基于遥感与随机森林算法的陕西省土壤有机质空间预测
遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分...
Saved in:
Published in | 自然资源学报 Vol. 32; no. 6; pp. 1074 - 1086 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
西北农林科技大学资源环境学院,陕西杨凌712100
2017
农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100 |
Subjects | |
Online Access | Get full text |
ISSN | 1000-3037 |
DOI | 10.11849/zrzyxb.20160623 |
Cover
Abstract | 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg^-1。基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大。基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3 g·kg^-1,预测值与实测值的相关系数在0.7以上。高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降。 |
---|---|
AbstractList | S158; 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视.论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算.结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg-1,黄土高原南部处于中等水平,大部分在16~25 g·kg“之间,关中平原和汉中低山丘陵区含量偏低,大部分在13~25 g·kg-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg-1.基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大.基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3g·kg-1,预测值与实测值的相关系数在0.7以上.高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降. 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基于AWIFS(分辨率56 m)和MODIS(分辨率250 m)遥感数据及501个实测样点数据对陕西省土壤有机质空间分布状况进行预测,并对预测精度进行估算。结果表明陕西省土壤有机质含量以南部的秦岭山地区和大巴山区为最高,土壤有机质含量大于25 g·kg^-1,黄土高原南部处于中等水平,大部分在16-25 g·kg^-1之间,关中平原和汉中低山丘陵区含量偏低,大部分在13-25 g·kg^-1,而黄土高原北部和风沙滩区含量大部分低于10 g·kg^-1。基于AWIFS影像的预测效果要优于MODIS影像,成像日期对有机质预测的影响不大。基于RF模型的土壤有机质预测精度在设定的不同抽样百分比条件下,独立验证数据集的平均误差大部分不超过3 g·kg^-1,预测值与实测值的相关系数在0.7以上。高程是影响土壤有机质预测的最重要因子,当影像的分辨率降低时,样点分布的地理经纬度和坡度对土壤有机质预测的影响上升,植被因子的影响程度下降。 |
Abstract_FL | There exists deviation of predication of soil organic matter (SOM) with observed data in special local topography units.The accuracy of SOM predication can be improved by combining observed data and remote sensing (RS) data,especially for SOM predication in large scale.In this study,AWIFS (Advanced Wide Field Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) data,whose spatial resolution are 56 and 250 meters respectively,were combined with observed sample data to predict the spatial distribution of SOM in Shaanxi Province with RF (Random Forest) model.The spatial distribution of SOM in six types of topographical units were summarized,and the prediction accuracies of SOM based on RF model and OK (Ordinary Kriging) model were compared.The results indicated that the spatial differentiation of SOM is obvious in north-south direction in Shaanxi Province.It is the highest in Qinling and Daba mountain areas with SOM content higher than 25 g· kg-1,and it is medium high in the south of Loess Plateau area with the SOM content 22-30 g · kg-1.The content of SOM is lower in Guanzhong Plain and Hanzhong basin areas with SOM content among 13-25 g·kg-1,while it is the lowest in north Loess Plateau and the blown-sand areas with SOM content less than 10 g· kg-1.The prediction results based on AWIFS data (with higher spatial resolution) were better than those based on MODIS (with lower spatial resolution) data.The acquired data of images has little influence on SOM prediction.It is shown that the predicted value of SOM is a bit lower in autumn than in spring.With different percentages of sampling,the SOM prediction based on RF model is always better than that based on Ordinary Kriging model.The prediction accuracy in this study is reliable,because the mean error in independent validation set is no more than 3 g· kg-1,and the correlation coefficient of the predicted values and the observed values are higher than 0.7.Elevation is the most importance factor influencing SOM prediction in Shaanxi Province.When the spatial resolution of RS data decreases,the importance of geographic location of sampling points increase and the importance of vegetation decrease. |
Author | 齐雁冰 王茵茵 陈洋 刘姣姣 张亮亮 |
AuthorAffiliation | 西北农林科技大学资源环境学院,陕西杨凌712100 农业部西北植物营养与农业环境重点实验室,陕西杨凌712100 |
AuthorAffiliation_xml | – name: 西北农林科技大学资源环境学院,陕西杨凌712100;农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100 |
Author_FL | QI Yan-bing CHEN Yang LIU Jiao-jiao WANG Yin-yin ZHANG Liang-liang |
Author_FL_xml | – sequence: 1 fullname: QI Yan-bing – sequence: 2 fullname: WANG Yin-yin – sequence: 3 fullname: CHEN Yang – sequence: 4 fullname: LIU Jiao-jiao – sequence: 5 fullname: ZHANG Liang-liang |
Author_xml | – sequence: 1 fullname: 齐雁冰 王茵茵 陈洋 刘姣姣 张亮亮 |
BookMark | eNotj89LAkEAhedgkJn3zl06rc2vnd05hlQGQhfvMjO7mlFrrUTpTfASgZ1kSZaETKiLlwxiL_0zOuv-Fw3Y6fHg4z2-HZAL2oEPwB6CJYRcyg97Ya_7IEsYIgYZJjmQRxBCi0DibINip9OSproM25DmQWU1SZbJMOvP9GCy_Blm42cdJ3o6169ROo_01ygdD7KX0Xr2m8b9VTxZTd91_GiY9eIj_UyyaJG9DfT30y7Yaoirjl_8zwKonRzXyhWren56Vj6qWsrmzKKqwSVBjFPoUuJjQR3mYduTrm9LJYlHPYUoRYopYSvKseP6yIaSC9cTTEhSAAeb2XsRNETQrF-278LAHNY32sbagcyoG3J_Q6qLdtC8bRn2Jmxdi7BbZw42-pwi8gdmfnXR |
ClassificationCodes | S158 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11849/zrzyxb.20160623 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province |
DocumentTitle_FL | Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province |
EndPage | 1086 |
ExternalDocumentID | zrzyxb201706016 672625941 |
GrantInformation_xml | – fundername: 国家科技基础性工作专项项目(2014FY110200A08). funderid: (Special Foundation of National Science and Technology Basic Work Project of China,2014FY110200A08.) |
GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c596-4cf9b316940843e2a476d25db8e5bcb3d4dc1441c6ca5c49278e150b9a8da6ab3 |
ISSN | 1000-3037 |
IngestDate | Thu May 29 04:06:10 EDT 2025 Wed Feb 14 10:00:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 多分辨率遥感数据 陕西省 soil organic matter prediction multi-resolution remote sensing data Shaanxi Province 土壤有机质预测 random forest algorithm 随机森林算法 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c596-4cf9b316940843e2a476d25db8e5bcb3d4dc1441c6ca5c49278e150b9a8da6ab3 |
Notes | multi-resolution remote sensing data; random forest algorithm; soil organic matter prediction; Shaanxi Province There exists deviation of predication of soil organic matter(SOM) with observed data in special local topography units. The accuracy of SOM predication can be improved by combining observed data and remote sensing(RS) data, especially for SOM predication in large scale. In this study, AWIFS(Advanced Wide Field Sensor) and MODIS(Moderate Resolution Imaging Spectroradiometer) data, whose spatial resolution are 56 and 250 meters respectively, were combined with observed sample data to predict the spatial distribution of SOM in Shaanxi Province with RF(Random Forest) model. The spatial distribution of SOM in six types of topographical units were summarized, and the prediction accuracies of SOM based on RF model and OK(Ordinary Kriging) model were compared. The results indicated that the spatial differentiation of SOM is obvious in north-south direction in Shaanxi Province. It is the highest in Qinling an |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zrzyxb201706016 chongqing_primary_672625941 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 自然资源学报 |
PublicationTitleAlternate | Journal of Natural Resources |
PublicationTitle_FL | Journal of Natural Resources |
PublicationYear | 2017 |
Publisher | 西北农林科技大学资源环境学院,陕西杨凌712100 农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100 |
Publisher_xml | – name: 农业部西北植物营养与农业环境重点实验室,陕西杨凌712100%西北农林科技大学资源环境学院,陕西杨凌,712100 – name: 西北农林科技大学资源环境学院,陕西杨凌712100 |
SSID | ssib000862504 ssib012295010 ssib051375359 ssib000269812 ssib006567844 ssib017476917 ssib026336868 ssib036434365 |
Score | 2.0887446 |
Snippet | 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视。论文运用随机森林(Random Forest,RF)算法,基... S158; 遥感数据作为反映土壤组成结构及植被生长状况的数据源,借助辅助环境因子的土壤属性预测在数字土壤制图中日益受到重视.论文运用随机森林(Random Forest,RF)算法,基... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1074 |
SubjectTerms | 土壤有机质预测 多分辨率遥感数据 陕西省 随机森林算法 |
Title | 基于遥感与随机森林算法的陕西省土壤有机质空间预测 |
URI | http://lib.cqvip.com/qk/96143X/201706/672625941.html https://d.wanfangdata.com.cn/periodical/zrzyxb201706016 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1000-3037 databaseCode: ABDBF dateStart: 20161101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 20200531 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssib026336868 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0OrjwgWBAFEKqAf2GPBjn0fbcVQhwalIvUW2Y7enFEoqldwq9YKQyqmqqCIqUSrBpReKhHLhxpe0TvMXzKydZgmVeFyszezszM6M4519zVjWgzylNGvlSY0rl9doIkQtzjHXS5y5Hs1zO9E7pk-e8sVn9PEyW56a_mGcWtroJA_T7qX3Sv7HqgADu-It2X-w7AVRAEAZ7AtPsDA8_8rGJGJENUjgk4jiU0YkUuAbEp-RiBNJsRarZFWlAKeBVSrUrTjxPeJHGhIRJUgk8CcWOAk8ohhCsBXVzZWGSKQfNHRViOywG6HmxTRBWrGQyuAlSUCJLzULpSEKGQWasu9qFsCUERmYHjM2lNDEx4aAE3BNio3wfaJszbdOfK6l9qF7o_cIaQd1jQLcgqqzEtrZYxSB2pGB5hQi6VHBpAKyS6k50lEPdQ1DsJK6CwKlHxXM9ZTy4qh-9w31MeSCutY9AjX9YgZQrlPJI0sJKQLHov6uBS2IX5oBFOoZyFoAALrhZYYEvnVtG4a6lqHAgG-2MWBhZABwQ4Q5oo1XjCeGJzx9a7g6mGXr8mFUUgxD213vvtpM8PwjTHPLa-ETwclLDLcMwuTwaWvWFZzCSDPrB_WgYexnc2UGhsOJtJlXAGYVQo4dTQeTzNtjx9TlnseNvA4exwvR4_155ngw7daZES8UMjqTAKI8mhAE46isrrVXXoB3qC_rtfO4vWL4lUvXrKvVhHDBL__d162p7uoNa_HsoH_a3xluHRXbB6ffdob7b4tevzg8Lt7vDY73ii-7g_3t4bvd86Pvg97WWe_g7PBj0XsNOOcnnwaf-8O9k-GH7eLrm5vWUiNaChdrVc6TWsoUfCzTXCWewxW1JfUyN6aCt1zWSmTGkjTxWrSV4hJIytOYpVS5QmYwpUtULFsxjxPvljXTXmtnt60FO81Y7ODBiTinTNgqYVLmPEPEXHrZnDV_oYTm8zK0TZMLFxdEqDNnLVRqaVYfvJfNCWPf-TPKvHUFy-WS5V1rprO-kd0DJ76T3K_ekJ_NcbwW |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%81%A5%E6%84%9F%E4%B8%8E%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97%E7%AE%97%E6%B3%95%E7%9A%84%E9%99%95%E8%A5%BF%E7%9C%81%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E7%A9%BA%E9%97%B4%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%87%AA%E7%84%B6%E8%B5%84%E6%BA%90%E5%AD%A6%E6%8A%A5&rft.au=%E9%BD%90%E9%9B%81%E5%86%B0&rft.au=%E7%8E%8B%E8%8C%B5%E8%8C%B5&rft.au=%E9%99%88%E6%B4%8B&rft.au=%E5%88%98%E5%A7%A3%E5%A7%A3&rft.date=2017&rft.pub=%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E6%9D%A8%E5%87%8C712100&rft.issn=1000-3037&rft.volume=32&rft.issue=6&rft.spage=1074&rft.epage=1086&rft_id=info:doi/10.11849%2Fzrzyxb.20160623&rft.externalDocID=zrzyxb201706016 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F96143X%2F96143X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzrzyxb%2Fzrzyxb.jpg |