基于高光谱图像和遗传优化神经网络的茶叶病斑识别

为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 22; pp. 200 - 207
Main Author 张帅堂 王紫烟 邹修国 钱燕 余磊
Format Journal Article
LanguageChinese
Published 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.22.026

Cover

Abstract 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考。
AbstractList TP391.41%S435.711; 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法.利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像.提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征.通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征.利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s.试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考.
为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的高光谱图像。提取感兴趣区域敏感波段的相对光谱反射率作为光谱特征。通过2次主成分分析,确定第二次主成分分析后的第二主成分图像为特征图像,基于颜色矩和灰度共生矩阵提取特征图像的颜色特征和纹理特征。利用BP神经网络对颜色、纹理和光谱特征向量融合数据进行检验,识别率为89.59%;为提高识别率,提出遗传算法优化BP神经网络的方法,使病斑识别率提高到94.17%,建模时间也缩短至1.7 s。试验结果表明:高光谱成像技术和遗传优化神经网络可以快速准确的实现对茶叶病斑的识别,可为植保无人机超低空遥感病害监测提供参考。
Abstract_FL In order to achieve fast and efficient identification of tea diseases, the method of identifying tea diseases based on hyperspectral imaging technology was put forward. Four kinds of samples, including anthracnose, brown leaf spot disease, white star disease and healthy leaf, were collected in Pingshan tea plantation of Nanjing. Hyperspectral images of these samples, ranging from 358 to 1021 nm, were collected by hyperspectral imaging system. Among them, there were 80 samples of anthracnose, 72 samples of brown leaf spot disease, 80 samples of white star disease and 60 samples of healthy leaves. The region of interest (ROI) was an area of 200 pixels × 200 pixels near the tip of the tea leaf. The average spectral reflectance curves of the effective band of ROI were extracted to analyze the spectral characteristics. For the purpose of decreasing the redundancy of hyperspectral data, and reducing the computational complexity, this study used principal component analysis (PCA) to process the original hyperspectral images, and obtained 4 kinds of principal component images for the samples with the maximum weight coefficients, and the wavelengths of 762, 700, 721, 719 nm corresponded were taken as the characteristic wavelengths. The test showed that direct use of 481 bands for the first PCA resulted in low calculation speed and low processing efficiency. Thus, the second principal components with the 4 characteristic wavelengths were employed, and the second principal component image was selected as the feature image through comparing the characteristics of lesion and non lesion regions. To get the accurate extraction of tea leaf spots, OTSU algorithm for image segmentation was adopted, the optimal threshold of 4 kinds of leaf samples was determined, and finally the sample images containing only leaf lesion regions were extracted. After image segmentation, 3 color feature parameters were extracted from the single-channel first moments, second moments and three-order moments of each feature image based on color moments; and 20 texture parameters were calculated from the 4 directions (0 , 45, 90 and 135°) of energy, contrast, correlation, stability and entropy based on gray level co-occurrence matrix (GLCM); and 3 spectral characteristic parameters of relative spectral reflectance of sensitive bands, including 560, 640 and 780 nm, were obtained. The color feature, texture feature and spectral feature were optimized into 2 feature vectors, and the training set and test set were tested by BP (back propagation) neural network and support vector machine (SVM) respectively. A total of 188 samples, including 50 anthracnose samples, 48 brown spot disease samples, 50 white star disease samples and 40 healthy leaf samples, were randomly selected as the training set, and the remaining 104 samples were used as the test set. The recognition rates of the test set through the feature vector combination of color features and texture features were generally low by BP neural network and SVM, and the recognition rates of the test set through the feature vector combination of color feature, texture feature and spectral feature were higher, which were 89.59% and 86.67%for BP neural network and SVM respectively. In order to further improve the recognition rate and shorten the modeling time, genetic algorithm was used to reduce the dimensionality of the input feature. Through taking selection, crossover and mutation operations, 26-dimensional input features were optimized to 14 dimensions, and then BP neural network was to recognize the tea spots. Finally, the average recognition rate was raised to 94.17%, and the model setup time was also shortened from 6.6 to 1.7 s. The result shows that it is possible to achieve fast and efficient identification of tea diseases by the fusion of spectral information and image information with pattern recognition technique. The neural network identification model based on genetic algorithm optimization has the advantages of short modeling time and high recognition accuracy.
Author 张帅堂 王紫烟 邹修国 钱燕 余磊
AuthorAffiliation 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京210031
AuthorAffiliation_xml – name: 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031
Author_FL Zou Xiuguo
Qian Yan
Yu Lei
Zhang Shuaitang
Wang Ziyan
Author_FL_xml – sequence: 1
  fullname: Zhang Shuaitang
– sequence: 2
  fullname: Wang Ziyan
– sequence: 3
  fullname: Zou Xiuguo
– sequence: 4
  fullname: Qian Yan
– sequence: 5
  fullname: Yu Lei
Author_xml – sequence: 1
  fullname: 张帅堂 王紫烟 邹修国 钱燕 余磊
BookMark eNo9j09LAkEYh-dgkJlfIohOu807szu7ewyxPyB08S6zs7u2UmO5RHmMMgwksYNKRXXp5KG6eFDr0zitfos2jC7vD97fw_vyrKCUrEofoXXAOoBjmZsVPYwiqQPGRGM2ODrBYOmE6JiwFEr_75dRNopCF5tALYwNSKO8eh5NR7fzQV81bmbvH-rhS1221V1rftGbTl6mk75qdePXp3jcjj878fgxvr-atYaqPYx7je9uZ_Z2rZqDVbQU8MPIz_5lBhW388XcrlbY39nLbRU0YTpMc5PpeSYxTYNTF3zOiWDccQ0gWBAImAc-BFgwYojA4bZBsecmHYDn-w4TNIM2FmfPuAy4LJcq1dOaTB6WZL0szt1fa0IS54RcW5DioCrLJ2HCHtfCI16rl5hFbcOkzKY_q111RQ
ClassificationCodes TP391.41%S435.711
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.22.026
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network
DocumentTitle_FL Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network
EndPage 207
ExternalDocumentID nygcxb201722026
673845368
GrantInformation_xml – fundername: 国家博士后科学基金资助项目; 中央高校科研业务基本业务费资助项目; 江苏省农机基金资助项目
  funderid: (2015M571782); (KYTZ201661); (GXZ14002)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c596-bc59dd52554a3b1eaa2c6a9b4120c21f6d1e1f0c624cf9a8430db12011dee96c3
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 10:00:42 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 22
Keywords 算法
高光谱成像技术
主成分分析
algorithms
optimization
优化
neural networks
spectral characteristics
hyperspectral imaging technology
神经网络
principal component analysis
光谱特征
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-bc59dd52554a3b1eaa2c6a9b4120c21f6d1e1f0c624cf9a8430db12011dee96c3
Notes 11-2047/S
Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, Qian Yan, Yu Lei (College of Engineering/Jiangsu Key Laboratory of Intelligent Agricultural Equipment, Nanjing Agricultural University, NanJing 210031, China)
algorithms; optimization; neural networks; hyperspectral imaging technology; principal component analysis; spectral characteristics
In order to achieve fast and efficient identification of tea diseases, the method of identifying tea diseases based on hyperspectral imaging technology was put forward. Four kinds of samples, including anthracnose, brown leaf spot disease, white star disease and healthy leaf, were collected in Pingshan tea plantation of Nanjing. Hyperspectral images of these samples, ranging from 358 to 1 021 nm, were collected by hyperspectral imaging system. Among them, there were 80 samples of anthracnose, 72 samples of brown leaf spot disease, 80 samples of white star disease and 60 samples of healthy leaves. The region of interest (ROI) was an area of 200 pixels × 200 pixels near the tip
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201722026
chongqing_primary_673845368
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031
Publisher_xml – name: 南京农业大学工学院/江苏省智能化农业装备重点实验室,南京,210031
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1773317
Snippet 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法。利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、健康叶片等4类样本的...
TP391.41%S435.711; 为实现茶叶病害的快速高效识别,提出了基于高光谱成像技术和图像处理技术融合的茶叶病斑识别方法.利用高光谱成像技术采集了炭疽病、赤叶斑病、茶白星病、...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 200
SubjectTerms 主成分分析
优化
光谱特征
神经网络
算法
高光谱成像技术
Title 基于高光谱图像和遗传优化神经网络的茶叶病斑识别
URI http://lib.cqvip.com/qk/90712X/201722/673845368.html
https://d.wanfangdata.com.cn/periodical/nygcxb201722026
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAdIJLYvRg_BZRw8E57tpOO9OZY6fbhpjoCRNupO22y2lVhES5GcVoQiR4AKJGvXjioF44APprqAv_wvem3Y8A8Sshk8frm_c52_dmMjMl5KbwYOaTKFmXXLh1N1ZOXWZeWvdilUslXO5wPDt8566YvOfenubTI7XLQ7uWFuaTRrp47LmS_4kq4CCueEr2HyLbZwoIgCG-0EKEof2rGNOQUxVR7dPQxVaGNFTU11RJfCThT9FQUm1RbRtiTXVoHjlURgbDqAywl7Sp8gyfgPpWBVR8ABA09KgP9CECWpvuADSpsiuMChBQoIaLQqGXFqZ7ZAAP-YNKoUBu2EtSP6KypAFYDxfKBikMT9BEIlvAaKMDagL8NWL8JvUF8pQ-POoNH0Nb2sGxN4rl-K9kAxIP_YVcQHsXvYYYBxw6IAG3MKqV0SGiftjzYXOYBFyojQ8kmMiHl1HK86JmyBt7mj0Xg67B8Rb6oIk3ZFjf5j4GBEKM8UJbNBskwwgIjTvKkABDiCV6WZmRIdEoiNMgkEflgvednpNctAMt91BhNKt0AUf7VTnCfDNoDAboWXCMdSyAab5V5d4y62FaFLLKXVVaLO8nqX7-5dnxXpKzrKF6iZVfLT6aipXHTS5GEY2-CNxN6TUYa1js0BXopqjqPGmnjxOkYQwoTpBRhgttNTLq66aOBpW-jYsZ_VTE8EIHMZg5c9vB7zb0d3vhXgduNj5UapwktKfkrd-piFeuzN7vtB9CIWnO9XXyuNMeKkGnzpIz1dxxwi9fBOfIyOLseXLab89V9-dkF0hYfNze2359sLlRLL3a__qtePejeLZSvFk-eLq-t_tpb3ejWF7rfv7Q3Vnpfl_t7rzvvn2-v7xVrGx115d-rq3uf3lRvNy8SKaicCqYrFdfSqmnXIl6Am2rxRlMDWInsbM4ZqmIVeLazEqZnYuWndm5lQrmprmKpetYrcTG0r-VZUqkziVS69zvZFfIhMtyeEur1Em8zJUujzPLSbmXSy7t1MpbY2S874-ZB-WFOLg3FEgdIcfIROWhmeo1-WjmUESv_plknJxCuFzovEZq83ML2XUo_eeTG9Uw-AUqccLD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%AB%98%E5%85%89%E8%B0%B1%E5%9B%BE%E5%83%8F%E5%92%8C%E9%81%97%E4%BC%A0%E4%BC%98%E5%8C%96%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%8C%B6%E5%8F%B6%E7%97%85%E6%96%91%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%B8%85%E5%A0%82&rft.au=%E7%8E%8B%E7%B4%AB%E7%83%9F&rft.au=%E9%82%B9%E4%BF%AE%E5%9B%BD&rft.au=%E9%92%B1%E7%87%95&rft.date=2017&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2F%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%99%BA%E8%83%BD%E5%8C%96%E5%86%9C%E4%B8%9A%E8%A3%85%E5%A4%87%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8D%97%E4%BA%AC%2C210031&rft.issn=1002-6819&rft.volume=33&rft.issue=22&rft.spage=200&rft.epage=207&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.22.026&rft.externalDocID=nygcxb201722026
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg