地下换热管土结构冻胀变形模拟

以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理论建立数值模型,并结合试验验证该模型的有效性。利用模型对冻胀过程中岩土应力和管体变形特性进行分析,并考察管体降温速率(0.1、0.2、0.3℃/h)对上述2方面的影响。结果表明,岩土冻胀应力和管体变形程度均随冻结范围增大而增大,当冻结直径达到365 mm时,进水管流通面积减小约3.5%,出水管流通面积减小可超过4%,可见出水管的变形更为明显;冻结范围基本一致的情况下,换热管体缓慢降温可导致较大的岩土冻胀应力和出水管变形。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 18; pp. 118 - 124
Main Author 白莉 王有镗 高青 江彦 李兆强
Format Journal Article
LanguageChinese
Published 吉林建筑大学市政与环境工程学院,长春,130118%山东理工大学建筑工程学院,淄博,255049%吉林大学热能工程系,长春,130025%吉林医药食品工程有限公司,长春,130021 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.18.016

Cover

Abstract 以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理论建立数值模型,并结合试验验证该模型的有效性。利用模型对冻胀过程中岩土应力和管体变形特性进行分析,并考察管体降温速率(0.1、0.2、0.3℃/h)对上述2方面的影响。结果表明,岩土冻胀应力和管体变形程度均随冻结范围增大而增大,当冻结直径达到365 mm时,进水管流通面积减小约3.5%,出水管流通面积减小可超过4%,可见出水管的变形更为明显;冻结范围基本一致的情况下,换热管体缓慢降温可导致较大的岩土冻胀应力和出水管变形。
AbstractList 以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理论建立数值模型,并结合试验验证该模型的有效性。利用模型对冻胀过程中岩土应力和管体变形特性进行分析,并考察管体降温速率(0.1、0.2、0.3℃/h)对上述2方面的影响。结果表明,岩土冻胀应力和管体变形程度均随冻结范围增大而增大,当冻结直径达到365 mm时,进水管流通面积减小约3.5%,出水管流通面积减小可超过4%,可见出水管的变形更为明显;冻结范围基本一致的情况下,换热管体缓慢降温可导致较大的岩土冻胀应力和出水管变形。
S215; 以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理论建立数值模型,并结合试验验证该模型的有效性。利用模型对冻胀过程中岩土应力和管体变形特性进行分析,并考察管体降温速率(0.1、0.2、0.3℃/h)对上述2方面的影响。结果表明,岩土冻胀应力和管体变形程度均随冻结范围增大而增大,当冻结直径达到365 mm时,进水管流通面积减小约3.5%,出水管流通面积减小可超过4%,可见出水管的变形更为明显;冻结范围基本一致的情况下,换热管体缓慢降温可导致较大的岩土冻胀应力和出水管变形。
Abstract_FL The research background of this paper is the ground source heat pump (GSHP) technology applied in the field of agriculture energy conservation. The typical application is the GSHP used in greenhouse. However, the operating temperature of ground heat exchange pipe usually sustains below 0°C, when the GSHP runs during the winter night in cold regions. The sustaining low temperature can lead to pore water freeze and volume expansion in soil, which is called frost heave. In this paper, numerical simulation study was conducted to investigate the deformation of pipe-soil heat exchange structure due to frost heave. The numerical model, on the basis of porosity rate function, frozen soil constitutive equation, water content equation and phase change heat transfer theory, was built on the simulation platform ABAQUS and thermal-mechanical coupled subroutine compiled in Fortran. The semicircle soil computational domain and U-pipe were adopted in 2-D geometrical model. Based on the assumptions of this model, its application was restricted to:1) The initial soil is homogeneous and saturated;2) The difference of soils inside and outside borehole is neglected;3) The internal and external pressure of the pipe is uniform;4) The heat transfer takes place by conduction only;5) The operational mode of pipe is cooling or constant temperature. This numerical model was verified by frost heave experiment, and the verification included mainly soil freezing temperature field and pipe deformation strain. The result of verification showed that the temperature of center point in the freezing area had a maximum absolute error of 0.6°C, the freezing radius had a maximum relative error of 9.1%, and the pipe strains had a maximum relative error of 16.4%. This numerical model could be applied for the study of pipe-soil structure frost heave and deformation. By means of this model, the characteristics of soil stress and pipe deformation during soil frost heave were analyzed. The results showed that elliptical deformation appeared in the pipe cross-sections under the frost heave force, which manifested as the decreasing diameter in X-axis and the increasing diameter in Y-axis. The soil stress and pipes’ elliptical deformation increased with the extension of freezing area, under 1°C temperature difference between outlet and inlet pipe, the deformation of outlet pipe was greater than inlet pipe. Meanwhile, the deformation caused the pipe cross-sections’ circulating area gradual decrease, and the decrease rate showed linear increase with the extension of freezing area. Moreover, the influence of different pipe cooling rate (0.1°C/h, 0.2°C/h, 0.3°C/h) were also investigated. For almost the same freezing range, the lower cooling rate of heat exchange pipe could lead to larger soil stress and pipe deformation. It can be found from the simulation, when the soil freezing diameter increased to 365 mm, the circulating area decrease rates of inlet pipe were about 3.5% in the 3 different cooling rate, and the circulating area decrease rates of outlet pipe were 4.6%, 4% and 3.8%, respectively, in cooling rate of 0.1°C/h, 0.2°C/h and 0.3°C/h. By contrast, the cooling rate showed almost no influence on the inlet pipe deformation, but an obvious influence on the outlet pipe deformation. In order to reduce the impact on the pipe cross-sections for the same heat exchange, it is reasonable to adopt a rapid cooling mode.
Author 白莉 王有镗 高青 江彦 李兆强
AuthorAffiliation 吉林建筑大学市政与环境工程学院,长春130118 山东理工大学建筑工程学院,淄博255049 吉林大学热能工程系,长春130025 吉林医药食品工程有限公司,长春130021
AuthorAffiliation_xml – name: 吉林建筑大学市政与环境工程学院,长春,130118%山东理工大学建筑工程学院,淄博,255049%吉林大学热能工程系,长春,130025%吉林医药食品工程有限公司,长春,130021
Author_FL Jiang Yan
Li Zhaoqiang
Bai Li
Wang Youtang
Gao Qing
Author_FL_xml – sequence: 1
  fullname: Bai Li
– sequence: 2
  fullname: Wang Youtang
– sequence: 3
  fullname: Gao Qing
– sequence: 4
  fullname: Jiang Yan
– sequence: 5
  fullname: Li Zhaoqiang
Author_xml – sequence: 1
  fullname: 白莉 王有镗 高青 江彦 李兆强
BookMark eNo9j81Kw0AUhWdRwVr7EoIIQuK9yWQys5TiHxTcdB9m8lNTdKIJot0JFTdFXLhxUSztyo3iUii-jUl8DEcqbu6By8c5fGukoTMdE7KJYCMK39sZ2GlRaBsBHItxFLYDyGzktokGaf7_V0m7KFIFHro-AMUm2S4n718f4-p-Xo9e67dZOZnWi8fq-ba8W3yPbsqHp_JzXr3MqvF0nawk8rSI23_ZIr39vV7n0OoeHxx1drtW6Alm-ZJT8Cmy0AsVpSziiQQeSsqkw2MGMomUimLhcMWkL6mAxDggCJCRjypyW2RrWXsldSJ1Pxhkl7k2g4Ee9sNr9auG3BxDbizJ8CTT_YvUsOd5eibzYcCMHueu4O4P6pFh3A
ClassificationCodes S215
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.18.016
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Simulation on underground pipe-soil heat exchange structure deformation due to frost heave
DocumentTitle_FL Simulation on underground pipe-soil heat exchange structure deformation due to frost heave
EndPage 124
ExternalDocumentID nygcxb201618016
670088398
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 山东省优秀中青年科学家科研奖励基金项目
  funderid: (51376080); (BS2014SF013)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c596-7a8407416c5cb446d8fa08ca46a28e60afdbbde928b6a7a490f1191090ad71bd3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:14:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 18
Keywords 变形
热泵系统
heat pump systems
soil stress
pipe-soil structure
管土结构
deformation
pipe
frost heave
岩土应力
管体
冻胀
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-7a8407416c5cb446d8fa08ca46a28e60afdbbde928b6a7a490f1191090ad71bd3
Notes 11-2047/S
The research background of this paper is the ground source heat pump(GSHP) technology applied in the field of agriculture energy conservation. The typical application is the GSHP used in greenhouse. However, the operating temperature of ground heat exchange pipe usually sustains below 0°C, when the GSHP runs during the winter night in cold regions. The sustaining low temperature can lead to pore water freeze and volume expansion in soil, which is called frost heave. In this paper, numerical simulation study was conducted to investigate the deformation of pipe-soil heat exchange structure due to frost heave. The numerical model, on the basis of porosity rate function, frozen soil constitutive equation, water content equation and phase change heat transfer theory, was built on the simulation platform ABAQUS and thermal-mechanical coupled subroutine compiled in Fortran. The semicircle soil computational domain and U-pipe were adopted in 2-D geometrical model. Based on the assumptions of this model, its
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201618016
chongqing_primary_670088398
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 吉林建筑大学市政与环境工程学院,长春,130118%山东理工大学建筑工程学院,淄博,255049%吉林大学热能工程系,长春,130025%吉林医药食品工程有限公司,长春,130021
Publisher_xml – name: 吉林建筑大学市政与环境工程学院,长春,130118%山东理工大学建筑工程学院,淄博,255049%吉林大学热能工程系,长春,130025%吉林医药食品工程有限公司,长春,130021
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136531
Snippet 以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理论建立数...
S215; 以地源热泵技术在农业节能领域中的应用为研究背景,针对地下换热管土结构冻胀变形问题开展数值模拟研究,基于孔隙增长率函数、冻土本构方程、含水量方程和相变传热理...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 118
SubjectTerms 冻胀
变形
岩土应力
热泵系统
管体
管土结构
Title 地下换热管土结构冻胀变形模拟
URI http://lib.cqvip.com/qk/90712X/201618/670088398.html
https://d.wanfangdata.com.cn/periodical/nygcxb201618016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7iBkQP4hM1KjnYF2HWefXr2DM7SxD0FCG3ZV67OW00JqA5CREvQTx48RAMycmL4lEI_ht348EfYVVP7-wmm8QohKHTXVP11WOnupt-EHJfpV23C11lJ4MfkhOKoHBUEeROJhTUZyITZn_F4yd84Wn4aIktzTR-T6xaWl_LmvnGsftK_serUAd-xV2y_-DZmilUQBn8C0_wMDzP5GOaMKpiGrk0CWkkqYxowqlsUe3TRFAZUN3Cgk6o9iyxamNNFFEVILFKqAyxSXKsTCS-JV1T06ZKYiGqGHKqpeHDUZA6tCDQcgD-FRKlzYsgmhkAFTaGeDQ3HDQ0jbyNJEqhHJQPiNRkC1YYxYC7VDRRVIEmYkyiqI4MVGhpUeWPW0Anz2hcKcEn5ziqzZcmHo1pXMPcWEQJ80ZEI23QA1NjPh1SLSbUYMboxjQK1G6P3JBY2NpIBtuBTU8zh0LtgcyPrXbIiqNKQO_HHn4eJfWZYeLhn7VybCznounH_I_FOaXLmcBwJLPx0UKn-jEMDmG4Z8FMG-2o6DoKTWChh6dFQzgGiPBk9V28PesEiTIeBW7LGBzAB9bnEOLyWGUnY0khT-QDmGMb92Db08B4E6kccz2XNiHbXD-eS1-vE3-VuT37X9UJ9KqN_dP9CyWY6WCgiGYtApeI8qYnm6PYPXyEe_9VL3-Z-eZyCnicI7M-zh42yKyOWlF7PHzxcIamzq8-nlLBx9MBzAvwMop6CRsu4GBmNYeFcZ7QEciHp0HEc2SWV_q959A7NpsV-92035voVy9eJpfsgHheV1-3K2RmY_kquah7q_ZQoPIaeTDY_vbz-9bw3d7B5peDr7uD7Z2D_Q_DT28Gb_d_bb4evP84-LE3_Lw73Nq5ThbbyWK84Ng7XpycKe6IVIZmUJizPAtDXshu6so8DXnqy5K7abfIsqJUvsx4KtIQEgieSOkqNy2ElxXBDdLor_TLm2Qej7bMBVDnrBuGIs_cMlAsdwtW-EGp5C0yVyvdeVYd5dPBTYoSxojQOm_N0LEf-BedI267_XeSOXIBy9UU7R3SWFtdL-_CoGUtu2d9_QcWvtwN
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9C%B0%E4%B8%8B%E6%8D%A2%E7%83%AD%E7%AE%A1%E5%9C%9F%E7%BB%93%E6%9E%84%E5%86%BB%E8%83%80%E5%8F%98%E5%BD%A2%E6%A8%A1%E6%8B%9F&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%99%BD%E8%8E%89&rft.au=%E7%8E%8B%E6%9C%89%E9%95%97&rft.au=%E9%AB%98%E9%9D%92&rft.au=%E6%B1%9F%E5%BD%A6&rft.date=2016&rft.pub=%E5%90%89%E6%9E%97%E5%BB%BA%E7%AD%91%E5%A4%A7%E5%AD%A6%E5%B8%82%E6%94%BF%E4%B8%8E%E7%8E%AF%E5%A2%83%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%98%A5%2C130118%25%E5%B1%B1%E4%B8%9C%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B7%84%E5%8D%9A%2C255049%25%E5%90%89%E6%9E%97%E5%A4%A7%E5%AD%A6%E7%83%AD%E8%83%BD%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E9%95%BF%E6%98%A5%2C130025%25%E5%90%89%E6%9E%97%E5%8C%BB%E8%8D%AF%E9%A3%9F%E5%93%81%E5%B7%A5%E7%A8%8B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E9%95%BF%E6%98%A5%2C130021&rft.issn=1002-6819&rft.volume=32&rft.issue=18&rft.spage=118&rft.epage=124&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.18.016&rft.externalDocID=nygcxb201618016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg