A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about th...
Saved in:
Published in | Cell reports (Cambridge) Vol. 28; no. 5; pp. 1268 - 1281.e6 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.07.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2019.06.094 |
Cover
Abstract | Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
[Display omitted]
•RNAi screening identifies ubiquitin-related enzymes that regulate myofiber size•The ubiquitin ligase UBR4 regulates myofiber size in Drosophila and mice•Loss of UBR4 induces hypertrophy via decreased ubiquitination of target proteins•The HAT1/RBBP4/RBBP7 histone-binding complex is a UBR4 target key for hypertrophy
Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. |
---|---|
AbstractList | Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. : Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. Keywords: ubiquitin ligase, skeletal muscle growth, myofiber hypertrophy, muscle wasting, cancer cachexia, UBR4, Drosophila, myofiber size, HAT1, proteolysis Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo . We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. [Display omitted] •RNAi screening identifies ubiquitin-related enzymes that regulate myofiber size•The ubiquitin ligase UBR4 regulates myofiber size in Drosophila and mice•Loss of UBR4 induces hypertrophy via decreased ubiquitination of target proteins•The HAT1/RBBP4/RBBP7 histone-binding complex is a UBR4 target key for hypertrophy Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. |
Author | Stover, Jared Finkelstein, David Barton, Elisabeth R. Labelle, Myriam Fan, Yiping Hunt, Liam C. Demontis, Fabio Li, Yuxin Haugen, Benard Shaw, Timothy I. Peng, Junmin Pagala, Vishwajeeth R. |
AuthorAffiliation | 5 Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA 2 Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA 6 Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA 7 Lead Contact 4 College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA 3 Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA 1 Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA |
AuthorAffiliation_xml | – name: 2 Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – name: 7 Lead Contact – name: 4 College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA – name: 1 Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – name: 5 Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – name: 3 Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – name: 6 Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA |
Author_xml | – sequence: 1 givenname: Liam C. surname: Hunt fullname: Hunt, Liam C. organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 2 givenname: Jared surname: Stover fullname: Stover, Jared organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 3 givenname: Benard surname: Haugen fullname: Haugen, Benard organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 4 givenname: Timothy I. surname: Shaw fullname: Shaw, Timothy I. organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 5 givenname: Yuxin surname: Li fullname: Li, Yuxin organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 6 givenname: Vishwajeeth R. surname: Pagala fullname: Pagala, Vishwajeeth R. organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 7 givenname: David surname: Finkelstein fullname: Finkelstein, David organization: Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 8 givenname: Elisabeth R. surname: Barton fullname: Barton, Elisabeth R. organization: College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA – sequence: 9 givenname: Yiping surname: Fan fullname: Fan, Yiping organization: Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 10 givenname: Myriam surname: Labelle fullname: Labelle, Myriam organization: Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 11 givenname: Junmin surname: Peng fullname: Peng, Junmin organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA – sequence: 12 givenname: Fabio surname: Demontis fullname: Demontis, Fabio email: fabio.demontis@stjude.org organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31365869$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNUREvpP0AoRy4b7NjxBwekUj5asRVSRcXRcsaTXa-y8dbOVsq_x8suVcsBfLE9fucZa-Z9WRwNYcCieE1JRQkV71YVYB9xU9WE6oqIimj-rDipa0pntOby6NH5uDhLaUXyEoRSzV8Ux4wy0SihT4qf5-U3nMqb0GPZhViOSyxvW3-39aMfyrlf2JQDH294ma_XU-h8i7G8nDYYxxg2y2kX_xRDymff29IOrrz2gK-K553tE54d9tPi9svnHxeXs_n3r1cX5_MZNLoZZx1tHOOgwDGtuW3AAQWkmimwsqGKAXLSSdFRYS1Vbds6SZRqmBRAFNfstLjac12wK7OJfm3jZIL15ncgxIWxcfTQo3HQUoeis1wiVxxsLTnTDShmhe0cZtaHPWuzbdfoAIcx2v4J9OnL4JdmEe6NEFpSSTPg7QEQw90W02jWPuVB9XbAsE2mroWUUmnWZOmbx7UeivyZTBbwvQByc1PE7kFCidl5wKzM3gNm5wFDhMkeyGnv_0oDP9rRh92Pff-_5EMDME_s3mM0CTwOgM5HhDG31P8b8AtsA88s |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_111970 crossref_primary_10_1038_s41467_021_21738_8 crossref_primary_10_1093_plcell_koae117 crossref_primary_10_1038_s41467_022_30120_1 crossref_primary_10_1016_j_celrep_2021_109971 crossref_primary_10_1186_s12864_021_07677_0 crossref_primary_10_3389_fgene_2020_583124 crossref_primary_10_3892_ijmm_2024_5372 crossref_primary_10_1113_JP286681 crossref_primary_10_1016_j_celrep_2022_111934 crossref_primary_10_1016_j_gene_2024_149189 crossref_primary_10_3390_ijms23147602 crossref_primary_10_1128_mbio_03431_21 crossref_primary_10_1016_j_cmet_2021_03_005 crossref_primary_10_1152_ajpcell_00457_2023 crossref_primary_10_1038_s41467_022_29244_1 crossref_primary_10_1002_jcsm_13659 crossref_primary_10_1093_pnasnexus_pgad330 crossref_primary_10_1038_s44161_024_00533_w crossref_primary_10_1042_BST20200694 crossref_primary_10_1038_s41598_024_79352_9 crossref_primary_10_1038_s41467_023_43262_7 crossref_primary_10_1016_j_crmeth_2024_100875 crossref_primary_10_1371_journal_pgen_1009926 crossref_primary_10_1038_s41467_020_20123_1 crossref_primary_10_1038_s42003_023_05602_7 crossref_primary_10_18632_aging_205751 crossref_primary_10_1186_s12887_021_02611_5 crossref_primary_10_3390_molecules26020407 crossref_primary_10_1152_ajpcell_00553_2024 crossref_primary_10_1186_s12915_021_01091_4 crossref_primary_10_3390_ijms21134759 crossref_primary_10_1002_jcp_30328 crossref_primary_10_1113_JP287235 crossref_primary_10_17221_105_2020_CJAS crossref_primary_10_1038_s44319_024_00102_z crossref_primary_10_1152_ajpcell_00115_2021 crossref_primary_10_1016_j_xpro_2021_100628 crossref_primary_10_1016_j_bbcan_2020_188359 crossref_primary_10_1038_s41598_021_98454_2 crossref_primary_10_3389_fneur_2023_1224241 crossref_primary_10_1016_j_molmed_2024_05_016 crossref_primary_10_1038_s41467_023_38624_0 crossref_primary_10_1152_ajpcell_00432_2020 crossref_primary_10_1371_journal_pbio_3002998 crossref_primary_10_1016_j_molcel_2025_01_002 crossref_primary_10_1038_s41467_023_42342_y crossref_primary_10_1073_pnas_2012450117 crossref_primary_10_1152_japplphysiol_00021_2020 crossref_primary_10_3389_fnmol_2023_1121877 |
Cites_doi | 10.1074/jbc.273.39.25216 10.1016/j.gde.2015.03.006 10.1038/nrm3217 10.1016/j.biocel.2013.05.016 10.1186/1471-2407-14-997 10.1016/S0960-9822(98)70040-5 10.1002/dvdy.24036 10.1186/2044-5040-2-8 10.1038/ng.2287 10.1101/gad.267419.115 10.1152/ajpendo.00204.2014 10.1242/dev.118.2.401 10.1096/fj.13-240580 10.1021/bi802198q 10.1002/embj.201386906 10.1371/journal.pone.0035273 10.1242/dmm.012559 10.1128/MCB.23.22.8255-8271.2003 10.1128/MCB.21.23.8007-8021.2001 10.1158/0008-5472.CAN-04-2102 10.1038/nmeth.1541 10.1093/hmg/ddw016 10.1016/j.cmet.2013.03.015 10.1016/j.cell.2010.07.011 10.1038/ncb1101-1009 10.1073/pnas.1217358110 10.1242/dmm.010389 10.1074/jbc.M803641200 10.1074/mcp.O114.039586 10.1186/1471-2105-12-357 10.1038/ncomms7670 10.1371/journal.pone.0166803 10.1113/jphysiol.2014.279406 10.1093/bioinformatics/btu638 10.1152/japplphysiol.00126.2011 10.1126/scitranslmed.aac4976 10.1172/JCI7300 10.1186/s12864-017-3548-2 10.3389/fphys.2014.00069 10.1128/MCB.25.16.7120-7136.2005 10.1038/celldisc.2016.40 10.1016/j.cell.2010.08.004 10.1038/ncomms7973 10.1016/j.cell.2015.08.031 10.1021/pr900251d 10.1006/dbio.1995.1269 10.1016/j.devcel.2011.09.011 10.1242/dev.027466 10.1007/978-1-4939-2425-7_17 10.1152/ajpcell.00291.2016 10.1016/j.molcel.2013.07.002 10.1096/fj.12-222711 10.1021/pr100409r 10.1083/jcb.201304167 10.1242/jcs.061119 10.1074/mcp.M114.042168 10.4081/bam.2014.3.173 10.1038/ng.2772 10.1093/jn/129.1.227S 10.1038/sj.emboj.7601952 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2019.06.094 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1281.e6 |
ExternalDocumentID | oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde PMC6697171 31365869 10_1016_j_celrep_2019_06_094 S2211124719308800 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA021765 – fundername: NIA NIH HHS grantid: R01 AG047928 – fundername: NIAMS NIH HHS grantid: U54 AR052646 – fundername: NIA NIH HHS grantid: R01 AG055532 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-f15d34c8cd3994a5cdc1ce1938ca75183ce40f76f16aa18bbbd70885376c08493 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:01:04 EDT 2025 Thu Aug 21 18:18:19 EDT 2025 Fri Sep 05 12:21:06 EDT 2025 Mon Jul 21 05:51:33 EDT 2025 Tue Jul 01 02:59:03 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Wed May 17 00:03:01 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ubiquitin ligase myofiber size skeletal muscle growth Drosophila cancer cachexia HAT1 UBR4 muscle wasting proteolysis myofiber hypertrophy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-f15d34c8cd3994a5cdc1ce1938ca75183ce40f76f16aa18bbbd70885376c08493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS L.C.H. performed most of the experiments and analyzed data, with help from J.S. and B.H.; V.R.P. and J.P. performed mass-spectrometry experiments; E.R.B. supervised the muscle force measurements; T.I.S., Y.L., and J.P. analyzed mass-spectrometry data; D.F. and Y.F. analyzed RNA-seq data; M.L. provided support for cancer cachexia experiments; L.C.H. and F.D. wrote the manuscript; and F.D. supervised the project. |
OpenAccessLink | https://doaj.org/article/dcb1de6fa47e484ca274395c83a6afde |
PMID | 31365869 |
PQID | 2267778935 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697171 proquest_miscellaneous_2267778935 pubmed_primary_31365869 crossref_primary_10_1016_j_celrep_2019_06_094 crossref_citationtrail_10_1016_j_celrep_2019_06_094 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_06_094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-30 |
PublicationDateYYYYMMDD | 2019-07-30 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Bonaldo, Sandri (bib7) 2013; 6 Lecker, Solomon, Price, Kwon, Mitch, Goldberg (bib28) 1999; 104 Lin, Tao, Gao, Li, Zhou, Guan, Xiong, Lei (bib29) 2013; 51 Ranganayakulu, Zhao, Dokidis, Molkentin, Olson, Schulz (bib37) 1995; 171 Sartori, Schirwis, Blaauw, Bortolanza, Zhao, Enzo, Stantzou, Mouisel, Toniolo, Ferry (bib41) 2013; 45 Zhang, Lin, Kwon, Li (bib58) 2013; 27 Yang, Xu, Zhao, Zou, Zhang, Zhang, Li, Ren, Wang, Lei (bib57) 2015; 6 Besche, Sha, Kukushkin, Peth, Hock, Kim, Gygi, Gutierrez, Liao, Dick, Goldberg (bib4) 2014; 33 Bodine, Baehr (bib6) 2014; 307 Sriram, Kim, Kwon (bib45) 2011; 12 Choi, Larsen, Lin, Breitkreutz, Mellacheruvu, Fermin, Qin, Tyers, Gingras, Nesvizhskii (bib10) 2011; 8 Xu, Anderson, Ye (bib56) 2016; 2 Puppa, Gao, Narsale, Carson (bib36) 2014; 28 McCarthy, Srikuea, Kirby, Peterson, Esser (bib31) 2012; 2 Milan, Romanello, Pescatore, Armani, Paik, Frasson, Seydel, Zhao, Abraham, Goldberg (bib33) 2015; 6 Judge, Wu, Beharry, Roberts, Ferreira, Kandarian, Judge (bib22) 2014; 14 Kwon, Xia, Davydov, Lecker, Varshavsky (bib25) 2001; 21 Wu, Satomi, Walsh (bib54) 2017; 18 Reid, Judge, Bodine (bib38) 2014; 592 Anders, Pyl, Huber (bib1) 2015; 31 Brand, Perrimon (bib8) 1993; 118 Hunt, Xu, Finkelstein, Fan, Carroll, Cheng, Eisenman, Demontis (bib20) 2015; 29 Hong, Kaustov, Coyaud, Srikumar, Wan, Arrowsmith, Raught (bib18) 2015; 14 Kwon, Xia, An, Tasaki, Davydov, Seo, Sheng, Xie, Varshavsky (bib26) 2003; 23 Besche, Haas, Gygi, Goldberg (bib3) 2009; 48 Kim, Jin, Duan, Chen (bib23) 2015; 32 Tasaki, Kim, Zakrzewska, Lee, Kang, Yoo, Cha-Molstad, Hwang, Soung, Sung (bib48) 2013; 110 Demontis, Piccirillo, Goldberg, Perrimon (bib14) 2013; 6 Tisdale (bib49) 2010; 142 Castets, Lin, Rion, Di Fulvio, Romanino, Guridi, Frank, Tintignac, Sinnreich, Rüegg (bib9) 2013; 17 Pagala, High, Wang, Tan, Kodali, Mishra, Kavdia, Xu, Wu, Peng (bib34) 2015; 1278 Baehr, Tunzi, Bodine (bib2) 2014; 5 Lecker, Solomon, Mitch, Goldberg (bib27) 1999; 129 Cohen, Lee, Zhai, Gygi, Goldberg (bib12) 2014; 204 Demontis, Perrimon (bib13) 2009; 136 Mendias, Kayupov, Bradley, Brooks, Claflin (bib32) 2011; 111 Piccirillo, Demontis, Perrimon, Goldberg (bib35) 2014; 243 Tasaki, Zakrzewska, Dudgeon, Jiang, Lazo, Kwon (bib47) 2009; 284 Winbanks, Murphy, Bernardo, Qian, Liu, Sepulveda, Beyer, Hagg, Thomson, Chen (bib52) 2016; 8 Wang, Li, Wu, Wang, Tan, Peng (bib51) 2014; 13 Johnston, Murphy, Jenkinson, Laine, Emmrich, Faou, Weston, Jayatilleke, Schloegel, Talbo (bib21) 2015; 162 Zhou, Afjehi-Sadat, Asress, Duong, Cudkowicz, Glass, Peng (bib59) 2010; 9 Shavlakadze, Chai, Maley, Cozens, Grounds, Winn, Rosenthal, Grounds (bib42) 2010; 123 Tasaki, Mulder, Iwamatsu, Lee, Davydov, Varshavsky, Muesing, Kwon (bib46) 2005; 25 Hu, Flockhart, Vinayagam, Bergwitz, Berger, Perrimon, Mohr (bib19) 2011; 12 Verreault, Kaufman, Kobayashi, Stillman (bib50) 1998; 8 Witt, Witt, Lerche, Labeit, Back, Labeit (bib53) 2008; 27 Rinschen, Bharill, Wu, Kohli, Reinert, Kretz, Saez, Schermer, Höhne, Bartram (bib39) 2016; 25 Kwak, Zhou, Solomon, Baracos, Davis, Bannon, Boyle, Lacey, Han (bib24) 2004; 64 Downing, Wilson, Zhang, Mardis, Pui, Ding, Ley, Evans (bib15) 2012; 44 Solomon, Lecker, Goldberg (bib44) 1998; 273 Xu, Duong, Peng (bib55) 2009; 8 Hockerman, Dethrow, Hameed, Doran, Jaeger, Wang, Pond (bib17) 2014; 24 Ciciliot, Rossi, Dyar, Blaauw, Schiaffino (bib11) 2013; 45 Liu, Hammers, Barton, Sweeney (bib30) 2016; 11 Zhou, Wang, Lu, Song, Kwak, Jiao, Rosenfeld, Chen, Boone, Simonet (bib60) 2010; 142 Rommel, Bodine, Clarke, Rossman, Nunez, Stitt, Yancopoulos, Glass (bib40) 2001; 3 Fajardo, Rietze, Chambers, Bellissimo, Bombardier, Quadrilatero, Tupling (bib16) 2017; 313 Shi, Luo, Eash, Ibebunjo, Glass (bib43) 2011; 21 Bloemberg, Quadrilatero (bib5) 2012; 7 Pagala (10.1016/j.celrep.2019.06.094_bib34) 2015; 1278 Fajardo (10.1016/j.celrep.2019.06.094_bib16) 2017; 313 Yang (10.1016/j.celrep.2019.06.094_bib57) 2015; 6 Shavlakadze (10.1016/j.celrep.2019.06.094_bib42) 2010; 123 Mendias (10.1016/j.celrep.2019.06.094_bib32) 2011; 111 Bonaldo (10.1016/j.celrep.2019.06.094_bib7) 2013; 6 Kwon (10.1016/j.celrep.2019.06.094_bib26) 2003; 23 Wu (10.1016/j.celrep.2019.06.094_bib54) 2017; 18 Besche (10.1016/j.celrep.2019.06.094_bib3) 2009; 48 Verreault (10.1016/j.celrep.2019.06.094_bib50) 1998; 8 Hong (10.1016/j.celrep.2019.06.094_bib18) 2015; 14 Sriram (10.1016/j.celrep.2019.06.094_bib45) 2011; 12 McCarthy (10.1016/j.celrep.2019.06.094_bib31) 2012; 2 Liu (10.1016/j.celrep.2019.06.094_bib30) 2016; 11 Zhou (10.1016/j.celrep.2019.06.094_bib60) 2010; 142 Downing (10.1016/j.celrep.2019.06.094_bib15) 2012; 44 Demontis (10.1016/j.celrep.2019.06.094_bib14) 2013; 6 Lin (10.1016/j.celrep.2019.06.094_bib29) 2013; 51 Bodine (10.1016/j.celrep.2019.06.094_bib6) 2014; 307 Zhang (10.1016/j.celrep.2019.06.094_bib58) 2013; 27 Lecker (10.1016/j.celrep.2019.06.094_bib28) 1999; 104 Bloemberg (10.1016/j.celrep.2019.06.094_bib5) 2012; 7 Kwon (10.1016/j.celrep.2019.06.094_bib25) 2001; 21 Rommel (10.1016/j.celrep.2019.06.094_bib40) 2001; 3 Solomon (10.1016/j.celrep.2019.06.094_bib44) 1998; 273 Tisdale (10.1016/j.celrep.2019.06.094_bib49) 2010; 142 Milan (10.1016/j.celrep.2019.06.094_bib33) 2015; 6 Anders (10.1016/j.celrep.2019.06.094_bib1) 2015; 31 Tasaki (10.1016/j.celrep.2019.06.094_bib47) 2009; 284 Castets (10.1016/j.celrep.2019.06.094_bib9) 2013; 17 Baehr (10.1016/j.celrep.2019.06.094_bib2) 2014; 5 Puppa (10.1016/j.celrep.2019.06.094_bib36) 2014; 28 Tasaki (10.1016/j.celrep.2019.06.094_bib48) 2013; 110 Xu (10.1016/j.celrep.2019.06.094_bib55) 2009; 8 Hu (10.1016/j.celrep.2019.06.094_bib19) 2011; 12 Witt (10.1016/j.celrep.2019.06.094_bib53) 2008; 27 Cohen (10.1016/j.celrep.2019.06.094_bib12) 2014; 204 Kwak (10.1016/j.celrep.2019.06.094_bib24) 2004; 64 Zhou (10.1016/j.celrep.2019.06.094_bib59) 2010; 9 Lecker (10.1016/j.celrep.2019.06.094_bib27) 1999; 129 Hockerman (10.1016/j.celrep.2019.06.094_bib17) 2014; 24 Demontis (10.1016/j.celrep.2019.06.094_bib13) 2009; 136 Kim (10.1016/j.celrep.2019.06.094_bib23) 2015; 32 Besche (10.1016/j.celrep.2019.06.094_bib4) 2014; 33 Choi (10.1016/j.celrep.2019.06.094_bib10) 2011; 8 Piccirillo (10.1016/j.celrep.2019.06.094_bib35) 2014; 243 Shi (10.1016/j.celrep.2019.06.094_bib43) 2011; 21 Johnston (10.1016/j.celrep.2019.06.094_bib21) 2015; 162 Tasaki (10.1016/j.celrep.2019.06.094_bib46) 2005; 25 Reid (10.1016/j.celrep.2019.06.094_bib38) 2014; 592 Xu (10.1016/j.celrep.2019.06.094_bib56) 2016; 2 Rinschen (10.1016/j.celrep.2019.06.094_bib39) 2016; 25 Hunt (10.1016/j.celrep.2019.06.094_bib20) 2015; 29 Brand (10.1016/j.celrep.2019.06.094_bib8) 1993; 118 Winbanks (10.1016/j.celrep.2019.06.094_bib52) 2016; 8 Ciciliot (10.1016/j.celrep.2019.06.094_bib11) 2013; 45 Ranganayakulu (10.1016/j.celrep.2019.06.094_bib37) 1995; 171 Wang (10.1016/j.celrep.2019.06.094_bib51) 2014; 13 Sartori (10.1016/j.celrep.2019.06.094_bib41) 2013; 45 Judge (10.1016/j.celrep.2019.06.094_bib22) 2014; 14 |
References_xml | – volume: 2 start-page: 16040 year: 2016 ident: bib56 article-title: The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation publication-title: Cell Discov. – volume: 29 start-page: 2475 year: 2015 end-page: 2489 ident: bib20 article-title: The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling publication-title: Genes Dev. – volume: 9 start-page: 5133 year: 2010 end-page: 5141 ident: bib59 article-title: Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach publication-title: J. Proteome Res. – volume: 273 start-page: 25216 year: 1998 end-page: 25222 ident: bib44 article-title: The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle publication-title: J. Biol. Chem. – volume: 45 start-page: 1309 year: 2013 end-page: 1318 ident: bib41 article-title: BMP signaling controls muscle mass publication-title: Nat. Genet. – volume: 204 start-page: 747 year: 2014 end-page: 758 ident: bib12 article-title: Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation publication-title: J. Cell Biol. – volume: 17 start-page: 731 year: 2013 end-page: 744 ident: bib9 article-title: Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy publication-title: Cell Metab. – volume: 142 start-page: 511 year: 2010 end-page: 512 ident: bib49 article-title: Reversing cachexia publication-title: Cell – volume: 111 start-page: 185 year: 2011 end-page: 191 ident: bib32 article-title: Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation publication-title: J. Appl. Physiol. – volume: 307 start-page: E469 year: 2014 end-page: E484 ident: bib6 article-title: Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1 publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 51 start-page: 506 year: 2013 end-page: 518 ident: bib29 article-title: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth publication-title: Mol. Cell – volume: 129 start-page: 227S year: 1999 end-page: 237S ident: bib27 article-title: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states publication-title: J. Nutr. – volume: 12 start-page: 357 year: 2011 ident: bib19 article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies publication-title: BMC Bioinformatics – volume: 1278 start-page: 281 year: 2015 end-page: 305 ident: bib34 article-title: Quantitative protein analysis by mass spectrometry publication-title: Methods Mol. Biol. – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib1 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 33 start-page: 1159 year: 2014 end-page: 1176 ident: bib4 article-title: Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates publication-title: EMBO J. – volume: 6 start-page: 6670 year: 2015 ident: bib33 article-title: Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy publication-title: Nat. Commun. – volume: 13 start-page: 3663 year: 2014 end-page: 3673 ident: bib51 article-title: JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy publication-title: Mol. Cell. Proteomics – volume: 284 start-page: 1884 year: 2009 end-page: 1895 ident: bib47 article-title: The substrate recognition domains of the N-end rule pathway publication-title: J. Biol. Chem. – volume: 45 start-page: 2191 year: 2013 end-page: 2199 ident: bib11 article-title: Muscle type and fiber type specificity in muscle wasting publication-title: Int. J. Biochem. Cell Biol. – volume: 171 start-page: 169 year: 1995 end-page: 181 ident: bib37 article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila publication-title: Dev. Biol. – volume: 5 start-page: 69 year: 2014 ident: bib2 article-title: Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression publication-title: Front. Physiol. – volume: 44 start-page: 619 year: 2012 end-page: 622 ident: bib15 article-title: The Pediatric Cancer Genome Project publication-title: Nat. Genet. – volume: 8 start-page: 3944 year: 2009 end-page: 3950 ident: bib55 article-title: Systematical optimization of reverse-phase chromatography for shotgun proteomics publication-title: J. Proteome Res. – volume: 21 start-page: 8007 year: 2001 end-page: 8021 ident: bib25 article-title: Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway publication-title: Mol. Cell. Biol. – volume: 118 start-page: 401 year: 1993 end-page: 415 ident: bib8 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development – volume: 24 start-page: 3319 year: 2014 ident: bib17 article-title: The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone publication-title: Eur. J. Transl. Myol. – volume: 142 start-page: 531 year: 2010 end-page: 543 ident: bib60 article-title: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival publication-title: Cell – volume: 25 start-page: 1328 year: 2016 end-page: 1344 ident: bib39 article-title: The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes publication-title: Hum. Mol. Genet. – volume: 110 start-page: 3800 year: 2013 end-page: 3805 ident: bib48 article-title: UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy publication-title: Proc. Natl. Acad. Sci. USA – volume: 136 start-page: 983 year: 2009 end-page: 993 ident: bib13 article-title: Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila publication-title: Development – volume: 104 start-page: 1411 year: 1999 end-page: 1420 ident: bib28 article-title: Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats publication-title: J. Clin. Invest. – volume: 6 start-page: 1339 year: 2013 end-page: 1352 ident: bib14 article-title: Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models publication-title: Dis. Model. Mech. – volume: 21 start-page: 835 year: 2011 end-page: 847 ident: bib43 article-title: The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling publication-title: Dev. Cell – volume: 8 start-page: 348ra398 year: 2016 ident: bib52 article-title: Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice publication-title: Sci. Transl. Med. – volume: 2 start-page: 8 year: 2012 ident: bib31 article-title: Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting publication-title: Skelet. Muscle – volume: 14 start-page: 997 year: 2014 ident: bib22 article-title: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia publication-title: BMC Cancer – volume: 11 start-page: e0166803 year: 2016 ident: bib30 article-title: Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy publication-title: PLoS ONE – volume: 313 start-page: C154 year: 2017 end-page: C161 ident: bib16 article-title: Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload publication-title: Am. J. Physiol. Cell Physiol. – volume: 6 start-page: 25 year: 2013 end-page: 39 ident: bib7 article-title: Cellular and molecular mechanisms of muscle atrophy publication-title: Dis. Model. Mech. – volume: 243 start-page: 201 year: 2014 end-page: 215 ident: bib35 article-title: Mechanisms of muscle growth and atrophy in mammals and Drosophila publication-title: Dev. Dyn. – volume: 32 start-page: 162 year: 2015 end-page: 170 ident: bib23 article-title: Mechanisms of myoblast fusion during muscle development publication-title: Curr. Opin. Genet. Dev. – volume: 7 start-page: e35273 year: 2012 ident: bib5 article-title: Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis publication-title: PLoS ONE – volume: 3 start-page: 1009 year: 2001 end-page: 1013 ident: bib40 article-title: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways publication-title: Nat. Cell Biol. – volume: 123 start-page: 960 year: 2010 end-page: 971 ident: bib42 article-title: A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo publication-title: J. Cell Sci. – volume: 14 start-page: 674 year: 2015 end-page: 685 ident: bib18 article-title: KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation publication-title: Mol. Cell. Proteomics – volume: 27 start-page: 350 year: 2008 end-page: 360 ident: bib53 article-title: Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2 publication-title: EMBO J. – volume: 592 start-page: 5345 year: 2014 end-page: 5347 ident: bib38 article-title: CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis publication-title: J. Physiol. – volume: 23 start-page: 8255 year: 2003 end-page: 8271 ident: bib26 article-title: Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway publication-title: Mol. Cell. Biol. – volume: 64 start-page: 8193 year: 2004 end-page: 8198 ident: bib24 article-title: Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia publication-title: Cancer Res. – volume: 25 start-page: 7120 year: 2005 end-page: 7136 ident: bib46 article-title: A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons publication-title: Mol. Cell. Biol. – volume: 28 start-page: 998 year: 2014 end-page: 1009 ident: bib36 article-title: Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia publication-title: FASEB J. – volume: 6 start-page: 6973 year: 2015 ident: bib57 article-title: Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer publication-title: Nat. Commun. – volume: 8 start-page: 96 year: 1998 end-page: 108 ident: bib50 article-title: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase publication-title: Curr. Biol. – volume: 162 start-page: 1365 year: 2015 end-page: 1378 ident: bib21 article-title: Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival publication-title: Cell – volume: 18 start-page: 181 year: 2017 ident: bib54 article-title: RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome publication-title: BMC Genomics – volume: 8 start-page: 70 year: 2011 end-page: 73 ident: bib10 article-title: SAINT: probabilistic scoring of affinity purification-mass spectrometry data publication-title: Nat. Methods – volume: 27 start-page: 2893 year: 2013 end-page: 2901 ident: bib58 article-title: Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2 publication-title: FASEB J. – volume: 12 start-page: 735 year: 2011 end-page: 747 ident: bib45 article-title: The N-end rule pathway: emerging functions and molecular principles of substrate recognition publication-title: Nat. Rev. Mol. Cell Biol. – volume: 48 start-page: 2538 year: 2009 end-page: 2549 ident: bib3 article-title: Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins publication-title: Biochemistry – volume: 273 start-page: 25216 year: 1998 ident: 10.1016/j.celrep.2019.06.094_bib44 article-title: The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.39.25216 – volume: 32 start-page: 162 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib23 article-title: Mechanisms of myoblast fusion during muscle development publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2015.03.006 – volume: 12 start-page: 735 year: 2011 ident: 10.1016/j.celrep.2019.06.094_bib45 article-title: The N-end rule pathway: emerging functions and molecular principles of substrate recognition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3217 – volume: 45 start-page: 2191 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib11 article-title: Muscle type and fiber type specificity in muscle wasting publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.05.016 – volume: 14 start-page: 997 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib22 article-title: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia publication-title: BMC Cancer doi: 10.1186/1471-2407-14-997 – volume: 8 start-page: 96 year: 1998 ident: 10.1016/j.celrep.2019.06.094_bib50 article-title: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase publication-title: Curr. Biol. doi: 10.1016/S0960-9822(98)70040-5 – volume: 243 start-page: 201 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib35 article-title: Mechanisms of muscle growth and atrophy in mammals and Drosophila publication-title: Dev. Dyn. doi: 10.1002/dvdy.24036 – volume: 2 start-page: 8 year: 2012 ident: 10.1016/j.celrep.2019.06.094_bib31 article-title: Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting publication-title: Skelet. Muscle doi: 10.1186/2044-5040-2-8 – volume: 44 start-page: 619 year: 2012 ident: 10.1016/j.celrep.2019.06.094_bib15 article-title: The Pediatric Cancer Genome Project publication-title: Nat. Genet. doi: 10.1038/ng.2287 – volume: 29 start-page: 2475 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib20 article-title: The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling publication-title: Genes Dev. doi: 10.1101/gad.267419.115 – volume: 307 start-page: E469 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib6 article-title: Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00204.2014 – volume: 118 start-page: 401 year: 1993 ident: 10.1016/j.celrep.2019.06.094_bib8 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development doi: 10.1242/dev.118.2.401 – volume: 28 start-page: 998 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib36 article-title: Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia publication-title: FASEB J. doi: 10.1096/fj.13-240580 – volume: 48 start-page: 2538 year: 2009 ident: 10.1016/j.celrep.2019.06.094_bib3 article-title: Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins publication-title: Biochemistry doi: 10.1021/bi802198q – volume: 33 start-page: 1159 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib4 article-title: Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates publication-title: EMBO J. doi: 10.1002/embj.201386906 – volume: 7 start-page: e35273 year: 2012 ident: 10.1016/j.celrep.2019.06.094_bib5 article-title: Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0035273 – volume: 6 start-page: 1339 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib14 article-title: Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models publication-title: Dis. Model. Mech. doi: 10.1242/dmm.012559 – volume: 23 start-page: 8255 year: 2003 ident: 10.1016/j.celrep.2019.06.094_bib26 article-title: Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.22.8255-8271.2003 – volume: 21 start-page: 8007 year: 2001 ident: 10.1016/j.celrep.2019.06.094_bib25 article-title: Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.23.8007-8021.2001 – volume: 64 start-page: 8193 year: 2004 ident: 10.1016/j.celrep.2019.06.094_bib24 article-title: Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-2102 – volume: 8 start-page: 70 year: 2011 ident: 10.1016/j.celrep.2019.06.094_bib10 article-title: SAINT: probabilistic scoring of affinity purification-mass spectrometry data publication-title: Nat. Methods doi: 10.1038/nmeth.1541 – volume: 25 start-page: 1328 year: 2016 ident: 10.1016/j.celrep.2019.06.094_bib39 article-title: The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw016 – volume: 17 start-page: 731 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib9 article-title: Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.015 – volume: 142 start-page: 531 year: 2010 ident: 10.1016/j.celrep.2019.06.094_bib60 article-title: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival publication-title: Cell doi: 10.1016/j.cell.2010.07.011 – volume: 3 start-page: 1009 year: 2001 ident: 10.1016/j.celrep.2019.06.094_bib40 article-title: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways publication-title: Nat. Cell Biol. doi: 10.1038/ncb1101-1009 – volume: 110 start-page: 3800 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib48 article-title: UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1217358110 – volume: 6 start-page: 25 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib7 article-title: Cellular and molecular mechanisms of muscle atrophy publication-title: Dis. Model. Mech. doi: 10.1242/dmm.010389 – volume: 284 start-page: 1884 year: 2009 ident: 10.1016/j.celrep.2019.06.094_bib47 article-title: The substrate recognition domains of the N-end rule pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803641200 – volume: 13 start-page: 3663 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib51 article-title: JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O114.039586 – volume: 12 start-page: 357 year: 2011 ident: 10.1016/j.celrep.2019.06.094_bib19 article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-357 – volume: 6 start-page: 6670 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib33 article-title: Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy publication-title: Nat. Commun. doi: 10.1038/ncomms7670 – volume: 11 start-page: e0166803 year: 2016 ident: 10.1016/j.celrep.2019.06.094_bib30 article-title: Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy publication-title: PLoS ONE doi: 10.1371/journal.pone.0166803 – volume: 592 start-page: 5345 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib38 article-title: CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis publication-title: J. Physiol. doi: 10.1113/jphysiol.2014.279406 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib1 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 111 start-page: 185 year: 2011 ident: 10.1016/j.celrep.2019.06.094_bib32 article-title: Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00126.2011 – volume: 8 start-page: 348ra398 year: 2016 ident: 10.1016/j.celrep.2019.06.094_bib52 article-title: Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac4976 – volume: 104 start-page: 1411 year: 1999 ident: 10.1016/j.celrep.2019.06.094_bib28 article-title: Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats publication-title: J. Clin. Invest. doi: 10.1172/JCI7300 – volume: 18 start-page: 181 year: 2017 ident: 10.1016/j.celrep.2019.06.094_bib54 article-title: RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome publication-title: BMC Genomics doi: 10.1186/s12864-017-3548-2 – volume: 5 start-page: 69 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib2 article-title: Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00069 – volume: 25 start-page: 7120 year: 2005 ident: 10.1016/j.celrep.2019.06.094_bib46 article-title: A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.16.7120-7136.2005 – volume: 2 start-page: 16040 year: 2016 ident: 10.1016/j.celrep.2019.06.094_bib56 article-title: The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation publication-title: Cell Discov. doi: 10.1038/celldisc.2016.40 – volume: 142 start-page: 511 year: 2010 ident: 10.1016/j.celrep.2019.06.094_bib49 article-title: Reversing cachexia publication-title: Cell doi: 10.1016/j.cell.2010.08.004 – volume: 6 start-page: 6973 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib57 article-title: Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer publication-title: Nat. Commun. doi: 10.1038/ncomms7973 – volume: 162 start-page: 1365 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib21 article-title: Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival publication-title: Cell doi: 10.1016/j.cell.2015.08.031 – volume: 8 start-page: 3944 year: 2009 ident: 10.1016/j.celrep.2019.06.094_bib55 article-title: Systematical optimization of reverse-phase chromatography for shotgun proteomics publication-title: J. Proteome Res. doi: 10.1021/pr900251d – volume: 171 start-page: 169 year: 1995 ident: 10.1016/j.celrep.2019.06.094_bib37 article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila publication-title: Dev. Biol. doi: 10.1006/dbio.1995.1269 – volume: 21 start-page: 835 year: 2011 ident: 10.1016/j.celrep.2019.06.094_bib43 article-title: The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.09.011 – volume: 136 start-page: 983 year: 2009 ident: 10.1016/j.celrep.2019.06.094_bib13 article-title: Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila publication-title: Development doi: 10.1242/dev.027466 – volume: 1278 start-page: 281 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib34 article-title: Quantitative protein analysis by mass spectrometry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2425-7_17 – volume: 313 start-page: C154 year: 2017 ident: 10.1016/j.celrep.2019.06.094_bib16 article-title: Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00291.2016 – volume: 51 start-page: 506 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib29 article-title: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.07.002 – volume: 27 start-page: 2893 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib58 article-title: Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2 publication-title: FASEB J. doi: 10.1096/fj.12-222711 – volume: 9 start-page: 5133 year: 2010 ident: 10.1016/j.celrep.2019.06.094_bib59 article-title: Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach publication-title: J. Proteome Res. doi: 10.1021/pr100409r – volume: 204 start-page: 747 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib12 article-title: Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation publication-title: J. Cell Biol. doi: 10.1083/jcb.201304167 – volume: 123 start-page: 960 issue: Pt 6 year: 2010 ident: 10.1016/j.celrep.2019.06.094_bib42 article-title: A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo publication-title: J. Cell Sci. doi: 10.1242/jcs.061119 – volume: 14 start-page: 674 year: 2015 ident: 10.1016/j.celrep.2019.06.094_bib18 article-title: KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.042168 – volume: 24 start-page: 3319 year: 2014 ident: 10.1016/j.celrep.2019.06.094_bib17 article-title: The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone publication-title: Eur. J. Transl. Myol. doi: 10.4081/bam.2014.3.173 – volume: 45 start-page: 1309 year: 2013 ident: 10.1016/j.celrep.2019.06.094_bib41 article-title: BMP signaling controls muscle mass publication-title: Nat. Genet. doi: 10.1038/ng.2772 – volume: 129 start-page: 227S issue: 1S, Suppl year: 1999 ident: 10.1016/j.celrep.2019.06.094_bib27 article-title: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states publication-title: J. Nutr. doi: 10.1093/jn/129.1.227S – volume: 27 start-page: 350 year: 2008 ident: 10.1016/j.celrep.2019.06.094_bib53 article-title: Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601952 |
SSID | ssj0000601194 |
Score | 2.4769557 |
Snippet | Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1268 |
SubjectTerms | Animals Calmodulin-Binding Proteins - genetics Calmodulin-Binding Proteins - metabolism cancer cachexia Drosophila Drosophila melanogaster Drosophila Proteins - genetics Drosophila Proteins - metabolism HAT1 Hypertrophy Mice Muscle Proteins - genetics Muscle Proteins - metabolism muscle wasting myofiber hypertrophy myofiber size Myofibrils - enzymology proteolysis skeletal muscle growth ubiquitin ligase Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination UBR4 |
SummonAdditionalLinks | – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQSzPsoCMxDVq3Nixc9wurCqgHBYqeov8XIKqZAnpof-eGSepCBxW4hjHSZzx2PNNMvMNIW_tIghmmEl4WIiEyzxNTCHAS_GBWdAX7SwmJ68_56sN_7AV2xNyOebCYFjlsPf3e3rcrYeW-SDN-W1Vzb8swHcB6yQBgsBSSdFvx6xSTOLbLo_fWZBvhMV6iNg_wQvGDLoY5mX9rvVIXMmKSORZ8ImFikT-E0P1LxD9O57yDwN19ZA8GJAlvegHf0ZOfP2I3OtrTR4ek28X9KM_0Otm5ykAVQrAj25M9XNfdVVNP1U3YM7oZnnNKRyuD6Bzxrd0BW5q27UNTAa2v2tj2YNqp6muHV3DLvOEbK7ef71cJUNVhcSKQnRJYMJl3CrrAJtwLayzzHoQorIa_8Fk1vM0yDywXGumjDFOgnyR9sWmihfZU3JaN7V_TqjiTgekcE-zDNxsZ1RgkhnFRPCOOzEj2SjJ0g6U41j5YleOsWU_yl7-Jcq_xBC7gs9IcrzqtqfcuKP_Eifp2BcJs2ND096Ug8aUzhrmfB40l54rbvUCPTFhVaZzHZyfETlOcTnRP7hVdcfj34waUcLSxP8tuvbN_lcJyFZKCYAQBPGs15DjIDMML1R5Ac-d6M7kLaZn6up7pP_O8wJ8cPbiv0d8Tu7jUfxCnb4kp127968AWnXmdVw7vwEXfCHM priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERKXijdbHjIS16B1YsfJAaEWqFbAcqiI6M3yswRFCU2zEvvvmcljITzUC8c4jhOPx_Y3mfE3hDy3cRDMMBPxEIuIy3QZmVyAleIDs6Av2lk8nLz-mK4K_u5MnO2RKWfrKMDLv5p2mE-qaKsX3y-2r2DCv_wZq2V91Xpkn2R5z8aZ82vkeu8xwmC-EfAPazNynKGrOY4xlivmcjpP94-GZvtVT-s_27b-hKW_R1f-sl2d3CIHI86kR4Ni3CZ7vr5DbgyZJ7d3yecj-t5v6WlTeQqwlQIMpIUpLzZlV9b0Q3kOmxstjk85hcv1FjTQ-JauwGhtu7aBocHyN22fBKGsNNW1o2tYc-6R4uTtp9eraMyxEFmRiy4KTLiE28w6QCpcC-sssx5QXWY1emQS6_kyyDSwVGuWGWOchIUJSWDsMuN5cp_s103tHxKacacDErovkwSMbmeywCQzGRPBO-7EgiSTJJUdCcgxD0alpkizr2qQv0L5Kwy4y_mCRLunvg0EHFfUP8ZB2tVF-uy-oGnP1TgblbOGOZ8GzaXnGbc6RrtM2CzRqQ7OL4ichliNSGRAGNBUecXrn00aoWCiovdF177ZXCrAuVJKgIcgiAeDhuw-MsFgwyzN4b0z3Zn1Yn6nLr_0ZOBpmoNFzg7_R7cfkZvYlf7X9fIx2e_ajX8CmKszT_tp9AMCZCqq priority: 102 providerName: Scholars Portal |
Title | A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice |
URI | https://dx.doi.org/10.1016/j.celrep.2019.06.094 https://www.ncbi.nlm.nih.gov/pubmed/31365869 https://www.proquest.com/docview/2267778935 https://pubmed.ncbi.nlm.nih.gov/PMC6697171 https://doaj.org/article/dcb1de6fa47e484ca274395c83a6afde |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG8K7MpIXCPixI6d45bdVXmUw4qK3iw_IahKIaSH_ntm8qgaOPTCxVIcJ47HY_ubePwNIW9cFgWzzCY8ZiLhskgTWwqwUkJkDvTFeIeHk5efi8WKf1iL9VGoL_QJ6-mBe8G99c4yH4pouAxccWcyhNDCqdwUJvqAs29apkfGVD8HI5cZbilnGfpsZVyO5-Y65y4XNk1AukpWdvSdJZ-sSx19_2R5-hd-_u1FebQs3Twg9wc8SS_7djwkd0L9iNztI0zuH5Ovl_Rj2NPb7SZQgKcU4B5d2erXrmqrmn6qvsEiRlfzW07hcrkHTbOhoQswTpu22UIXYP5V0wU7qDaGmtrTJcwtT8jq5vrLu0UyxFJInChFm0QmfM6dch4QCTfCecdcAPSmnMGdl9wFnkZZRFYYw5S11kuYgJDsxaWKl_lTclZv6_CcUMW9iUjcnuY5GNfeqsgks4qJGDz3YkbyUZLaDUTjGO9io0ePsh-6l79G-Wt0rCv5jCSHp372RBsnys-xkw5lkSa7ywDl0YPy6FPKMyNy7GI9II4eScCrqhPVvx41QsOAxF0WU4ft7rcGPCulBBgIgnjWa8jhI3N0KlRFCfVOdGfSiumduvrekX4XRQmWN3vxP5r9ktzDpnS_qNNX5KxtduEcsFVrL7phBOn79RzSJVd_AFdkJBI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFEW7FH3X6YsFugoWLVKkxjht4DR2hjRGvRF8JioMKVXswf--R0oyqnYI0FF8SNTxyPtOOn6H0Gcz8YxoohPqJyyhPE8TXTDwUpwnBvRFWRMOJy8u8tmSflux1QE66c_ChLDKbu9v9_S4W3cl406a49uyHH-fgO8C1okDBIGlkoLf_gDQQBpU-2w13X9oCYQjJCZEDB2S0KM_QhfjvIxbNy4wV5IiMnkWdGCiIpP_wFL9i0T_Dqj8w0KdPkVPOmiJj9vRP0MHrnqOHrbJJncv0I9jfO52-LJeOwxIFQPyw0td_tqWm7LC8_Ia7BleTi8phsvFDpROuwbPwE9tNk0NsxHKvzQx70G5VlhVFi9gm3mJlqdfr05mSZdWITGsYJvEE2YzaoSxAE6oYsYaYhxIURgVfsJkxtHU89yTXCkitNaWg4AD74tJBS2yV-iwqiv3BmFBrfKBwz3NMvCzrRaecKIFYd5ZatkIZb0kpek4x0Pqi7Xsg8t-ylb-Mshfhhi7go5Qsu9123Ju3NN-GiZp3zYwZseCurmWncpIazSxLveKckcFNWoSXDFmRKZy5a0bId5PsRwoINyqvOfxn3qNkLA2ww8XVbl6eycB2nLOARGCIF63GrIfZBbiC0VewHMHujN4i2FNVd5E_u88L8AJJ0f_PeKP6NHsajGX87OL87focaiJn6vTd-hw02zde8BZG_0hrqPfrhck7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Key+Role+for+the+Ubiquitin+Ligase+UBR4+in+Myofiber+Hypertrophy+in+Drosophila+and+Mice&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Liam+C.+Hunt&rft.au=Jared+Stover&rft.au=Benard+Haugen&rft.au=Timothy+I.+Shaw&rft.date=2019-07-30&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=5&rft.spage=1268&rft.epage=1281.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.06.094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |