面向采摘机器人的棉花激光定位算法

为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采样间距,获取传感器至棉株表面点云的距离图像;以传感器至棉花上表面的最长距离0.9m为阈值对棉株距离图像进行二值化处理,去除地面背景;以棉枝的宽度0.01~0.02m为结构元素尺寸,对二值图进行形态学开运算,去除棉枝,提取棉花区域。用欧氏距离计算像素之间的相似度,用Cophenetic相关系数选择质心距离为类间距离,以呈45°夹角棉枝的最小纵向间距0.17m为阈值,对棉花距离图像进行层次聚类,分割粘连重叠的棉花,求取单朵棉花的三维坐标。结果...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 14; pp. 42 - 48
Main Author 王玲 刘思瑶 卢伟 顾宝兴 朱镕杰 朱宏超
Format Journal Article
LanguageChinese
Published 南京农业大学工学院,江苏省现代设施农业技术与装备工程实验室,南京 210031 2014
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.14.006

Cover

Abstract 为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采样间距,获取传感器至棉株表面点云的距离图像;以传感器至棉花上表面的最长距离0.9m为阈值对棉株距离图像进行二值化处理,去除地面背景;以棉枝的宽度0.01~0.02m为结构元素尺寸,对二值图进行形态学开运算,去除棉枝,提取棉花区域。用欧氏距离计算像素之间的相似度,用Cophenetic相关系数选择质心距离为类间距离,以呈45°夹角棉枝的最小纵向间距0.17m为阈值,对棉花距离图像进行层次聚类,分割粘连重叠的棉花,求取单朵棉花的三维坐标。结果表明,单朵棉花的识别率达96.67%,激光测距与手工测量结果之间的相关系数为0.9934。该研究为采摘机器人运动轨迹的规划提供了依据。
AbstractList 为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采样间距,获取传感器至棉株表面点云的距离图像;以传感器至棉花上表面的最长距离0.9m为阈值对棉株距离图像进行二值化处理,去除地面背景;以棉枝的宽度0.01~0.02m为结构元素尺寸,对二值图进行形态学开运算,去除棉枝,提取棉花区域。用欧氏距离计算像素之间的相似度,用Cophenetic相关系数选择质心距离为类间距离,以呈45°夹角棉枝的最小纵向间距0.17m为阈值,对棉花距离图像进行层次聚类,分割粘连重叠的棉花,求取单朵棉花的三维坐标。结果表明,单朵棉花的识别率达96.67%,激光测距与手工测量结果之间的相关系数为0.9934。该研究为采摘机器人运动轨迹的规划提供了依据。
TP242%S126; 为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采样间距,获取传感器至棉株表面点云的距离图像;以传感器至棉花上表面的最长距离0.9m为阈值对棉株距离图像进行二值化处理,去除地面背景;以棉枝的宽度0.01~0.02m为结构元素尺寸,对二值图进行形态学开运算,去除棉枝,提取棉花区域。用欧氏距离计算像素之间的相似度,用Cophenetic相关系数选择质心距离为类间距离,以呈45°夹角棉枝的最小纵向间距0.17m为阈值,对棉花距离图像进行层次聚类,分割粘连重叠的棉花,求取单朵棉花的三维坐标。结果表明,单朵棉花的识别率达96.67%,激光测距与手工测量结果之间的相关系数为0.9934。该研究为采摘机器人运动轨迹的规划提供了依据。
Abstract_FL In order to detect cotton’s position on a plant, a laser measurement experiment was designed, which included a crossgirder, and beneath which a model LMS291-S05 laser scanner produced by SICK Co., Ltd was fixed. Then the three-dimensional coordinate values of a single cotton plant can be measured with the devices mentioned above, and the acquired distance image was furthermore processed with computer image processing technology and pattern recognition theory and also with the agronomic characteristics of cotton taken into consideration. The sampling interval of the laser sensor on axis X and axis Y was both 0.004 m, and the sampled points formed a image that illustrated the distance from the laser sensor to the plant surface point cloud. For the purpose of removing the unneeded background of the plant in the image, the acquired plant distance image was first processed with binaryzation at the threshold value of 0.9 m, because that 0.9 m happened to be the longest distance from the laser sensor to the bottom part of the cotton plant surface according to the measured data. Observing the cotton plant’s morphological characters in the formerly binarized image, and it was not hard to find out that the cotton part in the image appeared to be circular with a large area, while the stalk part in the image was thin and tiny. On this basis, morphology opening operations were carried out toward the edge of the bimarized image with the structural elements from a circle whose radius ranges from 0.01 m to 0.02 m, which is the usual width of a cotton stalk, in order to remove the unneeded cotton stalk background and extract the binary image of cotton. After a series of comparisons among different distances namely Euclidean, Mahalanobis, Bullock, and Minkowski distances, and considering that the pixel gray value was one-dimensional data, the distance between pixels was found to be insensitive to computing methods. The similarity between pixels in the image was calculated with Euclidean distance, and the centroid distance was chosen, which was also decided among several other different distances like closest distance, longest distance, and sums of squares of deviations, as the between-class distance according to the Cophenetic correlation coefficient. And due to the fact that branches that were 45° to each other usually at least had two more branches in between them vertically, and the minimum vertical distance of two neighboring branches was about 0.05 m, correspondingly the minimum vertical distance of two pieces of overlapped cotton was about 0.17 m, so the cotton image clustered at the threshold of 0.17 m. Then the adhesion or overlapped cotton was segmented, and the three-dimensional coordinate values of a single cotton plant were acquired. The result of a series of experiments showed that the recognition rate of a single cotton plant was as high as 96.67%, the mean measurement error of the cotton was 0.015 m, and the relative error was 2.43%. The correlation coefficient between the laser measurement and manual measurement results was up to 0.9934, which was high enough to provide the picking robot with needed parameters that could be used to determine its movement locus.
Author 王玲 刘思瑶 卢伟 顾宝兴 朱镕杰 朱宏超
AuthorAffiliation 南京农业大学工学院江苏省现代设施农业技术与装备工程实验室,南京210031
AuthorAffiliation_xml – name: 南京农业大学工学院,江苏省现代设施农业技术与装备工程实验室,南京 210031
Author_FL Wang Ling
Gu Baoxing
Liu Siyao
Lu Wei
Zhu Hongchao
Zhu Rongjie
Author_FL_xml – sequence: 1
  fullname: Wang Ling
– sequence: 2
  fullname: Liu Siyao
– sequence: 3
  fullname: Lu Wei
– sequence: 4
  fullname: Gu Baoxing
– sequence: 5
  fullname: Zhu Rongjie
– sequence: 6
  fullname: Zhu Hongchao
Author_xml – sequence: 1
  fullname: 王玲 刘思瑶 卢伟 顾宝兴 朱镕杰 朱宏超
BookMark eNo9j71KA0EcxLeIYIx5CRGs7vzv920pwS8IWGgf7ja78YJuNIdoOgslJCCYQtSgjTZWAbELiC-Tu5i38CQiDAwMP2aYJVRwLWcQWsXgUyXUetOPk8T5GIB4IsDKJ4CZnwtAFFDxP19E5SSJI-CYSgCGiwhmzy_p7WDW7WaDh-xpnD6-Tcbj6fAqe-1999-zr8v0upeOhpPPm-noPvu4W0YLNjxKTPnPS2h_a_OgsuNV97Z3KxtVT3MlPCuVloJoyusgDQFe1xFhAaFM1jUOIxNyQZS1lBNMFVDDSGADZg01XEpDS2ht3noeOhu6Rq3ZOmu7fK_mOg19Ef3-wyx_l5Mrc1IftlzjNM7Zk3Z8HLY7NSGwCpTgnP4AMcNlEQ
ClassificationCodes TP242%S126
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2014.14.006
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Laser detection method for cotton orientation in robotic cotton picking
DocumentTitle_FL Laser detection method for cotton orientation in robotic cotton picking
EndPage 48
ExternalDocumentID nygcxb201414006
661989655
GrantInformation_xml – fundername: 江苏省自然科学基金青年基金; 中央高校基本科研业务费专项基金
  funderid: (BK20130696); (KYZ201325,KYZ201427)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c596-f79c762c35d07e205dcb2482347dc1abea5629ff35213903e428f84fe3e577e3
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:37:03 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 14
Keywords 激光测距
image processing
机器人
层次聚类
形态学运算
棉花
图像处理
laser measurement
cotton
robots
morphological operation
hierarchical cluster
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-f79c762c35d07e205dcb2482347dc1abea5629ff35213903e428f84fe3e577e3
Notes 11-2047/S
image processing;robots;cotton;laser measurement;morphological operation;hierarchical cluster
In order to detect cotton’s position on a plant, a laser measurement experiment was designed, which included a crossgirder, and beneath which a model LMS291-S05 laser scanner produced by SICK Co., Ltd was fixed. Then the three-dimensional coordinate values of a single cotton plant can be measured with the devices mentioned above, and the acquired distance image was furthermore processed with computer image processing technology and pattern recognition theory and also with the agronomic characteristics of cotton taken into consideration. The sampling interval of the laser sensor on axis X and axis Y was both 0.004 m, and the sampled points formed a image that illustrated the distance from the laser sensor to the plant surface point cloud. For the purpose of removing the unneeded background of the plant in the image, the acquired plant distance image was first processed with binaryzation at the threshold value
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201414006
chongqing_primary_661989655
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2014
Publisher 南京农业大学工学院,江苏省现代设施农业技术与装备工程实验室,南京 210031
Publisher_xml – name: 南京农业大学工学院,江苏省现代设施农业技术与装备工程实验室,南京 210031
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0538394
Snippet 为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采样间距,获取...
TP242%S126; 为了定位棉株上的棉花,设计了1个激光测距试验装置,利用计算机图像处理技术和模式识别理论结合棉花的农学特性测量了单朵棉花的三维坐标。以0.004m为X、Y轴的采...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 42
SubjectTerms 图像处理
层次聚类
形态学运算
机器人
棉花
激光测距
Title 面向采摘机器人的棉花激光定位算法
URI http://lib.cqvip.com/qk/90712X/201414/661989655.html
https://d.wanfangdata.com.cn/periodical/nygcxb201414006
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: Ingenta - open access journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkJiB7EJ8ao5GCfZOM8ume6jz27MwQPXoyQ27IzO7M5bWJMQHPyoIQIgjmIGvSiF08B8RYQfya7MeBHWFXTO7OG-IRl6Kmu6q4HO1XVVHczdsMNciG8breR-ZnCLTlBI8112CjyUGZaydxWW9wJ5u-J24tyceLE97GqpfW1dC7bOHZfyf9YFWBgV9wl-w-WrQYFALTBvvAEC8Pzr2zMY811ixuPx5Jrh2sXIZDewy8O8FUrajR5ZAhHcwMQga8ICbk2XAnEMT5XmseKK-hyERIlWAYBVEpSl-QmRnwkb3HVQnKE0FyRz8trLEeRLhHS1IiviFDyCEgkEcJEEY0J_Ac4Asxr5Mj-iKJiQqFG5NU9MK6ygmGZBvEBokbBTyilWmDqJtdJ3QMKANR4JE3LyheJ8eUPt174tGOhkKQ10zxeMCO4CcfkqUStIJq0DzwlyJNqktbAQgkpPeIqIUGgyx0J7dAUEdoGcIBfZBymDtAAx7BBSkSbEdwktguGQnIfBS1ZVeEvjAEqiUlJhjgkCODXPB_Vxk1I5h3rYUvfhs4vUNZD2b-1GHNe5TFnNgwqzz896mB9HWhysDjiXDUilkgKcLpYJVkHFlW5Z_9RL3uYIg6k83g-_pSHq2eTbMpErSipw3cXVygq_-LhKQ1BnQ5L18fLGKoSLixgkFTNYNk4Cd-eksdbv-MQj1FZWu737kNwSHv1-kWn3xsLKxfOsjM2H5w15Z_7HJvYWDrPTpveqj0TJ7_AnMN37wcvtg83N4fbr4dv9wZvPu7v7R3sPBl-2Pr27NPw6-PB063B7s7-l-cHu6-Gn19eZHeTeKE537AXnTQyqYNGEeoMYpLMl10nzD1HdrPUE8rzRdjN3E6adyBJ0UUBuRLka46fC08VShS5D1_SMPcvscn-cj-_zGbToisVBCwQtfvCE0Wa5niNYNoJVZq6sjPNZirJ2yvlcTZtiNC10oGU02zW6qJtP3IP2kdMd-XPKDPsFLbLZcqrbHJtdT2_BoH7Wnrd2vsHHp2p3w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E9%87%87%E6%91%98%E6%9C%BA%E5%99%A8%E4%BA%BA%E7%9A%84%E6%A3%89%E8%8A%B1%E6%BF%80%E5%85%89%E5%AE%9A%E4%BD%8D%E7%AE%97%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E7%8E%B2&rft.au=%E5%88%98%E6%80%9D%E7%91%B6&rft.au=%E5%8D%A2%E4%BC%9F&rft.au=%E9%A1%BE%E5%AE%9D%E5%85%B4&rft.date=2014&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%B1%9F%E8%8B%8F%E7%9C%81%E7%8E%B0%E4%BB%A3%E8%AE%BE%E6%96%BD%E5%86%9C%E4%B8%9A%E6%8A%80%E6%9C%AF%E4%B8%8E%E8%A3%85%E5%A4%87%E5%B7%A5%E7%A8%8B%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E5%8D%97%E4%BA%AC+210031&rft.issn=1002-6819&rft.issue=14&rft.spage=42&rft.epage=48&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.14.006&rft.externalDocID=nygcxb201414006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg