2 SAR (synthetic aperture radar) data in soil salinity estimation over agricultural fields. In this study, Jiefangzha zone of Hetao irrigation district, Inner Mongolia, China was selected as the study area. Based on the back-scatter coefficient value and soil salt content, this paper used 3 kinds of methods including the multiple linear regression (MLR), geographically weighted regression (GWR) and back propagation artificial neural network (BP ANN) to establish the quantitative inversion models of soil salt content. Soil salinity information was extracted from the RADARSAT-2 SAR data, which had a kind of fine four-polarization SLC (single look complex) format and were bought in 2013, and covered an area of 25 km × 25 km with 8 m ground resolution. Taking the spatial unevenness distribution of the saline soil into account, 69 sampling points were designed in the study area, and field digging depth of soil was 10 cm. Hand-held GPS (global position system) receiver was used to record the coordinates of sampling points, and the soil total soluble salt content was measured in the indoor. Mainly use the SAR Scape module of ENVI software to perform the radar image processing, including radiometric calibration, geometric correction, slant range turning and filtering. The four-polarization back-scatter coefficient values corresponding to the sampling points were extracted based on the previous results by the spatial analysis module of ArcGIS. Total salt content was took as dependent variable, four-polarization back-scatter coefficient values and soil moisture as independent variables, and the MLR and GWR salinity prediction models were established. Use the MLR module of SPSS and the GWR module of GWR4 software to deal with data respectively. The correlation of GWR model was higher than the MLR, but these 2 statistical models were not significant, and the inversion results were difficult to reflect the distribution of severe salinity and saline-alkali soil. Therefore the emphasis was focused on the building of the 8:140:1 structure of three-layer BP ANN model. Training set contained the data of 49 sampling points in the test area, the input layer was made up of sampling point coordinates, soil moisture, four-polarization back-scattering coefficients and their combined value, and the number of net neurons was 8; the output layer was a neuron corresponding to the total salt content of sample point. After a lot of tentatively computation, the optimal number of neurons in the hidden layer was selected as 140. The hidden layer of the three-layer BP ANN model used the hyperbolic tangent sigmoid activation function, the output layer utilized the linear activation function, the traingda function was selected to perform network learning and training, and the fitting target error was set as 0.1 mg/g. Then the BP model was applied to the RADARSAT-2 remote sensing images to achieve the high-precision quantitative inversion of soil salinity when the BP model inversion accuracy met the requirements of salinity prediction. Whole calculation process was implemented by the MATLAB neural network toolbox. It was found that the correlation of the MLR and GWR models was weak and their standard error (SE) was 0.55 and 0.47 mg/g respectively, but the SE of internal and external inspection using the ANN (BP) model was only 0.24 and 0.33 mg/g respectively, better than the other 2 models, whose salinity area accounted for about 65.4%, and was basically consistent with ground validation. The artificial intelligence inversion model of soil salt considered the moisture’s influence, was directly based on the polarization radar scattering coefficients and their composition, and had no complex dielectric constant model. So the ANN (BP) model can reduce the smoothing effect compared with the 2 traditional models and improve the accuracy and reliability of model predictions, which meets the needs of soil salinity monitoring to a certain extent, and can promote and develop the application of microwave remote sensing in the soil salinity monitoring.
Author 刘全明 成秋明 王学 李相君
AuthorAffiliation 内蒙古农业大学水利与土木建筑工程学院测绘工程系,呼和浩特010018 加拿大约克大学地球空间科学与工程系,加拿大安大略省多伦多M3J1P3
AuthorAffiliation_xml – name: 内蒙古农业大学水利与土木建筑工程学院测绘工程系,呼和浩特,010018%加拿大约克大学地球空间科学与工程系,加拿大 安大略省 多伦多 M3J1P3
Author_FL Wang Xue
Li Xiangjun
Cheng Qiuming
Liu Quanming
Author_FL_xml – sequence: 1
  fullname: Liu Quanming
– sequence: 2
  fullname: Cheng Qiuming
– sequence: 3
  fullname: Wang Xue
– sequence: 4
  fullname: Li Xiangjun
Author_xml – sequence: 1
  fullname: 刘全明 成秋明 王学 李相君
BookMark eNo9j0tLw0AUhWdRwVr7JwRxlTiPzCRZSvEFBTfdh5s4E1N0ogmiXbpP0YXoooLgY-vCLhSR_JtJ9V84UhEu98Dl45xzl1BL51oitEqwS0jo8_Whm5WldgnG1BEBCV2KiXDtWGmh9v99EXXLMosxJ8zH2CNt5DSvU_N8O7uoTPVh7u7N49NsctW8j011Y-qXZvrwPXn7qmtzOW4-r5fRgoLDUnb_tIMGW5uD3o7T39ve7W30nYSHwlGJL6iHkwCkz6RSFKTEceD7wBUnKvAYCC8AGgcCPKBABLfdROLJfbClJOugtbntGWgFOo2G-WmhbWCkR2lyHv9-R4RdllyZk8lBrtOTzLLHRXYExSgSIhSEhYyyH45-ZKg
ClassificationCodes S156.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.16.016
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Soil salinity inversion in Hetao Irrigation district using microwave radar
DocumentTitle_FL Soil salinity inversion in Hetao Irrigation district using microwave radar
EndPage 114
ExternalDocumentID nygcxb201616016
669613932
GrantInformation_xml – fundername: 国家自然科学基金项目; 内蒙古自然科学基金项目。
  funderid: (51249007、51569018); (2013MS0609)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c596-fc76240c8ae73eff2aee0b877a5f51f843a648a2b86a4a2a1658196c4eda041e3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:16:29 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 16
Keywords 土壤盐渍化
radar
inversion
雷达
neural networks
神经网络
soils
反演
土壤
soil salinity
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-fc76240c8ae73eff2aee0b877a5f51f843a648a2b86a4a2a1658196c4eda041e3
Notes 11-2047/S
soils; neural networks; radar; soil salinity; inversion
The expanding trend of soil salinization has become more and more severe especially in arid and semi-arid areas in the northwest China. Therefore it is specially important to dynamically monitor the soil salinization in the arid and semi-arid areas scientifically, accurately and rapidly. Microwave remote sensing technique has become a promising method to detect and monitor the soil salinity due to its many advantages. The aim of this study was to investigate the capability of C-band RADARSAT-2 SAR(synthetic aperture radar) data in soil salinity estimation over agricultural fields. In this study, Jiefangzha zone of Hetao irrigation district, Inner Mongolia, China was selected as the study area. Based on the back-scatter coefficient value and soil salt content, this paper used 3 kinds of methods including the multiple linear regression(MLR), geographically weighted regression(GWR) and back propagation artificial neural network(BP ANN) to establish
PageCount 6
ParticipantIDs wanfang_journals_nygcxb201616016
chongqing_primary_669613932
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 内蒙古农业大学水利与土木建筑工程学院测绘工程系,呼和浩特,010018%加拿大约克大学地球空间科学与工程系,加拿大 安大略省 多伦多 M3J1P3
Publisher_xml – name: 内蒙古农业大学水利与土木建筑工程学院测绘工程系,呼和浩特,010018%加拿大约克大学地球空间科学与工程系,加拿大 安大略省 多伦多 M3J1P3
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136531
Snippet 目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布的新兴而...
S156.4; 目前中国西北干旱、半干旱地区的土壤盐渍化情况日益趋于严重,动态、快速而精确地监测与评价土壤盐渍化显得尤为重要。微波遥感所具有的优点使其成为探测土壤盐分分布...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 109
SubjectTerms 反演
土壤
土壤盐渍化
神经网络
雷达
Title 河套灌区土壤盐渍化微波雷达反演
URI http://lib.cqvip.com/qk/90712X/201616/669613932.html
https://d.wanfangdata.com.cn/periodical/nygcxb201616016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LjtMw0CpdCcEB8RTLAuoBn1BKHrZjH5M21QoJTkXaW-WkSffUhaWVYG_cu4IDgsMiIfG4ctg9gBDq36QLf8GMk6ZBoBUgRZZjz4wnnmQ8djxjQm65GHQ8xpeXJdpiYjjEhabEYpkfpzA-25mPjsL37ovNB-zuFt9qNA5ru5amk7id7P3Rr-R_pAplIFf0kv0HyVZEoQDyIF9IQcKQ_pWMaSRo6NLQoxGnAafKp5EPtiGVHSyBNAwwozpU9QyMRwOGMCqkyjbokspuCawEZsKIBpGpAmCXRgqBQ6AssQouBO4ZLIABLFY3cE2twBYjhsSVYQDQgT1oN4DmQsNJlwYCKcgAqpZiN9iAJE2GIziAwK2MbhtgadgGOr6hs6qD-6hO2oCrLpYWjxsamoCtwvpKR-GCWapl1NtClsq11NurddHp0mGz1MKOrWoDulN4qf4-Viifm8ECm2hXTeB2P9GGa8nBr-G4hVBgAYHVe4qsubgG1CRrQdgNeysj1MF5dqUlHTyhwFl5J7sYe0CsJnnc8fCIgWpjEv6W5-YffcnQaUKX7N45iVmMDrK9Mx49ApvHuKCNMz0e1ayl_nlyrpzmtILinb1AGnvbF8nZYLRbhnpJLxFrcXiUf3x9_GyWz77mb97m7z8cH7xYfNnPZ6_y-afF0bsfB5-_z-f58_3Ft5eXSb8X9TubVnl4h5VwJawsgVGW2YnUqe-lWebqNLVBJ_iaZ9zJJPO0YFK7sRSaaVc7YAnDYJCwdKihC1LvCmmOd8bpVdLSOnUSO-YcTGuoUdpT0ne1EL5OPDdj62Sjeu7BwyJGy6AS0zpplT0xKL_cx4Px01HyJMauczAa0bUTCWyQMwhZLLtdJ83J7jS9AYboJL5ZSv4n3xJlWg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B2%B3%E5%A5%97%E7%81%8C%E5%8C%BA%E5%9C%9F%E5%A3%A4%E7%9B%90%E6%B8%8D%E5%8C%96%E5%BE%AE%E6%B3%A2%E9%9B%B7%E8%BE%BE%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E5%85%A8%E6%98%8E+%E6%88%90%E7%A7%8B%E6%98%8E+%E7%8E%8B%E5%AD%A6+%E6%9D%8E%E7%9B%B8%E5%90%9B&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=16&rft.spage=109&rft.epage=114&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.16.016&rft.externalDocID=669613932
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg