A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice

Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about th...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 28; no. 5; pp. 1268 - 1281.e6
Main Authors Hunt, Liam C., Stover, Jared, Haugen, Benard, Shaw, Timothy I., Li, Yuxin, Pagala, Vishwajeeth R., Finkelstein, David, Barton, Elisabeth R., Fan, Yiping, Labelle, Myriam, Peng, Junmin, Demontis, Fabio
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 30.07.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2019.06.094

Cover

Abstract Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. [Display omitted] •RNAi screening identifies ubiquitin-related enzymes that regulate myofiber size•The ubiquitin ligase UBR4 regulates myofiber size in Drosophila and mice•Loss of UBR4 induces hypertrophy via decreased ubiquitination of target proteins•The HAT1/RBBP4/RBBP7 histone-binding complex is a UBR4 target key for hypertrophy Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins.
AbstractList Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. : Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. Keywords: ubiquitin ligase, skeletal muscle growth, myofiber hypertrophy, muscle wasting, cancer cachexia, UBR4, Drosophila, myofiber size, HAT1, proteolysis
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo . We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins.
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. [Display omitted] •RNAi screening identifies ubiquitin-related enzymes that regulate myofiber size•The ubiquitin ligase UBR4 regulates myofiber size in Drosophila and mice•Loss of UBR4 induces hypertrophy via decreased ubiquitination of target proteins•The HAT1/RBBP4/RBBP7 histone-binding complex is a UBR4 target key for hypertrophy Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins.
Author Stover, Jared
Finkelstein, David
Barton, Elisabeth R.
Labelle, Myriam
Fan, Yiping
Hunt, Liam C.
Demontis, Fabio
Li, Yuxin
Haugen, Benard
Shaw, Timothy I.
Peng, Junmin
Pagala, Vishwajeeth R.
AuthorAffiliation 5 Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
2 Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
6 Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
7 Lead Contact
4 College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
3 Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
1 Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
AuthorAffiliation_xml – name: 2 Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– name: 7 Lead Contact
– name: 4 College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
– name: 1 Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– name: 5 Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– name: 3 Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– name: 6 Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
Author_xml – sequence: 1
  givenname: Liam C.
  surname: Hunt
  fullname: Hunt, Liam C.
  organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 2
  givenname: Jared
  surname: Stover
  fullname: Stover, Jared
  organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 3
  givenname: Benard
  surname: Haugen
  fullname: Haugen, Benard
  organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 4
  givenname: Timothy I.
  surname: Shaw
  fullname: Shaw, Timothy I.
  organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 5
  givenname: Yuxin
  surname: Li
  fullname: Li, Yuxin
  organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 6
  givenname: Vishwajeeth R.
  surname: Pagala
  fullname: Pagala, Vishwajeeth R.
  organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 7
  givenname: David
  surname: Finkelstein
  fullname: Finkelstein, David
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 8
  givenname: Elisabeth R.
  surname: Barton
  fullname: Barton, Elisabeth R.
  organization: College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
– sequence: 9
  givenname: Yiping
  surname: Fan
  fullname: Fan, Yiping
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 10
  givenname: Myriam
  surname: Labelle
  fullname: Labelle, Myriam
  organization: Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 11
  givenname: Junmin
  surname: Peng
  fullname: Peng, Junmin
  organization: Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
– sequence: 12
  givenname: Fabio
  surname: Demontis
  fullname: Demontis, Fabio
  email: fabio.demontis@stjude.org
  organization: Division of Developmental Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31365869$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvpP0AoRy4b7NjxBwekUj5asRVSRcXRcsaTXa-y8dbOVsq_x8suVcsBfLE9fucZa-Z9WRwNYcCieE1JRQkV71YVYB9xU9WE6oqIimj-rDipa0pntOby6NH5uDhLaUXyEoRSzV8Ux4wy0SihT4qf5-U3nMqb0GPZhViOSyxvW3-39aMfyrlf2JQDH294ma_XU-h8i7G8nDYYxxg2y2kX_xRDymff29IOrrz2gK-K553tE54d9tPi9svnHxeXs_n3r1cX5_MZNLoZZx1tHOOgwDGtuW3AAQWkmimwsqGKAXLSSdFRYS1Vbds6SZRqmBRAFNfstLjac12wK7OJfm3jZIL15ncgxIWxcfTQo3HQUoeis1wiVxxsLTnTDShmhe0cZtaHPWuzbdfoAIcx2v4J9OnL4JdmEe6NEFpSSTPg7QEQw90W02jWPuVB9XbAsE2mroWUUmnWZOmbx7UeivyZTBbwvQByc1PE7kFCidl5wKzM3gNm5wFDhMkeyGnv_0oDP9rRh92Pff-_5EMDME_s3mM0CTwOgM5HhDG31P8b8AtsA88s
CitedBy_id crossref_primary_10_1016_j_celrep_2022_111970
crossref_primary_10_1038_s41467_021_21738_8
crossref_primary_10_1093_plcell_koae117
crossref_primary_10_1038_s41467_022_30120_1
crossref_primary_10_1016_j_celrep_2021_109971
crossref_primary_10_1186_s12864_021_07677_0
crossref_primary_10_3389_fgene_2020_583124
crossref_primary_10_3892_ijmm_2024_5372
crossref_primary_10_1113_JP286681
crossref_primary_10_1016_j_celrep_2022_111934
crossref_primary_10_1016_j_gene_2024_149189
crossref_primary_10_3390_ijms23147602
crossref_primary_10_1128_mbio_03431_21
crossref_primary_10_1016_j_cmet_2021_03_005
crossref_primary_10_1152_ajpcell_00457_2023
crossref_primary_10_1038_s41467_022_29244_1
crossref_primary_10_1002_jcsm_13659
crossref_primary_10_1093_pnasnexus_pgad330
crossref_primary_10_1038_s44161_024_00533_w
crossref_primary_10_1042_BST20200694
crossref_primary_10_1038_s41598_024_79352_9
crossref_primary_10_1038_s41467_023_43262_7
crossref_primary_10_1016_j_crmeth_2024_100875
crossref_primary_10_1371_journal_pgen_1009926
crossref_primary_10_1038_s41467_020_20123_1
crossref_primary_10_1038_s42003_023_05602_7
crossref_primary_10_18632_aging_205751
crossref_primary_10_1186_s12887_021_02611_5
crossref_primary_10_3390_molecules26020407
crossref_primary_10_1152_ajpcell_00553_2024
crossref_primary_10_1186_s12915_021_01091_4
crossref_primary_10_3390_ijms21134759
crossref_primary_10_1002_jcp_30328
crossref_primary_10_1113_JP287235
crossref_primary_10_17221_105_2020_CJAS
crossref_primary_10_1038_s44319_024_00102_z
crossref_primary_10_1152_ajpcell_00115_2021
crossref_primary_10_1016_j_xpro_2021_100628
crossref_primary_10_1016_j_bbcan_2020_188359
crossref_primary_10_1038_s41598_021_98454_2
crossref_primary_10_3389_fneur_2023_1224241
crossref_primary_10_1016_j_molmed_2024_05_016
crossref_primary_10_1038_s41467_023_38624_0
crossref_primary_10_1152_ajpcell_00432_2020
crossref_primary_10_1371_journal_pbio_3002998
crossref_primary_10_1016_j_molcel_2025_01_002
crossref_primary_10_1038_s41467_023_42342_y
crossref_primary_10_1073_pnas_2012450117
crossref_primary_10_1152_japplphysiol_00021_2020
crossref_primary_10_3389_fnmol_2023_1121877
Cites_doi 10.1074/jbc.273.39.25216
10.1016/j.gde.2015.03.006
10.1038/nrm3217
10.1016/j.biocel.2013.05.016
10.1186/1471-2407-14-997
10.1016/S0960-9822(98)70040-5
10.1002/dvdy.24036
10.1186/2044-5040-2-8
10.1038/ng.2287
10.1101/gad.267419.115
10.1152/ajpendo.00204.2014
10.1242/dev.118.2.401
10.1096/fj.13-240580
10.1021/bi802198q
10.1002/embj.201386906
10.1371/journal.pone.0035273
10.1242/dmm.012559
10.1128/MCB.23.22.8255-8271.2003
10.1128/MCB.21.23.8007-8021.2001
10.1158/0008-5472.CAN-04-2102
10.1038/nmeth.1541
10.1093/hmg/ddw016
10.1016/j.cmet.2013.03.015
10.1016/j.cell.2010.07.011
10.1038/ncb1101-1009
10.1073/pnas.1217358110
10.1242/dmm.010389
10.1074/jbc.M803641200
10.1074/mcp.O114.039586
10.1186/1471-2105-12-357
10.1038/ncomms7670
10.1371/journal.pone.0166803
10.1113/jphysiol.2014.279406
10.1093/bioinformatics/btu638
10.1152/japplphysiol.00126.2011
10.1126/scitranslmed.aac4976
10.1172/JCI7300
10.1186/s12864-017-3548-2
10.3389/fphys.2014.00069
10.1128/MCB.25.16.7120-7136.2005
10.1038/celldisc.2016.40
10.1016/j.cell.2010.08.004
10.1038/ncomms7973
10.1016/j.cell.2015.08.031
10.1021/pr900251d
10.1006/dbio.1995.1269
10.1016/j.devcel.2011.09.011
10.1242/dev.027466
10.1007/978-1-4939-2425-7_17
10.1152/ajpcell.00291.2016
10.1016/j.molcel.2013.07.002
10.1096/fj.12-222711
10.1021/pr100409r
10.1083/jcb.201304167
10.1242/jcs.061119
10.1074/mcp.M114.042168
10.4081/bam.2014.3.173
10.1038/ng.2772
10.1093/jn/129.1.227S
10.1038/sj.emboj.7601952
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2019.06.094
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1281.e6
ExternalDocumentID oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde
PMC6697171
31365869
10_1016_j_celrep_2019_06_094
S2211124719308800
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA021765
– fundername: NIA NIH HHS
  grantid: R01 AG047928
– fundername: NIAMS NIH HHS
  grantid: U54 AR052646
– fundername: NIA NIH HHS
  grantid: R01 AG055532
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-f15d34c8cd3994a5cdc1ce1938ca75183ce40f76f16aa18bbbd70885376c08493
IEDL.DBID DOA
ISSN 2211-1247
IngestDate Wed Aug 27 01:01:04 EDT 2025
Thu Aug 21 18:18:19 EDT 2025
Fri Sep 05 12:21:06 EDT 2025
Mon Jul 21 05:51:33 EDT 2025
Tue Jul 01 02:59:03 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Wed May 17 00:03:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ubiquitin ligase
myofiber size
skeletal muscle growth
Drosophila
cancer cachexia
HAT1
UBR4
muscle wasting
proteolysis
myofiber hypertrophy
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-f15d34c8cd3994a5cdc1ce1938ca75183ce40f76f16aa18bbbd70885376c08493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
L.C.H. performed most of the experiments and analyzed data, with help from J.S. and B.H.; V.R.P. and J.P. performed mass-spectrometry experiments; E.R.B. supervised the muscle force measurements; T.I.S., Y.L., and J.P. analyzed mass-spectrometry data; D.F. and Y.F. analyzed RNA-seq data; M.L. provided support for cancer cachexia experiments; L.C.H. and F.D. wrote the manuscript; and F.D. supervised the project.
OpenAccessLink https://doaj.org/article/dcb1de6fa47e484ca274395c83a6afde
PMID 31365869
PQID 2267778935
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697171
proquest_miscellaneous_2267778935
pubmed_primary_31365869
crossref_primary_10_1016_j_celrep_2019_06_094
crossref_citationtrail_10_1016_j_celrep_2019_06_094
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_06_094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-30
PublicationDateYYYYMMDD 2019-07-30
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bonaldo, Sandri (bib7) 2013; 6
Lecker, Solomon, Price, Kwon, Mitch, Goldberg (bib28) 1999; 104
Lin, Tao, Gao, Li, Zhou, Guan, Xiong, Lei (bib29) 2013; 51
Ranganayakulu, Zhao, Dokidis, Molkentin, Olson, Schulz (bib37) 1995; 171
Sartori, Schirwis, Blaauw, Bortolanza, Zhao, Enzo, Stantzou, Mouisel, Toniolo, Ferry (bib41) 2013; 45
Zhang, Lin, Kwon, Li (bib58) 2013; 27
Yang, Xu, Zhao, Zou, Zhang, Zhang, Li, Ren, Wang, Lei (bib57) 2015; 6
Besche, Sha, Kukushkin, Peth, Hock, Kim, Gygi, Gutierrez, Liao, Dick, Goldberg (bib4) 2014; 33
Bodine, Baehr (bib6) 2014; 307
Sriram, Kim, Kwon (bib45) 2011; 12
Choi, Larsen, Lin, Breitkreutz, Mellacheruvu, Fermin, Qin, Tyers, Gingras, Nesvizhskii (bib10) 2011; 8
Xu, Anderson, Ye (bib56) 2016; 2
Puppa, Gao, Narsale, Carson (bib36) 2014; 28
McCarthy, Srikuea, Kirby, Peterson, Esser (bib31) 2012; 2
Milan, Romanello, Pescatore, Armani, Paik, Frasson, Seydel, Zhao, Abraham, Goldberg (bib33) 2015; 6
Judge, Wu, Beharry, Roberts, Ferreira, Kandarian, Judge (bib22) 2014; 14
Kwon, Xia, Davydov, Lecker, Varshavsky (bib25) 2001; 21
Wu, Satomi, Walsh (bib54) 2017; 18
Reid, Judge, Bodine (bib38) 2014; 592
Anders, Pyl, Huber (bib1) 2015; 31
Brand, Perrimon (bib8) 1993; 118
Hunt, Xu, Finkelstein, Fan, Carroll, Cheng, Eisenman, Demontis (bib20) 2015; 29
Hong, Kaustov, Coyaud, Srikumar, Wan, Arrowsmith, Raught (bib18) 2015; 14
Kwon, Xia, An, Tasaki, Davydov, Seo, Sheng, Xie, Varshavsky (bib26) 2003; 23
Besche, Haas, Gygi, Goldberg (bib3) 2009; 48
Kim, Jin, Duan, Chen (bib23) 2015; 32
Tasaki, Kim, Zakrzewska, Lee, Kang, Yoo, Cha-Molstad, Hwang, Soung, Sung (bib48) 2013; 110
Demontis, Piccirillo, Goldberg, Perrimon (bib14) 2013; 6
Tisdale (bib49) 2010; 142
Castets, Lin, Rion, Di Fulvio, Romanino, Guridi, Frank, Tintignac, Sinnreich, Rüegg (bib9) 2013; 17
Pagala, High, Wang, Tan, Kodali, Mishra, Kavdia, Xu, Wu, Peng (bib34) 2015; 1278
Baehr, Tunzi, Bodine (bib2) 2014; 5
Lecker, Solomon, Mitch, Goldberg (bib27) 1999; 129
Cohen, Lee, Zhai, Gygi, Goldberg (bib12) 2014; 204
Demontis, Perrimon (bib13) 2009; 136
Mendias, Kayupov, Bradley, Brooks, Claflin (bib32) 2011; 111
Piccirillo, Demontis, Perrimon, Goldberg (bib35) 2014; 243
Tasaki, Zakrzewska, Dudgeon, Jiang, Lazo, Kwon (bib47) 2009; 284
Winbanks, Murphy, Bernardo, Qian, Liu, Sepulveda, Beyer, Hagg, Thomson, Chen (bib52) 2016; 8
Wang, Li, Wu, Wang, Tan, Peng (bib51) 2014; 13
Johnston, Murphy, Jenkinson, Laine, Emmrich, Faou, Weston, Jayatilleke, Schloegel, Talbo (bib21) 2015; 162
Zhou, Afjehi-Sadat, Asress, Duong, Cudkowicz, Glass, Peng (bib59) 2010; 9
Shavlakadze, Chai, Maley, Cozens, Grounds, Winn, Rosenthal, Grounds (bib42) 2010; 123
Tasaki, Mulder, Iwamatsu, Lee, Davydov, Varshavsky, Muesing, Kwon (bib46) 2005; 25
Hu, Flockhart, Vinayagam, Bergwitz, Berger, Perrimon, Mohr (bib19) 2011; 12
Verreault, Kaufman, Kobayashi, Stillman (bib50) 1998; 8
Witt, Witt, Lerche, Labeit, Back, Labeit (bib53) 2008; 27
Rinschen, Bharill, Wu, Kohli, Reinert, Kretz, Saez, Schermer, Höhne, Bartram (bib39) 2016; 25
Kwak, Zhou, Solomon, Baracos, Davis, Bannon, Boyle, Lacey, Han (bib24) 2004; 64
Downing, Wilson, Zhang, Mardis, Pui, Ding, Ley, Evans (bib15) 2012; 44
Solomon, Lecker, Goldberg (bib44) 1998; 273
Xu, Duong, Peng (bib55) 2009; 8
Hockerman, Dethrow, Hameed, Doran, Jaeger, Wang, Pond (bib17) 2014; 24
Ciciliot, Rossi, Dyar, Blaauw, Schiaffino (bib11) 2013; 45
Liu, Hammers, Barton, Sweeney (bib30) 2016; 11
Zhou, Wang, Lu, Song, Kwak, Jiao, Rosenfeld, Chen, Boone, Simonet (bib60) 2010; 142
Rommel, Bodine, Clarke, Rossman, Nunez, Stitt, Yancopoulos, Glass (bib40) 2001; 3
Fajardo, Rietze, Chambers, Bellissimo, Bombardier, Quadrilatero, Tupling (bib16) 2017; 313
Shi, Luo, Eash, Ibebunjo, Glass (bib43) 2011; 21
Bloemberg, Quadrilatero (bib5) 2012; 7
Pagala (10.1016/j.celrep.2019.06.094_bib34) 2015; 1278
Fajardo (10.1016/j.celrep.2019.06.094_bib16) 2017; 313
Yang (10.1016/j.celrep.2019.06.094_bib57) 2015; 6
Shavlakadze (10.1016/j.celrep.2019.06.094_bib42) 2010; 123
Mendias (10.1016/j.celrep.2019.06.094_bib32) 2011; 111
Bonaldo (10.1016/j.celrep.2019.06.094_bib7) 2013; 6
Kwon (10.1016/j.celrep.2019.06.094_bib26) 2003; 23
Wu (10.1016/j.celrep.2019.06.094_bib54) 2017; 18
Besche (10.1016/j.celrep.2019.06.094_bib3) 2009; 48
Verreault (10.1016/j.celrep.2019.06.094_bib50) 1998; 8
Hong (10.1016/j.celrep.2019.06.094_bib18) 2015; 14
Sriram (10.1016/j.celrep.2019.06.094_bib45) 2011; 12
McCarthy (10.1016/j.celrep.2019.06.094_bib31) 2012; 2
Liu (10.1016/j.celrep.2019.06.094_bib30) 2016; 11
Zhou (10.1016/j.celrep.2019.06.094_bib60) 2010; 142
Downing (10.1016/j.celrep.2019.06.094_bib15) 2012; 44
Demontis (10.1016/j.celrep.2019.06.094_bib14) 2013; 6
Lin (10.1016/j.celrep.2019.06.094_bib29) 2013; 51
Bodine (10.1016/j.celrep.2019.06.094_bib6) 2014; 307
Zhang (10.1016/j.celrep.2019.06.094_bib58) 2013; 27
Lecker (10.1016/j.celrep.2019.06.094_bib28) 1999; 104
Bloemberg (10.1016/j.celrep.2019.06.094_bib5) 2012; 7
Kwon (10.1016/j.celrep.2019.06.094_bib25) 2001; 21
Rommel (10.1016/j.celrep.2019.06.094_bib40) 2001; 3
Solomon (10.1016/j.celrep.2019.06.094_bib44) 1998; 273
Tisdale (10.1016/j.celrep.2019.06.094_bib49) 2010; 142
Milan (10.1016/j.celrep.2019.06.094_bib33) 2015; 6
Anders (10.1016/j.celrep.2019.06.094_bib1) 2015; 31
Tasaki (10.1016/j.celrep.2019.06.094_bib47) 2009; 284
Castets (10.1016/j.celrep.2019.06.094_bib9) 2013; 17
Baehr (10.1016/j.celrep.2019.06.094_bib2) 2014; 5
Puppa (10.1016/j.celrep.2019.06.094_bib36) 2014; 28
Tasaki (10.1016/j.celrep.2019.06.094_bib48) 2013; 110
Xu (10.1016/j.celrep.2019.06.094_bib55) 2009; 8
Hu (10.1016/j.celrep.2019.06.094_bib19) 2011; 12
Witt (10.1016/j.celrep.2019.06.094_bib53) 2008; 27
Cohen (10.1016/j.celrep.2019.06.094_bib12) 2014; 204
Kwak (10.1016/j.celrep.2019.06.094_bib24) 2004; 64
Zhou (10.1016/j.celrep.2019.06.094_bib59) 2010; 9
Lecker (10.1016/j.celrep.2019.06.094_bib27) 1999; 129
Hockerman (10.1016/j.celrep.2019.06.094_bib17) 2014; 24
Demontis (10.1016/j.celrep.2019.06.094_bib13) 2009; 136
Kim (10.1016/j.celrep.2019.06.094_bib23) 2015; 32
Besche (10.1016/j.celrep.2019.06.094_bib4) 2014; 33
Choi (10.1016/j.celrep.2019.06.094_bib10) 2011; 8
Piccirillo (10.1016/j.celrep.2019.06.094_bib35) 2014; 243
Shi (10.1016/j.celrep.2019.06.094_bib43) 2011; 21
Johnston (10.1016/j.celrep.2019.06.094_bib21) 2015; 162
Tasaki (10.1016/j.celrep.2019.06.094_bib46) 2005; 25
Reid (10.1016/j.celrep.2019.06.094_bib38) 2014; 592
Xu (10.1016/j.celrep.2019.06.094_bib56) 2016; 2
Rinschen (10.1016/j.celrep.2019.06.094_bib39) 2016; 25
Hunt (10.1016/j.celrep.2019.06.094_bib20) 2015; 29
Brand (10.1016/j.celrep.2019.06.094_bib8) 1993; 118
Winbanks (10.1016/j.celrep.2019.06.094_bib52) 2016; 8
Ciciliot (10.1016/j.celrep.2019.06.094_bib11) 2013; 45
Ranganayakulu (10.1016/j.celrep.2019.06.094_bib37) 1995; 171
Wang (10.1016/j.celrep.2019.06.094_bib51) 2014; 13
Sartori (10.1016/j.celrep.2019.06.094_bib41) 2013; 45
Judge (10.1016/j.celrep.2019.06.094_bib22) 2014; 14
References_xml – volume: 2
  start-page: 16040
  year: 2016
  ident: bib56
  article-title: The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation
  publication-title: Cell Discov.
– volume: 29
  start-page: 2475
  year: 2015
  end-page: 2489
  ident: bib20
  article-title: The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling
  publication-title: Genes Dev.
– volume: 9
  start-page: 5133
  year: 2010
  end-page: 5141
  ident: bib59
  article-title: Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach
  publication-title: J. Proteome Res.
– volume: 273
  start-page: 25216
  year: 1998
  end-page: 25222
  ident: bib44
  article-title: The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 1309
  year: 2013
  end-page: 1318
  ident: bib41
  article-title: BMP signaling controls muscle mass
  publication-title: Nat. Genet.
– volume: 204
  start-page: 747
  year: 2014
  end-page: 758
  ident: bib12
  article-title: Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation
  publication-title: J. Cell Biol.
– volume: 17
  start-page: 731
  year: 2013
  end-page: 744
  ident: bib9
  article-title: Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy
  publication-title: Cell Metab.
– volume: 142
  start-page: 511
  year: 2010
  end-page: 512
  ident: bib49
  article-title: Reversing cachexia
  publication-title: Cell
– volume: 111
  start-page: 185
  year: 2011
  end-page: 191
  ident: bib32
  article-title: Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation
  publication-title: J. Appl. Physiol.
– volume: 307
  start-page: E469
  year: 2014
  end-page: E484
  ident: bib6
  article-title: Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 51
  start-page: 506
  year: 2013
  end-page: 518
  ident: bib29
  article-title: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
  publication-title: Mol. Cell
– volume: 129
  start-page: 227S
  year: 1999
  end-page: 237S
  ident: bib27
  article-title: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states
  publication-title: J. Nutr.
– volume: 12
  start-page: 357
  year: 2011
  ident: bib19
  article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies
  publication-title: BMC Bioinformatics
– volume: 1278
  start-page: 281
  year: 2015
  end-page: 305
  ident: bib34
  article-title: Quantitative protein analysis by mass spectrometry
  publication-title: Methods Mol. Biol.
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib1
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 33
  start-page: 1159
  year: 2014
  end-page: 1176
  ident: bib4
  article-title: Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
  publication-title: EMBO J.
– volume: 6
  start-page: 6670
  year: 2015
  ident: bib33
  article-title: Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3663
  year: 2014
  end-page: 3673
  ident: bib51
  article-title: JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy
  publication-title: Mol. Cell. Proteomics
– volume: 284
  start-page: 1884
  year: 2009
  end-page: 1895
  ident: bib47
  article-title: The substrate recognition domains of the N-end rule pathway
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 2191
  year: 2013
  end-page: 2199
  ident: bib11
  article-title: Muscle type and fiber type specificity in muscle wasting
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 171
  start-page: 169
  year: 1995
  end-page: 181
  ident: bib37
  article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila
  publication-title: Dev. Biol.
– volume: 5
  start-page: 69
  year: 2014
  ident: bib2
  article-title: Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression
  publication-title: Front. Physiol.
– volume: 44
  start-page: 619
  year: 2012
  end-page: 622
  ident: bib15
  article-title: The Pediatric Cancer Genome Project
  publication-title: Nat. Genet.
– volume: 8
  start-page: 3944
  year: 2009
  end-page: 3950
  ident: bib55
  article-title: Systematical optimization of reverse-phase chromatography for shotgun proteomics
  publication-title: J. Proteome Res.
– volume: 21
  start-page: 8007
  year: 2001
  end-page: 8021
  ident: bib25
  article-title: Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway
  publication-title: Mol. Cell. Biol.
– volume: 118
  start-page: 401
  year: 1993
  end-page: 415
  ident: bib8
  article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes
  publication-title: Development
– volume: 24
  start-page: 3319
  year: 2014
  ident: bib17
  article-title: The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone
  publication-title: Eur. J. Transl. Myol.
– volume: 142
  start-page: 531
  year: 2010
  end-page: 543
  ident: bib60
  article-title: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival
  publication-title: Cell
– volume: 25
  start-page: 1328
  year: 2016
  end-page: 1344
  ident: bib39
  article-title: The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes
  publication-title: Hum. Mol. Genet.
– volume: 110
  start-page: 3800
  year: 2013
  end-page: 3805
  ident: bib48
  article-title: UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 136
  start-page: 983
  year: 2009
  end-page: 993
  ident: bib13
  article-title: Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila
  publication-title: Development
– volume: 104
  start-page: 1411
  year: 1999
  end-page: 1420
  ident: bib28
  article-title: Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats
  publication-title: J. Clin. Invest.
– volume: 6
  start-page: 1339
  year: 2013
  end-page: 1352
  ident: bib14
  article-title: Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models
  publication-title: Dis. Model. Mech.
– volume: 21
  start-page: 835
  year: 2011
  end-page: 847
  ident: bib43
  article-title: The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling
  publication-title: Dev. Cell
– volume: 8
  start-page: 348ra398
  year: 2016
  ident: bib52
  article-title: Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice
  publication-title: Sci. Transl. Med.
– volume: 2
  start-page: 8
  year: 2012
  ident: bib31
  article-title: Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting
  publication-title: Skelet. Muscle
– volume: 14
  start-page: 997
  year: 2014
  ident: bib22
  article-title: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia
  publication-title: BMC Cancer
– volume: 11
  start-page: e0166803
  year: 2016
  ident: bib30
  article-title: Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy
  publication-title: PLoS ONE
– volume: 313
  start-page: C154
  year: 2017
  end-page: C161
  ident: bib16
  article-title: Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 6
  start-page: 25
  year: 2013
  end-page: 39
  ident: bib7
  article-title: Cellular and molecular mechanisms of muscle atrophy
  publication-title: Dis. Model. Mech.
– volume: 243
  start-page: 201
  year: 2014
  end-page: 215
  ident: bib35
  article-title: Mechanisms of muscle growth and atrophy in mammals and Drosophila
  publication-title: Dev. Dyn.
– volume: 32
  start-page: 162
  year: 2015
  end-page: 170
  ident: bib23
  article-title: Mechanisms of myoblast fusion during muscle development
  publication-title: Curr. Opin. Genet. Dev.
– volume: 7
  start-page: e35273
  year: 2012
  ident: bib5
  article-title: Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis
  publication-title: PLoS ONE
– volume: 3
  start-page: 1009
  year: 2001
  end-page: 1013
  ident: bib40
  article-title: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways
  publication-title: Nat. Cell Biol.
– volume: 123
  start-page: 960
  year: 2010
  end-page: 971
  ident: bib42
  article-title: A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo
  publication-title: J. Cell Sci.
– volume: 14
  start-page: 674
  year: 2015
  end-page: 685
  ident: bib18
  article-title: KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation
  publication-title: Mol. Cell. Proteomics
– volume: 27
  start-page: 350
  year: 2008
  end-page: 360
  ident: bib53
  article-title: Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2
  publication-title: EMBO J.
– volume: 592
  start-page: 5345
  year: 2014
  end-page: 5347
  ident: bib38
  article-title: CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis
  publication-title: J. Physiol.
– volume: 23
  start-page: 8255
  year: 2003
  end-page: 8271
  ident: bib26
  article-title: Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway
  publication-title: Mol. Cell. Biol.
– volume: 64
  start-page: 8193
  year: 2004
  end-page: 8198
  ident: bib24
  article-title: Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia
  publication-title: Cancer Res.
– volume: 25
  start-page: 7120
  year: 2005
  end-page: 7136
  ident: bib46
  article-title: A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons
  publication-title: Mol. Cell. Biol.
– volume: 28
  start-page: 998
  year: 2014
  end-page: 1009
  ident: bib36
  article-title: Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia
  publication-title: FASEB J.
– volume: 6
  start-page: 6973
  year: 2015
  ident: bib57
  article-title: Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer
  publication-title: Nat. Commun.
– volume: 8
  start-page: 96
  year: 1998
  end-page: 108
  ident: bib50
  article-title: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase
  publication-title: Curr. Biol.
– volume: 162
  start-page: 1365
  year: 2015
  end-page: 1378
  ident: bib21
  article-title: Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival
  publication-title: Cell
– volume: 18
  start-page: 181
  year: 2017
  ident: bib54
  article-title: RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome
  publication-title: BMC Genomics
– volume: 8
  start-page: 70
  year: 2011
  end-page: 73
  ident: bib10
  article-title: SAINT: probabilistic scoring of affinity purification-mass spectrometry data
  publication-title: Nat. Methods
– volume: 27
  start-page: 2893
  year: 2013
  end-page: 2901
  ident: bib58
  article-title: Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2
  publication-title: FASEB J.
– volume: 12
  start-page: 735
  year: 2011
  end-page: 747
  ident: bib45
  article-title: The N-end rule pathway: emerging functions and molecular principles of substrate recognition
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 48
  start-page: 2538
  year: 2009
  end-page: 2549
  ident: bib3
  article-title: Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins
  publication-title: Biochemistry
– volume: 273
  start-page: 25216
  year: 1998
  ident: 10.1016/j.celrep.2019.06.094_bib44
  article-title: The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.39.25216
– volume: 32
  start-page: 162
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib23
  article-title: Mechanisms of myoblast fusion during muscle development
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2015.03.006
– volume: 12
  start-page: 735
  year: 2011
  ident: 10.1016/j.celrep.2019.06.094_bib45
  article-title: The N-end rule pathway: emerging functions and molecular principles of substrate recognition
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3217
– volume: 45
  start-page: 2191
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib11
  article-title: Muscle type and fiber type specificity in muscle wasting
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2013.05.016
– volume: 14
  start-page: 997
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib22
  article-title: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-997
– volume: 8
  start-page: 96
  year: 1998
  ident: 10.1016/j.celrep.2019.06.094_bib50
  article-title: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(98)70040-5
– volume: 243
  start-page: 201
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib35
  article-title: Mechanisms of muscle growth and atrophy in mammals and Drosophila
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24036
– volume: 2
  start-page: 8
  year: 2012
  ident: 10.1016/j.celrep.2019.06.094_bib31
  article-title: Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting
  publication-title: Skelet. Muscle
  doi: 10.1186/2044-5040-2-8
– volume: 44
  start-page: 619
  year: 2012
  ident: 10.1016/j.celrep.2019.06.094_bib15
  article-title: The Pediatric Cancer Genome Project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2287
– volume: 29
  start-page: 2475
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib20
  article-title: The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling
  publication-title: Genes Dev.
  doi: 10.1101/gad.267419.115
– volume: 307
  start-page: E469
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib6
  article-title: Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00204.2014
– volume: 118
  start-page: 401
  year: 1993
  ident: 10.1016/j.celrep.2019.06.094_bib8
  article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes
  publication-title: Development
  doi: 10.1242/dev.118.2.401
– volume: 28
  start-page: 998
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib36
  article-title: Skeletal muscle glycoprotein 130's role in Lewis lung carcinoma-induced cachexia
  publication-title: FASEB J.
  doi: 10.1096/fj.13-240580
– volume: 48
  start-page: 2538
  year: 2009
  ident: 10.1016/j.celrep.2019.06.094_bib3
  article-title: Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins
  publication-title: Biochemistry
  doi: 10.1021/bi802198q
– volume: 33
  start-page: 1159
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib4
  article-title: Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
  publication-title: EMBO J.
  doi: 10.1002/embj.201386906
– volume: 7
  start-page: e35273
  year: 2012
  ident: 10.1016/j.celrep.2019.06.094_bib5
  article-title: Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035273
– volume: 6
  start-page: 1339
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib14
  article-title: Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.012559
– volume: 23
  start-page: 8255
  year: 2003
  ident: 10.1016/j.celrep.2019.06.094_bib26
  article-title: Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.22.8255-8271.2003
– volume: 21
  start-page: 8007
  year: 2001
  ident: 10.1016/j.celrep.2019.06.094_bib25
  article-title: Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.23.8007-8021.2001
– volume: 64
  start-page: 8193
  year: 2004
  ident: 10.1016/j.celrep.2019.06.094_bib24
  article-title: Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-2102
– volume: 8
  start-page: 70
  year: 2011
  ident: 10.1016/j.celrep.2019.06.094_bib10
  article-title: SAINT: probabilistic scoring of affinity purification-mass spectrometry data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1541
– volume: 25
  start-page: 1328
  year: 2016
  ident: 10.1016/j.celrep.2019.06.094_bib39
  article-title: The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw016
– volume: 17
  start-page: 731
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib9
  article-title: Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.015
– volume: 142
  start-page: 531
  year: 2010
  ident: 10.1016/j.celrep.2019.06.094_bib60
  article-title: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.011
– volume: 3
  start-page: 1009
  year: 2001
  ident: 10.1016/j.celrep.2019.06.094_bib40
  article-title: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1101-1009
– volume: 110
  start-page: 3800
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib48
  article-title: UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1217358110
– volume: 6
  start-page: 25
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib7
  article-title: Cellular and molecular mechanisms of muscle atrophy
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.010389
– volume: 284
  start-page: 1884
  year: 2009
  ident: 10.1016/j.celrep.2019.06.094_bib47
  article-title: The substrate recognition domains of the N-end rule pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803641200
– volume: 13
  start-page: 3663
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib51
  article-title: JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O114.039586
– volume: 12
  start-page: 357
  year: 2011
  ident: 10.1016/j.celrep.2019.06.094_bib19
  article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-357
– volume: 6
  start-page: 6670
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib33
  article-title: Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7670
– volume: 11
  start-page: e0166803
  year: 2016
  ident: 10.1016/j.celrep.2019.06.094_bib30
  article-title: Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0166803
– volume: 592
  start-page: 5345
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib38
  article-title: CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2014.279406
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib1
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 111
  start-page: 185
  year: 2011
  ident: 10.1016/j.celrep.2019.06.094_bib32
  article-title: Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00126.2011
– volume: 8
  start-page: 348ra398
  year: 2016
  ident: 10.1016/j.celrep.2019.06.094_bib52
  article-title: Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac4976
– volume: 104
  start-page: 1411
  year: 1999
  ident: 10.1016/j.celrep.2019.06.094_bib28
  article-title: Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI7300
– volume: 18
  start-page: 181
  year: 2017
  ident: 10.1016/j.celrep.2019.06.094_bib54
  article-title: RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3548-2
– volume: 5
  start-page: 69
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib2
  article-title: Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00069
– volume: 25
  start-page: 7120
  year: 2005
  ident: 10.1016/j.celrep.2019.06.094_bib46
  article-title: A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.16.7120-7136.2005
– volume: 2
  start-page: 16040
  year: 2016
  ident: 10.1016/j.celrep.2019.06.094_bib56
  article-title: The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation
  publication-title: Cell Discov.
  doi: 10.1038/celldisc.2016.40
– volume: 142
  start-page: 511
  year: 2010
  ident: 10.1016/j.celrep.2019.06.094_bib49
  article-title: Reversing cachexia
  publication-title: Cell
  doi: 10.1016/j.cell.2010.08.004
– volume: 6
  start-page: 6973
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib57
  article-title: Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7973
– volume: 162
  start-page: 1365
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib21
  article-title: Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.031
– volume: 8
  start-page: 3944
  year: 2009
  ident: 10.1016/j.celrep.2019.06.094_bib55
  article-title: Systematical optimization of reverse-phase chromatography for shotgun proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900251d
– volume: 171
  start-page: 169
  year: 1995
  ident: 10.1016/j.celrep.2019.06.094_bib37
  article-title: A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.1269
– volume: 21
  start-page: 835
  year: 2011
  ident: 10.1016/j.celrep.2019.06.094_bib43
  article-title: The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.09.011
– volume: 136
  start-page: 983
  year: 2009
  ident: 10.1016/j.celrep.2019.06.094_bib13
  article-title: Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila
  publication-title: Development
  doi: 10.1242/dev.027466
– volume: 1278
  start-page: 281
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib34
  article-title: Quantitative protein analysis by mass spectrometry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2425-7_17
– volume: 313
  start-page: C154
  year: 2017
  ident: 10.1016/j.celrep.2019.06.094_bib16
  article-title: Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00291.2016
– volume: 51
  start-page: 506
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib29
  article-title: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.07.002
– volume: 27
  start-page: 2893
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib58
  article-title: Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2
  publication-title: FASEB J.
  doi: 10.1096/fj.12-222711
– volume: 9
  start-page: 5133
  year: 2010
  ident: 10.1016/j.celrep.2019.06.094_bib59
  article-title: Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100409r
– volume: 204
  start-page: 747
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib12
  article-title: Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201304167
– volume: 123
  start-page: 960
  issue: Pt 6
  year: 2010
  ident: 10.1016/j.celrep.2019.06.094_bib42
  article-title: A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.061119
– volume: 14
  start-page: 674
  year: 2015
  ident: 10.1016/j.celrep.2019.06.094_bib18
  article-title: KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.042168
– volume: 24
  start-page: 3319
  year: 2014
  ident: 10.1016/j.celrep.2019.06.094_bib17
  article-title: The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone
  publication-title: Eur. J. Transl. Myol.
  doi: 10.4081/bam.2014.3.173
– volume: 45
  start-page: 1309
  year: 2013
  ident: 10.1016/j.celrep.2019.06.094_bib41
  article-title: BMP signaling controls muscle mass
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2772
– volume: 129
  start-page: 227S
  issue: 1S, Suppl
  year: 1999
  ident: 10.1016/j.celrep.2019.06.094_bib27
  article-title: Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states
  publication-title: J. Nutr.
  doi: 10.1093/jn/129.1.227S
– volume: 27
  start-page: 350
  year: 2008
  ident: 10.1016/j.celrep.2019.06.094_bib53
  article-title: Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601952
SSID ssj0000601194
Score 2.4769557
Snippet Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1268
SubjectTerms Animals
Calmodulin-Binding Proteins - genetics
Calmodulin-Binding Proteins - metabolism
cancer cachexia
Drosophila
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
HAT1
Hypertrophy
Mice
Muscle Proteins - genetics
Muscle Proteins - metabolism
muscle wasting
myofiber hypertrophy
myofiber size
Myofibrils - enzymology
proteolysis
skeletal muscle growth
ubiquitin ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
UBR4
SummonAdditionalLinks – databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQSzPsoCMxDVq3Nixc9wurCqgHBYqeov8XIKqZAnpof-eGSepCBxW4hjHSZzx2PNNMvMNIW_tIghmmEl4WIiEyzxNTCHAS_GBWdAX7SwmJ68_56sN_7AV2xNyOebCYFjlsPf3e3rcrYeW-SDN-W1Vzb8swHcB6yQBgsBSSdFvx6xSTOLbLo_fWZBvhMV6iNg_wQvGDLoY5mX9rvVIXMmKSORZ8ImFikT-E0P1LxD9O57yDwN19ZA8GJAlvegHf0ZOfP2I3OtrTR4ek28X9KM_0Otm5ykAVQrAj25M9XNfdVVNP1U3YM7oZnnNKRyuD6Bzxrd0BW5q27UNTAa2v2tj2YNqp6muHV3DLvOEbK7ef71cJUNVhcSKQnRJYMJl3CrrAJtwLayzzHoQorIa_8Fk1vM0yDywXGumjDFOgnyR9sWmihfZU3JaN7V_TqjiTgekcE-zDNxsZ1RgkhnFRPCOOzEj2SjJ0g6U41j5YleOsWU_yl7-Jcq_xBC7gs9IcrzqtqfcuKP_Eifp2BcJs2ND096Ug8aUzhrmfB40l54rbvUCPTFhVaZzHZyfETlOcTnRP7hVdcfj34waUcLSxP8tuvbN_lcJyFZKCYAQBPGs15DjIDMML1R5Ac-d6M7kLaZn6up7pP_O8wJ8cPbiv0d8Tu7jUfxCnb4kp127968AWnXmdVw7vwEXfCHM
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERKXijdbHjIS16B1YsfJAaEWqFbAcqiI6M3yswRFCU2zEvvvmcljITzUC8c4jhOPx_Y3mfE3hDy3cRDMMBPxEIuIy3QZmVyAleIDs6Av2lk8nLz-mK4K_u5MnO2RKWfrKMDLv5p2mE-qaKsX3y-2r2DCv_wZq2V91Xpkn2R5z8aZ82vkeu8xwmC-EfAPazNynKGrOY4xlivmcjpP94-GZvtVT-s_27b-hKW_R1f-sl2d3CIHI86kR4Ni3CZ7vr5DbgyZJ7d3yecj-t5v6WlTeQqwlQIMpIUpLzZlV9b0Q3kOmxstjk85hcv1FjTQ-JauwGhtu7aBocHyN22fBKGsNNW1o2tYc-6R4uTtp9eraMyxEFmRiy4KTLiE28w6QCpcC-sssx5QXWY1emQS6_kyyDSwVGuWGWOchIUJSWDsMuN5cp_s103tHxKacacDErovkwSMbmeywCQzGRPBO-7EgiSTJJUdCcgxD0alpkizr2qQv0L5Kwy4y_mCRLunvg0EHFfUP8ZB2tVF-uy-oGnP1TgblbOGOZ8GzaXnGbc6RrtM2CzRqQ7OL4ichliNSGRAGNBUecXrn00aoWCiovdF177ZXCrAuVJKgIcgiAeDhuw-MsFgwyzN4b0z3Zn1Yn6nLr_0ZOBpmoNFzg7_R7cfkZvYlf7X9fIx2e_ajX8CmKszT_tp9AMCZCqq
  priority: 102
  providerName: Scholars Portal
Title A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice
URI https://dx.doi.org/10.1016/j.celrep.2019.06.094
https://www.ncbi.nlm.nih.gov/pubmed/31365869
https://www.proquest.com/docview/2267778935
https://pubmed.ncbi.nlm.nih.gov/PMC6697171
https://doaj.org/article/dcb1de6fa47e484ca274395c83a6afde
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG8K7MpIXCPixI6d45bdVXmUw4qK3iw_IahKIaSH_ntm8qgaOPTCxVIcJ47HY_ubePwNIW9cFgWzzCY8ZiLhskgTWwqwUkJkDvTFeIeHk5efi8WKf1iL9VGoL_QJ6-mBe8G99c4yH4pouAxccWcyhNDCqdwUJvqAs29apkfGVD8HI5cZbilnGfpsZVyO5-Y65y4XNk1AukpWdvSdJZ-sSx19_2R5-hd-_u1FebQs3Twg9wc8SS_7djwkd0L9iNztI0zuH5Ovl_Rj2NPb7SZQgKcU4B5d2erXrmqrmn6qvsEiRlfzW07hcrkHTbOhoQswTpu22UIXYP5V0wU7qDaGmtrTJcwtT8jq5vrLu0UyxFJInChFm0QmfM6dch4QCTfCecdcAPSmnMGdl9wFnkZZRFYYw5S11kuYgJDsxaWKl_lTclZv6_CcUMW9iUjcnuY5GNfeqsgks4qJGDz3YkbyUZLaDUTjGO9io0ePsh-6l79G-Wt0rCv5jCSHp372RBsnys-xkw5lkSa7ywDl0YPy6FPKMyNy7GI9II4eScCrqhPVvx41QsOAxF0WU4ft7rcGPCulBBgIgnjWa8jhI3N0KlRFCfVOdGfSiumduvrekX4XRQmWN3vxP5r9ktzDpnS_qNNX5KxtduEcsFVrL7phBOn79RzSJVd_AFdkJBI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFEW7FH3X6YsFugoWLVKkxjht4DR2hjRGvRF8JioMKVXswf--R0oyqnYI0FF8SNTxyPtOOn6H0Gcz8YxoohPqJyyhPE8TXTDwUpwnBvRFWRMOJy8u8tmSflux1QE66c_ChLDKbu9v9_S4W3cl406a49uyHH-fgO8C1okDBIGlkoLf_gDQQBpU-2w13X9oCYQjJCZEDB2S0KM_QhfjvIxbNy4wV5IiMnkWdGCiIpP_wFL9i0T_Dqj8w0KdPkVPOmiJj9vRP0MHrnqOHrbJJncv0I9jfO52-LJeOwxIFQPyw0td_tqWm7LC8_Ia7BleTi8phsvFDpROuwbPwE9tNk0NsxHKvzQx70G5VlhVFi9gm3mJlqdfr05mSZdWITGsYJvEE2YzaoSxAE6oYsYaYhxIURgVfsJkxtHU89yTXCkitNaWg4AD74tJBS2yV-iwqiv3BmFBrfKBwz3NMvCzrRaecKIFYd5ZatkIZb0kpek4x0Pqi7Xsg8t-ylb-Mshfhhi7go5Qsu9123Ju3NN-GiZp3zYwZseCurmWncpIazSxLveKckcFNWoSXDFmRKZy5a0bId5PsRwoINyqvOfxn3qNkLA2ww8XVbl6eycB2nLOARGCIF63GrIfZBbiC0VewHMHujN4i2FNVd5E_u88L8AJJ0f_PeKP6NHsajGX87OL87focaiJn6vTd-hw02zde8BZG_0hrqPfrhck7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Key+Role+for+the+Ubiquitin+Ligase+UBR4+in+Myofiber+Hypertrophy+in+Drosophila+and+Mice&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Liam+C.+Hunt&rft.au=Jared+Stover&rft.au=Benard+Haugen&rft.au=Timothy+I.+Shaw&rft.date=2019-07-30&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=5&rft.spage=1268&rft.epage=1281.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.06.094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dcb1de6fa47e484ca274395c83a6afde
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon