基于深度图像和BP神经网络的肉鸡体质量估测模型

针对现阶段肉鸡称重复杂、福利降低问题,提出了一种基于深度图像的肉鸡体质量估测模型建立方法。该方法首先对深度图像进行图像预处理,再利用数值积分法提取出目标特征,并结合BP神经网络,实现群体肉鸡的体质量估测。估测结果与实际测量结果进行对比,研究结果表明两者的均方根误差为0.048,平均相对误差为3.3%,绝对误差在0.001 0~0.068 2 kg范围内,最优拟合度为0.994 3,具有较好的推广应用价值。该方法较为准确的估测出肉鸡体质量,并为用机器视觉的方法估测肉鸡生长发育规律提供了新的思路。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 13; pp. 199 - 205
Main Author 王琳 孙传恒 李文勇 吉增涛 张翔 王以忠 雷鹏 杨信廷
Format Journal Article
LanguageChinese
Published 天津科技大学电子信息与自动化学院,天津 300222%国家农业信息化工程技术研究中心/农业部农业信息技术重点实验室/北京市农业物联网工程技术研究中心,北京,100097%天津科技大学电子信息与自动化学院,天津,300222 2017
国家农业信息化工程技术研究中心/农业部农业信息技术重点实验室/北京市农业物联网工程技术研究中心,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.13.026

Cover

More Information
Summary:针对现阶段肉鸡称重复杂、福利降低问题,提出了一种基于深度图像的肉鸡体质量估测模型建立方法。该方法首先对深度图像进行图像预处理,再利用数值积分法提取出目标特征,并结合BP神经网络,实现群体肉鸡的体质量估测。估测结果与实际测量结果进行对比,研究结果表明两者的均方根误差为0.048,平均相对误差为3.3%,绝对误差在0.001 0~0.068 2 kg范围内,最优拟合度为0.994 3,具有较好的推广应用价值。该方法较为准确的估测出肉鸡体质量,并为用机器视觉的方法估测肉鸡生长发育规律提供了新的思路。
Bibliography:11-2047/S
image processing; models; animals; depth image; feature extraction; broiler; body mass estimation
Body weight is one of the main growth indices in broiler production, which is a comprehensive parameter in the broiler growth. The most common method to measure weight is manual operation, in which the broiler is captured and placed on the electronic scale. This method decreases animal's welfare and increases labor; in addition, it also will affect the yield and quality, and even cause the death of broilers. It can't be applied in commercial farms. The Kinect 3D (three-dimensional) camera which can measure the phenotype features with a non-invasive way has been applied into animal's weight acquisition. A broiler quality estimation method based on depth image was proposed in this paper. Yuncheng partridge shank chickens were chosen as research objects and an image collection system was constructed in a local farm. In this experiment, 150 broilers were selected randomly and the duration was the lifespan, 30
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2017.13.026