基于高光谱图像和遗传优化神经网络的茶叶病斑识别
为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快...
Saved in:
| Published in | 农业工程学报 Vol. 33; no. 22; pp. 200 - 207 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2017.22.026 |
Cover
| Abstract | 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考。 |
|---|---|
| AbstractList | TP391.41%S435.711; 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法.利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像.提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征.通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征.利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s.试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考. 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考。 |
| Abstract_FL | In order to achieve fast and efficient identification of tea diseases, the method of identifying tea diseases based on hyperspectral imaging technology was put forward. Four kinds of samples, including anthracnose, brown leaf spot disease, white star disease and healthy leaf, were collected in Pingshan tea plantation of Nanjing. Hyperspectral images of these samples, ranging from 358 to 1021 nm, were collected by hyperspectral imaging system. Among them, there were 80 samples of anthracnose, 72 samples of brown leaf spot disease, 80 samples of white star disease and 60 samples of healthy leaves. The region of interest (ROI) was an area of 200 pixels × 200 pixels near the tip of the tea leaf. The average spectral reflectance curves of the effective band of ROI were extracted to analyze the spectral characteristics. For the purpose of decreasing the redundancy of hyperspectral data, and reducing the computational complexity, this study used principal component analysis (PCA) to process the original hyperspectral images, and obtained 4 kinds of principal component images for the samples with the maximum weight coefficients, and the wavelengths of 762, 700, 721, 719 nm corresponded were taken as the characteristic wavelengths. The test showed that direct use of 481 bands for the first PCA resulted in low calculation speed and low processing efficiency. Thus, the second principal components with the 4 characteristic wavelengths were employed, and the second principal component image was selected as the feature image through comparing the characteristics of lesion and non lesion regions. To get the accurate extraction of tea leaf spots, OTSU algorithm for image segmentation was adopted, the optimal threshold of 4 kinds of leaf samples was determined, and finally the sample images containing only leaf lesion regions were extracted. After image segmentation, 3 color feature parameters were extracted from the single-channel first moments, second moments and three-order moments of each feature image based on color moments; and 20 texture parameters were calculated from the 4 directions (0 , 45, 90 and 135°) of energy, contrast, correlation, stability and entropy based on gray level co-occurrence matrix (GLCM); and 3 spectral characteristic parameters of relative spectral reflectance of sensitive bands, including 560, 640 and 780 nm, were obtained. The color feature, texture feature and spectral feature were optimized into 2 feature vectors, and the training set and test set were tested by BP (back propagation) neural network and support vector machine (SVM) respectively. A total of 188 samples, including 50 anthracnose samples, 48 brown spot disease samples, 50 white star disease samples and 40 healthy leaf samples, were randomly selected as the training set, and the remaining 104 samples were used as the test set. The recognition rates of the test set through the feature vector combination of color features and texture features were generally low by BP neural network and SVM, and the recognition rates of the test set through the feature vector combination of color feature, texture feature and spectral feature were higher, which were 89.59% and 86.67%for BP neural network and SVM respectively. In order to further improve the recognition rate and shorten the modeling time, genetic algorithm was used to reduce the dimensionality of the input feature. Through taking selection, crossover and mutation operations, 26-dimensional input features were optimized to 14 dimensions, and then BP neural network was to recognize the tea spots. Finally, the average recognition rate was raised to 94.17%, and the model setup time was also shortened from 6.6 to 1.7 s. The result shows that it is possible to achieve fast and efficient identification of tea diseases by the fusion of spectral information and image information with pattern recognition technique. The neural network identification model based on genetic algorithm optimization has the advantages of short modeling time and high recognition accuracy. |
| Author | 张帅堂 王紫烟 邹修国 钱燕 余磊 |
| AuthorAffiliation | 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京210031 |
| AuthorAffiliation_xml | – name: 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031 |
| Author_FL | Zou Xiuguo Qian Yan Yu Lei Zhang Shuaitang Wang Ziyan |
| Author_FL_xml | – sequence: 1 fullname: Zhang Shuaitang – sequence: 2 fullname: Wang Ziyan – sequence: 3 fullname: Zou Xiuguo – sequence: 4 fullname: Qian Yan – sequence: 5 fullname: Yu Lei |
| Author_xml | – sequence: 1 fullname: 张帅堂 王紫烟 邹修国 钱燕 余磊 |
| BookMark | eNo9j09LAkEYh-dgkJlfIohOu807szu7ewyxPyB08S6zs7u2UmO5RHmMMgwksYNKRXXp5KG6eFDr0zitfos2jC7vD97fw_vyrKCUrEofoXXAOoBjmZsVPYwiqQPGRGM2ODrBYOmE6JiwFEr_75dRNopCF5tALYwNSKO8eh5NR7fzQV81bmbvH-rhS1221V1rftGbTl6mk75qdePXp3jcjj878fgxvr-atYaqPYx7je9uZ_Z2rZqDVbQU8MPIz_5lBhW388XcrlbY39nLbRU0YTpMc5PpeSYxTYNTF3zOiWDccQ0gWBAImAc-BFgwYojA4bZBsecmHYDn-w4TNIM2FmfPuAy4LJcq1dOaTB6WZL0szt1fa0IS54RcW5DioCrLJ2HCHtfCI16rl5hFbcOkzKY_q111RQ |
| ClassificationCodes | TP391.41%S435.711 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11975/j.issn.1002-6819.2017.22.026 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network |
| DocumentTitle_FL | Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network |
| EndPage | 207 |
| ExternalDocumentID | nygcxb201722026 673845368 |
| GrantInformation_xml | – fundername: 国家博士后科学基金资助项目; 中央高校科研业务基本业务费资助项目; 江苏省农机基金资助项目 funderid: (2015M571782); (KYTZ201661); (GXZ14002) |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c596-bc59dd52554a3b1eaa2c6a9b4120c21f6d1e1f0c624cf9a8430db12011dee96c3 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:08:34 EDT 2025 Wed Feb 14 10:00:42 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 22 |
| Keywords | 算法 高光谱成像技术 主成分分析 algorithms optimization 优化 neural networks spectral characteristics hyperspectral imaging technology 神经网络 principal component analysis 光谱特征 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c596-bc59dd52554a3b1eaa2c6a9b4120c21f6d1e1f0c624cf9a8430db12011dee96c3 |
| Notes | 11-2047/S Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, Qian Yan, Yu Lei (College of Engineering/Jiangsu Key Laboratory of Intelligent Agricultural Equipment, Nanjing Agricultural University, NanJing 210031, China) algorithms; optimization; neural networks; hyperspectral imaging technology; principal component analysis; spectral characteristics In order to achieve fast and efficient identification of tea diseases, the method of identifying tea diseases based on hyperspectral imaging technology was put forward. Four kinds of samples, including anthracnose, brown leaf spot disease, white star disease and healthy leaf, were collected in Pingshan tea plantation of Nanjing. Hyperspectral images of these samples, ranging from 358 to 1 021 nm, were collected by hyperspectral imaging system. Among them, there were 80 samples of anthracnose, 72 samples of brown leaf spot disease, 80 samples of white star disease and 60 samples of healthy leaves. The region of interest (ROI) was an area of 200 pixels × 200 pixels near the tip |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_nygcxb201722026 chongqing_primary_673845368 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2017 |
| Publisher | 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031 |
| Publisher_xml | – name: 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.1773317 |
| Snippet | 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的... TP391.41%S435.711; 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法.利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 200 |
| SubjectTerms | 主成分分析 优化 光谱特征 神经网络 算法 高光谱成像技术 |
| Title | 基于高光谱图像和遗传优化神经网络的茶叶病斑识别 |
| URI | http://lib.cqvip.com/qk/90712X/201722/673845368.html https://d.wanfangdata.com.cn/periodical/nygcxb201722026 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAdIJLYvRg_BZRw8E57tpOO9OZY6fbhpjoCRNupO22y2lVhES5GcVoQiR4AKJGvXjioF44APprqAv_wvem3Y8A8Sshk8frm_c52_dmMjMl5KbwYOaTKFmXXLh1N1ZOXWZeWvdilUslXO5wPDt8566YvOfenubTI7XLQ7uWFuaTRrp47LmS_4kq4CCueEr2HyLbZwoIgCG-0EKEof2rGNOQUxVR7dPQxVaGNFTU11RJfCThT9FQUm1RbRtiTXVoHjlURgbDqAywl7Sp8gyfgPpWBVR8ABA09KgP9CECWpvuADSpsiuMChBQoIaLQqGXFqZ7ZAAP-YNKoUBu2EtSP6KypAFYDxfKBikMT9BEIlvAaKMDagL8NWL8JvUF8pQ-POoNH0Nb2sGxN4rl-K9kAxIP_YVcQHsXvYYYBxw6IAG3MKqV0SGiftjzYXOYBFyojQ8kmMiHl1HK86JmyBt7mj0Xg67B8Rb6oIk3ZFjf5j4GBEKM8UJbNBskwwgIjTvKkABDiCV6WZmRIdEoiNMgkEflgvednpNctAMt91BhNKt0AUf7VTnCfDNoDAboWXCMdSyAab5V5d4y62FaFLLKXVVaLO8nqX7-5dnxXpKzrKF6iZVfLT6aipXHTS5GEY2-CNxN6TUYa1js0BXopqjqPGmnjxOkYQwoTpBRhgttNTLq66aOBpW-jYsZ_VTE8EIHMZg5c9vB7zb0d3vhXgduNj5UapwktKfkrd-piFeuzN7vtB9CIWnO9XXyuNMeKkGnzpIz1dxxwi9fBOfIyOLseXLab89V9-dkF0hYfNze2359sLlRLL3a__qtePejeLZSvFk-eLq-t_tpb3ejWF7rfv7Q3Vnpfl_t7rzvvn2-v7xVrGx115d-rq3uf3lRvNy8SKaicCqYrFdfSqmnXIl6Am2rxRlMDWInsbM4ZqmIVeLazEqZnYuWndm5lQrmprmKpetYrcTG0r-VZUqkziVS69zvZFfIhMtyeEur1Em8zJUujzPLSbmXSy7t1MpbY2S874-ZB-WFOLg3FEgdIcfIROWhmeo1-WjmUESv_plknJxCuFzovEZq83ML2XUo_eeTG9Uw-AUqccLD |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%AB%98%E5%85%89%E8%B0%B1%E5%9B%BE%E5%83%8F%E5%92%8C%E9%81%97%E4%BC%A0%E4%BC%98%E5%8C%96%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%8C%B6%E5%8F%B6%E7%97%85%E6%96%91%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%B8%85%E5%A0%82&rft.au=%E7%8E%8B%E7%B4%AB%E7%83%9F&rft.au=%E9%82%B9%E4%BF%AE%E5%9B%BD&rft.au=%E9%92%B1%E7%87%95&rft.date=2017&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2F%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%99%BA%E8%83%BD%E5%8C%96%E5%86%9C%E4%B8%9A%E8%A3%85%E5%A4%87%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8D%97%E4%BA%AC%2C210031&rft.issn=1002-6819&rft.volume=33&rft.issue=22&rft.spage=200&rft.epage=207&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.22.026&rft.externalDocID=nygcxb201722026 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |