黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证

融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融合方法(enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM),使用多时相MODIS数据提供地物时间变化信息,结合ASTER影像提供的空间细节信息,选择多波段数据(可见光近红外数据和地表温度数据)共同作为输入变量融合生成高时空地表温度。融合结果分别与地表红外辐射计观测温度和ASTER温度产品进行了验证。验证结果表明:基于ESTARFM方法降尺度地表温度影...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 6; pp. 193 - 200
Main Author 杨贵军 孙晨红 历华
Format Journal Article
LanguageChinese
Published 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京市农林科学院,北京 100097 2015
西安科技大学测绘科学与技术学院,西安 710054%中国科学院遥感与数字研究所,北京,100101
农业部农业信息技术重点实验室,北京 100097
北京农业信息技术研究中心,北京市农林科学院,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2015.06.026

Cover

Abstract 融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融合方法(enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM),使用多时相MODIS数据提供地物时间变化信息,结合ASTER影像提供的空间细节信息,选择多波段数据(可见光近红外数据和地表温度数据)共同作为输入变量融合生成高时空地表温度。融合结果分别与地表红外辐射计观测温度和ASTER温度产品进行了验证。验证结果表明:基于ESTARFM方法降尺度地表温度影像清晰,融合结果与地表红外辐射计观测温度呈显著的线性正相关关系,相关系数均高于为0.71,预测得到的地表温度与真实测得的数据的平均绝对偏差均低于2.00 K,均方根误差均低于2.60 K。与ASTER地表温度产品的验证中,整体验证结果的R2均在0.95以上。此外,ESTARFM方法在各个地类中的融合效果较好,均表现出非植被区域的相关性高于植被和水体,尤其在2012年8月27日非植被的R2达到0.91。
AbstractList 融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融合方法(enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM),使用多时相MODIS数据提供地物时间变化信息,结合ASTER影像提供的空间细节信息,选择多波段数据(可见光近红外数据和地表温度数据)共同作为输入变量融合生成高时空地表温度。融合结果分别与地表红外辐射计观测温度和ASTER温度产品进行了验证。验证结果表明:基于ESTARFM方法降尺度地表温度影像清晰,融合结果与地表红外辐射计观测温度呈显著的线性正相关关系,相关系数均高于为0.71,预测得到的地表温度与真实测得的数据的平均绝对偏差均低于2.00 K,均方根误差均低于2.60 K。与ASTER地表温度产品的验证中,整体验证结果的R2均在0.95以上。此外,ESTARFM方法在各个地类中的融合效果较好,均表现出非植被区域的相关性高于植被和水体,尤其在2012年8月27日非植被的R2达到0.91。
TP79; 融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融合方法(enhanced spatial and temporal adaptive reflectance fusion model, ESTARFM),使用多时相MODIS数据提供地物时间变化信息,结合ASTER影像提供的空间细节信息,选择多波段数据(可见光近红外数据和地表温度数据)共同作为输入变量融合生成高时空地表温度。融合结果分别与地表红外辐射计观测温度和 ASTER 温度产品进行了验证。验证结果表明:基于 ESTARFM 方法降尺度地表温度影像清晰,融合结果与地表红外辐射计观测温度呈显著的线性正相关关系,相关系数均高于为0.71,预测得到的地表温度与真实测得的数据的平均绝对偏差均低于2.00 K,均方根误差均低于2.60 K。与ASTER地表温度产品的验证中,整体验证结果的R2均在0.95以上。此外,ESTARFM方法在各个地类中的融合效果较好,均表现出非植被区域的相关性高于植被和水体,尤其在2012年8月27日非植被的R2达到0.91。
Abstract_FL Land surface temperature (LST) is a key parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. However, it is difficult to acquire satellite LSTs with both high spatial and temporal resolutions due to tradeoffs between these parameters. The Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) algorithm was initially designed to predict surface reflectance and is based on the assumption that MODIS and Landsat surface reflectance are highly consistent over homogeneous areas. However, the ESTARFM method prediction results degrade somewhat when the method is used for heterogeneous fine-grained landscapes. This research extended the ESTARFM model from reflectivity range to thermal infrared for estimation of daily temperature at 90 m resolution combined MODIS and ASTER. The implementation of ESTARFM requires input of the search window size, selection of spectrally similar pixels, determination of the weight of similar pixels, and computation of the correction coefficient and temporal weight. The calculation of weights for spectrally similar pixels involves weighing the contribution of neighboring pixels to the computation of a central pixel. Using a local moving window, neighboring spectrally similar pixels were included for the computation of the LST corresponding to a central pixel with the temporal weights of the two dates. In this study, we used multiple bands, i.e., red, NIR, and LST bands, as the input variables and generated high spatial-temporal resolution land surface temperature, combining temporal change information from multi-temporal MODIS with high-resolution spatial resolution from ASTER. The objective of this paper was to evaluate the ESTARFM method using ground measurements coordination with ASTER LST products collected in an arid region of Northwest China during the first thematic Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE) over heterogeneous land surfaces in 2012, as part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) .We didn’t modified the model even if the linear hypothesis was directly applied in LST prediction, which may result in uncertainty and errors. The remote sensing data were acquired with from Jun to September in 2012. The results showed that ESTARFM was positively and linearly related with the actual measured TIR. The correlation coefficient values were all found to be greater than 0.71. The mean absolute error and root mean square error were all below 2.00 K and 2.60 K, respectively. From the feature of scattering plots between the predicted and observed LST, the data points fell close to the diagonal line in each panel, indicated that the predictions were all in good agreement with the observations. Overall, the values of mean absolute error and root mean square error between the predicted and the observed LST were quiet small;whereas the correlation coefficient values between the predicted LSTs and ASTER LST products were all found to be greater than 0.95.It should be noted that some pixels in the scatter plots showed differences between the predicted and observed LSTs. These discrepancies revealed a major limitation to the method;i.e., ESTARFM does not capture land cover that has been altered between two imaging dates. Thus, changes in land cover or other surface conditions can lead to prediction errors. In addition, the fusion results showed that value of correlation coefficient was better in non-vegetation area than vegetation and water area, and up to 0.91 especially in the August 27, 2012. However, the application of the ESTARFM and its variants to LST prediction is immature in terms of methodology. Many critical issues have not been solved, especially with respect to the determination of the search window size, conversion coefficient improvement, and thermal landscape heterogeneity.
Author 杨贵军 孙晨红 历华
AuthorAffiliation 北京农业信息技术研究中心,北京市农林科学院,北京100097 农业部农业信息技术重点实验室,北京100097 西安科技大学测绘科学与技术学院,西安710054 中国科学院遥感与数字研究所,北京100101
AuthorAffiliation_xml – name: 北京农业信息技术研究中心,北京市农林科学院,北京 100097; 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京市农林科学院,北京 100097; 农业部农业信息技术重点实验室,北京 100097; 西安科技大学测绘科学与技术学院,西安 710054%中国科学院遥感与数字研究所,北京,100101
Author_FL Sun Chenhong
Li Hua
Yang Guijun
Author_FL_xml – sequence: 1
  fullname: Yang Guijun
– sequence: 2
  fullname: Sun Chenhong
– sequence: 3
  fullname: Li Hua
Author_xml – sequence: 1
  fullname: 杨贵军 孙晨红 历华
BookMark eNo9j09LAkEAxedgkJlfIoJOu82fndmdo5iWYAjpXWZnd22lxnKJ8ihEeSgx6BARSZewOhRFIAV9mnZdv0UbRqcHjx_vx1sAKdVSLgDLCOqEM77a1P0gUDqCEGvMQlzHEFEdMh1ilgLp_34eZIPAtyFFxITQQGlQnH5eRK9v0Xs3HA5z1Vph63vc36yslarx7Xk46E0uh1FvMH26Cnsn8ddo0j8Nb17iu1E0fgg_7ifXx9PHs_i5uwjmPLETuNm_zIBasVDLb2jlynopnytrknKmYeIg0xHIc0wTE5vbUmIHUU861IOuIQQ3icGpgIwy2-KGw4VEQiBpScyZS0kGrMxmD4XyhGrUm62DtkqEddVpyCP79zZkyemEXJqRcrulGvt-wu61_V3R7tQZMxKLxSn5AYvzce0
ClassificationCodes TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2015.06.026
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Verification of high-resolution land surface temperature by blending ASTER and MODIS data in Heihe River Basin
DocumentTitle_FL Verification of high-resolution land surface temperature by blending ASTER and MODIS data in Heihe River Basin
EndPage 200
ExternalDocumentID nygcxb201506026
664349895
GrantInformation_xml – fundername: 国家自然科学基金项目; 国家863计划项目; 北京市自然科学基金项目; 北京市农林科学院科技创新能力建设项目
  funderid: (41271345); (2013AA102303); (4141001); (KJCX20140417)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c596-23d17da1fd7723b9bcc2d15fcd5f0e4aa973495a0656b894d9ac1aa1c8c296e53
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:30:18 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 温度
high spatial resolution
高空间分辨率
multi-source remote sensing
卫星影像
satellite imagery
fusion data
temperature
remote sensing
遥感
数据融合
多源遥感数据
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-23d17da1fd7723b9bcc2d15fcd5f0e4aa973495a0656b894d9ac1aa1c8c296e53
Notes 11-2047/S
remote sensing; temperature; satellite imagery; multi-source remote sensing; fusion data; high spatial resolution
Land surface temperature(LST) is a key parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. However, it is difficult to acquire satellite LSTs with both high spatial and temporal resolutions due to tradeoffs between these parameters. The Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM) algorithm was initially designed to predict surface reflectance and is based on the assumption that MODIS and Landsat surface reflectance are highly consistent over homogeneous areas. However, the ESTARFM method prediction results degrade somewhat when the method is used for heterogeneous fine-grained landscapes. This research extended the ESTARFM model from reflectivity range to thermal infrared for estima
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201506026
chongqing_primary_664349895
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京市农林科学院,北京 100097
西安科技大学测绘科学与技术学院,西安 710054%中国科学院遥感与数字研究所,北京,100101
农业部农业信息技术重点实验室,北京 100097
北京农业信息技术研究中心,北京市农林科学院,北京 100097
Publisher_xml – name: 农业部农业信息技术重点实验室,北京 100097
– name: 北京农业信息技术研究中心,北京市农林科学院,北京 100097
– name: 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京市农林科学院,北京 100097
– name: 西安科技大学测绘科学与技术学院,西安 710054%中国科学院遥感与数字研究所,北京,100101
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0950778
Snippet 融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融合方...
TP79; 融合多源遥感数据生成高时空分辨率数据具有重要的应用价值。为了解决高空间分辨率数据重访周期长及云雨天气带来的数据短缺问题,该文基于增强自适应的遥感图像时空融...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 193
SubjectTerms 卫星影像
多源遥感数据
数据融合
温度
遥感
高空间分辨率
Title 黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证
URI http://lib.cqvip.com/qk/90712X/201506/664349895.html
https://d.wanfangdata.com.cn/periodical/nygcxb201506026
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na1NBcKkpiB7ET6xV6aF7ktS8j923e9yXvFCF6qEVehDC-8hLvaRaW9DeCqI9aKngQUQsXqTqQVGEouCvMWn6L5yZ95qEplotlGUzOzM7H8vuznZ3HmPjMYbIMnKKURTpousKmAfrMQQrXpom-J-2OMFAceqGnLzlXp8Vs0OF2323lpYWo4l4ed93JYfxKsDAr_hK9j8822UKAKiDf6EED0P5Tz7mgea-z7XFA8l9m_sOVQRsD3kguK7Cn5mGDSsPXO4rroKpm5Vr0zxQXAdcVQipxJXigce1iwRADz8BCKwNsFaIAxAlkcoPuCFkBeQekZe5X8ImY1GTxH6MxibfcCOJs-HKJYZQKRNylWefUNndF1MvErllkgIJcvC4EcgBOCsfIaZCPEFIYC52RwsCdIX6BxldtEDOz--hELHWhKtzNVBEux8F9ZJUqUC9_0gkew5Kw3c_YTVXDjEdbIJKFc2DUluoeia-KpEoZYJoNCc6BErwI9nPBOilntkIYsCQVe6XcwiU2qMuQJPyFYtezHBbDLYdVjIwfgnHBlZgtMmc3NDgAXJQ-88CEY5ClXq9S9QKcYChR2O361ZNnrEP1rBvKcW1Vqp8QbwzsFRa2Zcx811Xlq92YEF3tNS0oCPLiS5LvJIpKO-uvSePOu3Mmg8b8YPIzrJn2vIIG7bxtK7Aho1f8au9cMHCE5HuemZjVgjZC7-F5eDHH7pXxvDChKDbE7kYR9l4LuPVv0mIaVvm5puNe7AZpbeBzTRsNvq2sTMn2Yk8_hwz2WRyig0tz51mx01jIc_BUz_Dqjs_nre_fG1_W2ltbND08WtrjSaOzptnrfXV7Rcb7dX1nY8vW6uPOz83t9eetF5_7rzdbG-9b31_t_3q0c6Hp51PK2fZTDWYKU8W88-tFGOhZdF2EstLQitNIOB2Ih3FsZ1YIo0TkZbqbhhqz3G1CMFgMlLaTXQYW2FoxSq2tawL5xwrNOeb9fNsTKq05IaJI6Qn3KiehF7JjsI01IDuiDAcYaNdg9TuZll1ahJiI1crLUbYWG6iWj7X3q_t8eiFg1FG2TGsZ6elF1lhcWGpfgnih8Xocj4MfgORBs0y
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%BB%91%E6%B2%B3%E6%B5%81%E5%9F%9FASTER%E4%B8%8EMODIS%E8%9E%8D%E5%90%88%E7%94%9F%E6%88%90%E9%AB%98%E5%88%86%E8%BE%A8%E7%8E%87%E5%9C%B0%E8%A1%A8%E6%B8%A9%E5%BA%A6%E7%9A%84%E9%AA%8C%E8%AF%81&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E8%B4%B5%E5%86%9B&rft.au=%E5%AD%99%E6%99%A8%E7%BA%A2&rft.au=%E5%8E%86%E5%8D%8E&rft.date=2015&rft.pub=%E5%86%9C%E4%B8%9A%E9%83%A8%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E5%8C%97%E4%BA%AC+100097%25%E5%8C%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8C%97%E4%BA%AC%E5%B8%82%E5%86%9C%E6%9E%97%E7%A7%91%E5%AD%A6%E9%99%A2%EF%BC%8C%E5%8C%97%E4%BA%AC+100097&rft.issn=1002-6819&rft.issue=6&rft.spage=193&rft.epage=200&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2015.06.026&rft.externalDocID=nygcxb201506026
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg