基于遥感与随机森林算法的陕西省土壤有机质空间预测

遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分...

Full description

Saved in:
Bibliographic Details
Published in自然资源学报 Vol. 32; no. 6; pp. 1074 - 1086
Main Author 齐雁冰 王茵茵 陈洋 刘姣姣 张亮亮
Format Journal Article
LanguageChinese
Published 西北农林科技大学资源环境学院,陕西杨凌712100 2017
农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100
Subjects
Online AccessGet full text
ISSN1000-3037
DOI10.11849/zrzyxb.20160623

Cover

Abstract 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg^-1。基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大。基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3 g·kg^-1,预测值与实测值的相关系数在0.7以上。高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降。
AbstractList S158; 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视.论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算.结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg-1,黄土高原南部处于中等水平,大部分在16~25 g·kg“之间,关中平原和汉中低山丘陵区含量偏低,大部分在13~25 g·kg-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg-1.基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大.基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3g·kg-1,预测值与实测值的相关系数在0.7以上.高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降.
遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg^-1。基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大。基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3 g·kg^-1,预测值与实测值的相关系数在0.7以上。高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降。
Abstract_FL There exists deviation of predication of soil organic matter (SOM) with observed data in special local topography units.The accuracy of SOM predication can be improved by combining observed data and remote sensing (RS) data,especially for SOM predication in large scale.In this study,AWIFS (Advanced Wide Field Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) data,whose spatial resolution are 56 and 250 meters respectively,were combined with observed sample data to predict the spatial distribution of SOM in Shaanxi Province with RF (Random Forest) model.The spatial distribution of SOM in six types of topographical units were summarized,and the prediction accuracies of SOM based on RF model and OK (Ordinary Kriging) model were compared.The results indicated that the spatial differentiation of SOM is obvious in north-south direction in Shaanxi Province.It is the highest in Qinling and Daba mountain areas with SOM content higher than 25 g· kg-1,and it is medium high in the south of Loess Plateau area with the SOM content 22-30 g · kg-1.The content of SOM is lower in Guanzhong Plain and Hanzhong basin areas with SOM content among 13-25 g·kg-1,while it is the lowest in north Loess Plateau and the blown-sand areas with SOM content less than 10 g· kg-1.The prediction results based on AWIFS data (with higher spatial resolution) were better than those based on MODIS (with lower spatial resolution) data.The acquired data of images has little influence on SOM prediction.It is shown that the predicted value of SOM is a bit lower in autumn than in spring.With different percentages of sampling,the SOM prediction based on RF model is always better than that based on Ordinary Kriging model.The prediction accuracy in this study is reliable,because the mean error in independent validation set is no more than 3 g· kg-1,and the correlation coefficient of the predicted values and the observed values are higher than 0.7.Elevation is the most importance factor influencing SOM prediction in Shaanxi Province.When the spatial resolution of RS data decreases,the importance of geographic location of sampling points increase and the importance of vegetation decrease.
Author 齐雁冰 王茵茵 陈洋 刘姣姣 张亮亮
AuthorAffiliation 西北农林科技大学资源环境学院,陕西杨凌712100 农业部西北植物营养与农业环境重点实验室,陕西杨凌712100
AuthorAffiliation_xml – name: 西北农林科技大学资源环境学院,陕西杨凌712100;农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100
Author_FL QI Yan-bing
CHEN Yang
LIU Jiao-jiao
WANG Yin-yin
ZHANG Liang-liang
Author_FL_xml – sequence: 1
  fullname: QI Yan-bing
– sequence: 2
  fullname: WANG Yin-yin
– sequence: 3
  fullname: CHEN Yang
– sequence: 4
  fullname: LIU Jiao-jiao
– sequence: 5
  fullname: ZHANG Liang-liang
Author_xml – sequence: 1
  fullname: 齐雁冰 王茵茵 陈洋 刘姣姣 张亮亮
BookMark eNotj89LAkEAhedgkJn3zl06rc2vnd05hlQGQhfvMjO7mlFrrUTpTfASgZ1kSZaETKiLlwxiL_0zOuv-Fw3Y6fHg4z2-HZAL2oEPwB6CJYRcyg97Ya_7IEsYIgYZJjmQRxBCi0DibINip9OSproM25DmQWU1SZbJMOvP9GCy_Blm42cdJ3o6169ROo_01ygdD7KX0Xr2m8b9VTxZTd91_GiY9eIj_UyyaJG9DfT30y7Yaoirjl_8zwKonRzXyhWren56Vj6qWsrmzKKqwSVBjFPoUuJjQR3mYduTrm9LJYlHPYUoRYopYSvKseP6yIaSC9cTTEhSAAeb2XsRNETQrF-278LAHNY32sbagcyoG3J_Q6qLdtC8bRn2Jmxdi7BbZw42-pwi8gdmfnXR
ClassificationCodes S158
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11849/zrzyxb.20160623
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province
DocumentTitle_FL Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province
EndPage 1086
ExternalDocumentID zrzyxb201706016
672625941
GrantInformation_xml – fundername: 国家科技基础性工作专项项目(2014FY110200A08).
  funderid: (Special Foundation of National Science and Technology Basic Work Project of China,2014FY110200A08.)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c596-4cf9b316940843e2a476d25db8e5bcb3d4dc1441c6ca5c49278e150b9a8da6ab3
ISSN 1000-3037
IngestDate Thu May 29 04:06:10 EDT 2025
Wed Feb 14 10:00:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 多分辨率遥感数据
陕西省
soil organic matter prediction
multi-resolution remote sensing data
Shaanxi Province
土壤有机质预测
random forest algorithm
随机森林算法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-4cf9b316940843e2a476d25db8e5bcb3d4dc1441c6ca5c49278e150b9a8da6ab3
Notes multi-resolution remote sensing data; random forest algorithm; soil organic matter prediction; Shaanxi Province
There exists deviation of predication of soil organic matter(SOM) with observed data in special local topography units. The accuracy of SOM predication can be improved by combining observed data and remote sensing(RS) data, especially for SOM predication in large scale. In this study, AWIFS(Advanced Wide Field Sensor) and MODIS(Moderate Resolution Imaging Spectroradiometer) data, whose spatial resolution are 56 and 250 meters respectively, were combined with observed sample data to predict the spatial distribution of SOM in Shaanxi Province with RF(Random Forest) model. The spatial distribution of SOM in six types of topographical units were summarized, and the prediction accuracies of SOM based on RF model and OK(Ordinary Kriging) model were compared. The results indicated that the spatial differentiation of SOM is obvious in north-south direction in Shaanxi Province. It is the highest in Qinling an
PageCount 13
ParticipantIDs wanfang_journals_zrzyxb201706016
chongqing_primary_672625941
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自然资源学报
PublicationTitleAlternate Journal of Natural Resources
PublicationTitle_FL Journal of Natural Resources
PublicationYear 2017
Publisher 西北农林科技大学资源环境学院,陕西杨凌712100
农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100
Publisher_xml – name: 农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100
– name: 西北农林科技大学资源环境学院,陕西杨凌712100
SSID ssib000862504
ssib012295010
ssib051375359
ssib000269812
ssib006567844
ssib017476917
ssib026336868
ssib036434365
Score 2.0887446
Snippet 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基...
S158; 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视.论文运用随机森林(Random Forest,RF)算法,基...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1074
SubjectTerms 土壤有机质预测
多分辨率遥感数据
陕西省
随机森林算法
Title 基于遥感与随机森林算法的陕西省土壤有机质空间预测
URI http://lib.cqvip.com/qk/96143X/201706/672625941.html
https://d.wanfangdata.com.cn/periodical/zrzyxb201706016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1000-3037
  databaseCode: ABDBF
  dateStart: 20161101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 20200531
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib026336868
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0OrjwgWBAFEKqAf2GPBjn0fbcVQhwalIvUW2Y7enFEoqldwq9YKQyqmqqCIqUSrBpReKhHLhxpe0TvMXzKydZgmVeFyszezszM6M4519zVjWgzylNGvlSY0rl9doIkQtzjHXS5y5Hs1zO9E7pk-e8sVn9PEyW56a_mGcWtroJA_T7qX3Sv7HqgADu-It2X-w7AVRAEAZ7AtPsDA8_8rGJGJENUjgk4jiU0YkUuAbEp-RiBNJsRarZFWlAKeBVSrUrTjxPeJHGhIRJUgk8CcWOAk8ohhCsBXVzZWGSKQfNHRViOywG6HmxTRBWrGQyuAlSUCJLzULpSEKGQWasu9qFsCUERmYHjM2lNDEx4aAE3BNio3wfaJszbdOfK6l9qF7o_cIaQd1jQLcgqqzEtrZYxSB2pGB5hQi6VHBpAKyS6k50lEPdQ1DsJK6CwKlHxXM9ZTy4qh-9w31MeSCutY9AjX9YgZQrlPJI0sJKQLHov6uBS2IX5oBFOoZyFoAALrhZYYEvnVtG4a6lqHAgG-2MWBhZABwQ4Q5oo1XjCeGJzx9a7g6mGXr8mFUUgxD213vvtpM8PwjTHPLa-ETwclLDLcMwuTwaWvWFZzCSDPrB_WgYexnc2UGhsOJtJlXAGYVQo4dTQeTzNtjx9TlnseNvA4exwvR4_155ngw7daZES8UMjqTAKI8mhAE46isrrVXXoB3qC_rtfO4vWL4lUvXrKvVhHDBL__d162p7uoNa_HsoH_a3xluHRXbB6ffdob7b4tevzg8Lt7vDY73ii-7g_3t4bvd86Pvg97WWe_g7PBj0XsNOOcnnwaf-8O9k-GH7eLrm5vWUiNaChdrVc6TWsoUfCzTXCWewxW1JfUyN6aCt1zWSmTGkjTxWrSV4hJIytOYpVS5QmYwpUtULFsxjxPvljXTXmtnt60FO81Y7ODBiTinTNgqYVLmPEPEXHrZnDV_oYTm8zK0TZMLFxdEqDNnLVRqaVYfvJfNCWPf-TPKvHUFy-WS5V1rprO-kd0DJ76T3K_ekJ_NcbwW
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%81%A5%E6%84%9F%E4%B8%8E%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97%E7%AE%97%E6%B3%95%E7%9A%84%E9%99%95%E8%A5%BF%E7%9C%81%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E7%A9%BA%E9%97%B4%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%87%AA%E7%84%B6%E8%B5%84%E6%BA%90%E5%AD%A6%E6%8A%A5&rft.au=%E9%BD%90%E9%9B%81%E5%86%B0&rft.au=%E7%8E%8B%E8%8C%B5%E8%8C%B5&rft.au=%E9%99%88%E6%B4%8B&rft.au=%E5%88%98%E5%A7%A3%E5%A7%A3&rft.date=2017&rft.pub=%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E6%9D%A8%E5%87%8C712100&rft.issn=1000-3037&rft.volume=32&rft.issue=6&rft.spage=1074&rft.epage=1086&rft_id=info:doi/10.11849%2Fzrzyxb.20160623&rft.externalDocID=zrzyxb201706016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F96143X%2F96143X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrzyxb%2Fzrzyxb.jpg