Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized p...
Saved in:
Published in | Stem cell reports Vol. 8; no. 4; pp. 977 - 990 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
11.04.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-6711 2213-6711 |
DOI | 10.1016/j.stemcr.2017.02.010 |
Cover
Abstract | Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.
•CD34+CD38− cells as an HSC-enriched starting population for ex vivo gene therapy•Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency•Prostaglandin E2 increases LV transduction up to 2× enabling shorter protocols•UM171 supports ex vivo expansion of mobilized peripheral blood HSCs
In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. |
---|---|
AbstractList | Ex vivo gene therapy based on CD34
+
hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34
+
cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E
2
stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34
+
CD38
−
cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.
•
CD34
+
CD38
−
cells as an HSC-enriched starting population for ex vivo gene therapy
•
Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency
•
Prostaglandin E
2
increases LV transduction up to 2× enabling shorter protocols
•
UM171 supports ex vivo expansion of mobilized peripheral blood HSCs
In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. •CD34+CD38− cells as an HSC-enriched starting population for ex vivo gene therapy•Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency•Prostaglandin E2 increases LV transduction up to 2× enabling shorter protocols•UM171 supports ex vivo expansion of mobilized peripheral blood HSCs In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. : In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. Keywords: HSC gene therapy, purified HSCs, HSC expansion, lentiviral vector transduction, prostaglandin E2, UM171 Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. Ex vivo gene therapy based on CD34 hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34 cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34 CD38 cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. |
Author | Boccalatte, Francesco E. Kajaste-Rudnitski, Anna Naldini, Luigi Gentner, Bernhard Desantis, Giacomo Aiuti, Alessandro Petrillo, Carolina Zonari, Erika Lidonnici, Maria Rosa Ferrari, Giuliana |
AuthorAffiliation | 4 Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy 1 San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy 2 Vita-Salute San Raffaele University, Milan 20132, Italy 3 Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy |
AuthorAffiliation_xml | – name: 4 Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy – name: 1 San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – name: 3 Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy – name: 2 Vita-Salute San Raffaele University, Milan 20132, Italy |
Author_xml | – sequence: 1 givenname: Erika surname: Zonari fullname: Zonari, Erika organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 2 givenname: Giacomo surname: Desantis fullname: Desantis, Giacomo organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 3 givenname: Carolina surname: Petrillo fullname: Petrillo, Carolina organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 4 givenname: Francesco E. surname: Boccalatte fullname: Boccalatte, Francesco E. organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 5 givenname: Maria Rosa surname: Lidonnici fullname: Lidonnici, Maria Rosa organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 6 givenname: Anna surname: Kajaste-Rudnitski fullname: Kajaste-Rudnitski, Anna organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 7 givenname: Alessandro surname: Aiuti fullname: Aiuti, Alessandro organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 8 givenname: Giuliana surname: Ferrari fullname: Ferrari, Giuliana organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 9 givenname: Luigi surname: Naldini fullname: Naldini, Luigi organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy – sequence: 10 givenname: Bernhard surname: Gentner fullname: Gentner, Bernhard email: gentner.bernhard@hsr.it organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28330619$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktuFDEQhlsoiISQGyDkJZtp_OgnCyQ0GjKRIjESga3ltss9HnXbjd09yhyBW3AWTobnEZSwAG9s1eOr8l_1MjmzzkKSvCY4JZgU7zZpGKGXPqWYlCmmKSb4WXJBKWGzoiTk7NH7PLkKYYPjqWtCM_IiOacVY7gg9UXyY6G1kQbsiBb3v35-M1uHFrY1FsAb2yJhVXQMwgbjLHIaLU277nZoNXmjDSi0nHph0RJ6MbrBGRiNRF9ib4fMlXctWDM6j-bQdWjlhqkTY0QFpKPxGiyguzV4MexeJc-16AJcne7L5Ounxd18Obv9fH0z_3g7k3mdj7OKkAoqjIUACbliLG-yRjFBsqIhCjPaNFormhOQRa5ITZTIVF4x2UBJZKXYZXJz5ConNnzwphd-x50w_GBwvuXCx190wGVGKQPaSNyojNa6zhjGWmYABdR1WUbWhyNrmJoelIwyetE9gT71WLPmrdvynNVxYjQC3p4A3n2fIIy8N0FGqYQFNwVOqgpnRUHzfa03j2v9KfIwyxjw_hggvQvBg-bSjAexY2nTcYL5fnf4hh93h-93h2PKYycxOfsr-YH_n7STABAntjXgedgvkwRlPMgxSmr-DfgNV8_jpQ |
CitedBy_id | crossref_primary_10_1016_j_copbio_2018_11_016 crossref_primary_10_1016_j_stem_2017_10_010 crossref_primary_10_1038_s41467_023_38448_y crossref_primary_10_1007_s12015_021_10177_z crossref_primary_10_1038_s41434_021_00229_x crossref_primary_10_1016_j_omtm_2018_06_009 crossref_primary_10_1016_j_omtm_2021_02_009 crossref_primary_10_2174_1566523221666210707125342 crossref_primary_10_3389_fmed_2022_1065377 crossref_primary_10_3390_pharmaceutics12060549 crossref_primary_10_3390_ijms25052771 crossref_primary_10_1007_s00109_017_1611_8 crossref_primary_10_1172_jci_insight_151847 crossref_primary_10_15252_embj_2021108536 crossref_primary_10_1007_s12288_022_01576_4 crossref_primary_10_1016_j_omtm_2018_08_003 crossref_primary_10_1039_C8BM01503A crossref_primary_10_1186_s13287_024_03895_x crossref_primary_10_1016_j_omtm_2023_02_014 crossref_primary_10_3324_haematol_2019_238261 crossref_primary_10_1016_j_omtm_2018_04_001 crossref_primary_10_1016_j_omtm_2023_101131 crossref_primary_10_3389_fbioe_2020_00620 crossref_primary_10_3390_cancers14071723 crossref_primary_10_1038_s41573_019_0020_9 crossref_primary_10_1038_s41467_019_10291_0 crossref_primary_10_1007_s40291_019_00383_4 crossref_primary_10_1093_hmg_ddz172 crossref_primary_10_1016_j_bcmd_2017_12_001 crossref_primary_10_1126_scitranslmed_aan1145 crossref_primary_10_2967_jnumed_118_220004 crossref_primary_10_3389_fimmu_2020_607926 crossref_primary_10_3390_pharmaceutics15051329 crossref_primary_10_1016_j_jgeb_2018_09_002 crossref_primary_10_1016_j_omtn_2018_04_017 crossref_primary_10_1039_D0BM01367F crossref_primary_10_3923_ijp_2017_1029_1037 crossref_primary_10_3390_v12111311 crossref_primary_10_1016_j_bbmt_2019_02_012 crossref_primary_10_1002_acg2_10 crossref_primary_10_1016_j_omtm_2019_03_005 crossref_primary_10_1056_NEJMoa2106596 crossref_primary_10_1038_s41591_018_0195_3 crossref_primary_10_1007_s40291_019_00391_4 crossref_primary_10_3324_haematol_2019_233924 crossref_primary_10_1016_j_ymthe_2017_10_015 crossref_primary_10_1073_pnas_2400783121 crossref_primary_10_1016_j_ymthe_2021_08_019 crossref_primary_10_1038_s41409_019_0510_8 crossref_primary_10_1016_j_jmb_2018_05_005 crossref_primary_10_1016_j_ymthe_2018_08_025 crossref_primary_10_1016_j_bcmd_2020_102492 crossref_primary_10_1016_j_bej_2020_107868 crossref_primary_10_1056_NEJMoa2113206 crossref_primary_10_1038_s41434_020_0175_3 crossref_primary_10_1016_j_exphem_2018_05_004 crossref_primary_10_1038_s41434_022_00357_y crossref_primary_10_1038_s41409_022_01662_1 crossref_primary_10_1007_s40778_018_0115_y crossref_primary_10_1016_j_ymthe_2023_11_020 crossref_primary_10_1016_j_xcrm_2024_101823 crossref_primary_10_1038_gt_2017_92 crossref_primary_10_1089_hum_2017_183 crossref_primary_10_1080_14712598_2022_2101361 crossref_primary_10_1038_s41598_019_43054_4 crossref_primary_10_1016_j_ymthe_2019_05_014 crossref_primary_10_1038_s41576_020_00298_5 crossref_primary_10_1182_blood_2017_03_774174 crossref_primary_10_1016_j_stem_2018_10_008 crossref_primary_10_1042_ETLS20180147 crossref_primary_10_1186_s13052_018_0565_y crossref_primary_10_1016_j_omtm_2021_05_013 crossref_primary_10_1182_blood_2023020189 crossref_primary_10_3389_fimmu_2017_01616 crossref_primary_10_1016_j_bcp_2019_113692 crossref_primary_10_1089_hgtb_2017_100 crossref_primary_10_3390_cells8020169 crossref_primary_10_3389_fgeed_2021_618378 crossref_primary_10_1038_s41434_021_00261_x crossref_primary_10_1016_j_blre_2021_100853 crossref_primary_10_1111_imr_12944 crossref_primary_10_3390_cells12010024 crossref_primary_10_1126_sciadv_aay9206 crossref_primary_10_1111_bjh_15902 crossref_primary_10_15252_emmm_201809958 crossref_primary_10_1016_j_celrep_2020_108093 crossref_primary_10_1016_j_omtm_2020_07_010 crossref_primary_10_1186_s42269_019_0078_x crossref_primary_10_1016_j_crmeth_2022_100354 crossref_primary_10_1016_j_ymthe_2025_01_031 crossref_primary_10_15252_emmm_201707922 crossref_primary_10_1016_j_omtm_2024_101271 crossref_primary_10_1093_stcltm_szac064 crossref_primary_10_1089_hum_2021_089 crossref_primary_10_1016_j_transci_2021_103060 crossref_primary_10_1038_s41587_020_0551_y crossref_primary_10_1111_bjh_17867 crossref_primary_10_1182_bloodadvances_2020003811 crossref_primary_10_1007_s10544_017_0255_3 crossref_primary_10_3389_fimmu_2022_966084 crossref_primary_10_3389_fbioe_2024_1380950 crossref_primary_10_1016_j_nbd_2019_104667 crossref_primary_10_3390_cells10061492 crossref_primary_10_1016_j_ymthe_2023_08_003 crossref_primary_10_3390_cells13121039 crossref_primary_10_1016_j_exphem_2018_08_001 crossref_primary_10_1182_bloodadvances_2024013932 crossref_primary_10_3389_fbioe_2020_573282 crossref_primary_10_1016_j_omtm_2024_101297 crossref_primary_10_1042_ETLS20180157 crossref_primary_10_1016_j_omtn_2024_102423 crossref_primary_10_1016_j_biomaterials_2019_119492 crossref_primary_10_1182_blood_2023021426 crossref_primary_10_1016_j_omtm_2018_07_012 crossref_primary_10_1016_j_xcrm_2023_100919 crossref_primary_10_1182_blood_2019002350 crossref_primary_10_1039_C8TB01026A crossref_primary_10_1016_j_biomaterials_2022_121568 crossref_primary_10_1016_j_stem_2023_04_014 crossref_primary_10_1016_j_stem_2021_05_008 crossref_primary_10_1038_s41598_019_41803_z crossref_primary_10_1089_hum_2017_141 crossref_primary_10_1089_hum_2019_016 |
Cites_doi | 10.1001/jama.2015.3253 10.1038/mt.2014.193 10.1126/science.1191536 10.1182/blood-2011-08-371583 10.1182/blood-2013-12-546218 10.1182/blood.V96.13.4185 10.1172/JCI11519 10.1038/nature13420 10.1038/nature09328 10.1016/j.stem.2016.04.016 10.1126/science.1256337 10.1038/sj.bmt.1703792 10.1016/j.stem.2007.10.001 10.1038/nm.2088 10.1126/science.1233151 10.1126/scitranslmed.3007280 10.1126/science.1171242 10.1016/j.stem.2011.02.003 10.1002/stem.1957 10.1016/j.stem.2012.01.003 10.1182/blood-2013-05-503177 10.4049/jimmunol.167.7.3692 10.1038/nature15818 10.1126/science.1201219 10.1016/S0140-6736(16)30374-9 10.1038/nm886 10.1016/j.exphem.2016.04.003 10.1126/science.1233158 10.1182/blood-2010-02-271841 10.1016/j.exphem.2007.05.017 10.1111/j.1365-2141.2012.09219.x 10.1016/S0301-472X(00)00169-7 10.1016/S1083-8791(00)70008-5 10.1038/nbt.3584 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. 2017 The Author(s) 2017 |
Copyright_xml | – notice: 2017 The Author(s) – notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2017 The Author(s) 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.stemcr.2017.02.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-6711 |
EndPage | 990 |
ExternalDocumentID | oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977 PMC5390102 28330619 10_1016_j_stemcr_2017_02_010 S2213671117300772 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Telethon grantid: TGT16C01 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE RIG ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-8118e800aaece5d335b4bd3a146b1d032bbffd251ec65d191da4d583cbe71c8d3 |
IEDL.DBID | M48 |
ISSN | 2213-6711 |
IngestDate | Mon Sep 08 19:52:48 EDT 2025 Thu Aug 21 18:36:54 EDT 2025 Fri Jul 11 02:28:30 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Thu Apr 24 23:09:22 EDT 2025 Tue Jul 01 02:44:12 EDT 2025 Wed May 17 02:21:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | lentiviral vector transduction UM171 HSC gene therapy HSC expansion purified HSCs prostaglandin E2 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-8118e800aaece5d335b4bd3a146b1d032bbffd251ec65d191da4d583cbe71c8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2017.02.010 |
PMID | 28330619 |
PQID | 1880466257 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5390102 proquest_miscellaneous_1880466257 pubmed_primary_28330619 crossref_citationtrail_10_1016_j_stemcr_2017_02_010 crossref_primary_10_1016_j_stemcr_2017_02_010 elsevier_sciencedirect_doi_10_1016_j_stemcr_2017_02_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-11 |
PublicationDateYYYYMMDD | 2017-04-11 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cell reports |
PublicationTitleAlternate | Stem Cell Reports |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Boitano, Wang, Romeo, Bouchez, Parker, Sutton, Walker, Flaveny, Perdew, Denison (bib5) 2010; 329 Cartier, Hacein-Bey-Abina, Bartholomae, Veres, Schmidt, Kutschera, Vidaud, Abel, Dal-Cortivo, Caccavelli (bib7) 2009; 326 Kerre, De Smet, De Smedt, Offner, De Bosscher, Plum, Vandekerckhove (bib20) 2001; 167 Aiuti, Biasco, Scaramuzza, Ferrua, Cicalese, Baricordi, Dionisio, Calabria, Giannelli, Castiello (bib1) 2013; 341 Palchaudhuri, Saez, Hoggatt, Schajnovitz, Sykes, Tate, Czechowicz, Kfoury, Ruchika, Rossi (bib33) 2016; 34 Fares, Chagraoui, Gareau, Gingras, Ruel, Mayotte, Csaszar, Knapp, Miller, Ngom (bib11) 2014; 345 Notta, Doulatov, Laurenti, Poeppl, Jurisica, Dick (bib32) 2011; 333 Stein, Ott, Schultze-Strasser, Jauch, Burwinkel, Kinner, Schmidt, Krämer, Schwäble, Glimm (bib36) 2010; 16 Miller, Knapp, Beer, MacAldaz, Rabu, Cheung, Wei, Eaves (bib29) 2016; 44 McDermott, Eppert, Lechman, Doedens, Dick (bib26) 2010; 116 Cutler, Multani, Robbins, Kim, Le, Hoggatt, Pelus, Desponts, Chen (bib10) 2013; 122 Negrin, Atkinson, Leemhuis, Hanania, Juttner, Tierney, Hu, Johnston, Shizurn, Stockerl-Goldstein (bib31) 2000; 6 Kallinikou, Anjos-Afonso, Blundell, Ings, Watts, Thrasher, Linch, Bonnet, Yong (bib19) 2012; 158 Kiernan, Damien, Monaghan, Shorr, McIntyre, Fergusson, Tinmouth, Allan (bib21) 2016 Wang, Sather, Wang, Adair, Khan, Singh, Lang, Adams, Curinga, Kiem (bib37) 2014; 124 Michallet, Philip, Philip, Godinot, Sebban, Salles, Thiebaut, Biron, Lopez, Mazars (bib28) 2000; 28 Petrillo, Cesana, Piras, Bartolaccini, Naldini, Montini, Kajaste-Rudnitski (bib34) 2015; 23 Heffner, Bonner, Campbell, Christiansen, Pierciey, Zhang, Lewis, Smurnyy, Hamel, Shah (bib18) 2016; 24 Biffi, Montini, Lorioli, Cesani, Fumagalli, Plati, Baldoli, Martino, Calabria, Canale (bib4) 2013; 341 Mazurier, Doedens, Gan, Dick (bib25) 2003; 9 Genovese, Schiroli, Escobar, Di Tomaso, Firrito, Calabria, Moi, Mazzieri, Bonini, Holmes (bib12) 2014; 510 Goessling, Allen, Guan, Jin, Uchida, Dovey, Harris, Metzger, Bonifacino, Stroncek (bib15) 2011; 8 Baldwin, Urbinati, Romero, Campo-Fernandez, Kaufman, Cooper, Maziuk, Hollis, Kohn (bib2) 2015; 33 Naldini (bib30) 2015; 526 Lidonnici, Aprile, Frittoli, Mandelli, Paleari, Spinelli, Gentner, Zambelli, Parisi, Bellio (bib23) 2016 Biasco, Pellin, Scala, Dionisio, Basso-Ricci, Leonardelli, Scaramuzza, Baricordi, Ferrua, Cicalese (bib3) 2015; 19 Glimm, Oh, Eaves (bib13) 2000; 96 Majeti, Park, Weissman (bib24) 2007; 1 Larochelle, Gillette, Desmond, Ichwan, Cantilena, Cerf, Barrett, Wayne, Lippincott-Schwartz, Dunbar (bib22) 2012; 119 Cavazzana-Calvo, Payen, Negre, Wang, Hehir, Fusil, Down, Denaro, Brady, Westerman (bib8) 2010; 467 McKenzie, Gan, Doedens, Dick (bib27) 2007; 35 Hacein-Bey Abina, Gaspar, Blondeau, Caccavelli, Charrier, Buckland, Picard, Six, Himoudi, Gilmour (bib17) 2015; 313 Csaszar, Kirouac, Yu, Wang, Qiao, Cooke, Boitano, Ito, Zandstra (bib9) 2012; 10 Braun, Boztug, Paruzynski, Witzel, Schwarzer, Rothe, Modlich, Beier, Göhring, Steinemann (bib6) 2014; 6 Glimm, Eisterer, Lee, Cashman, Holyoake, Nicolini, Shultz, Von Kalle, Eaves (bib14) 2001; 107 Gordon, Leimig, Babarin-Dorner, Houston, Holladay, Mueller, Geiger, Handgretinger (bib16) 2003; 31 Sessa, Lorioli, Fumagalli, Acquati, Redaelli, Baldoli, Canale, Lopez, Morena, Calabria (bib35) 2016; 388 Biffi (10.1016/j.stemcr.2017.02.010_bib4) 2013; 341 Heffner (10.1016/j.stemcr.2017.02.010_bib18) 2016; 24 Gordon (10.1016/j.stemcr.2017.02.010_bib16) 2003; 31 Kallinikou (10.1016/j.stemcr.2017.02.010_bib19) 2012; 158 Biasco (10.1016/j.stemcr.2017.02.010_bib3) 2015; 19 Naldini (10.1016/j.stemcr.2017.02.010_bib30) 2015; 526 McKenzie (10.1016/j.stemcr.2017.02.010_bib27) 2007; 35 Lidonnici (10.1016/j.stemcr.2017.02.010_bib23) 2016 Goessling (10.1016/j.stemcr.2017.02.010_bib15) 2011; 8 Stein (10.1016/j.stemcr.2017.02.010_bib36) 2010; 16 Majeti (10.1016/j.stemcr.2017.02.010_bib24) 2007; 1 Glimm (10.1016/j.stemcr.2017.02.010_bib13) 2000; 96 Kiernan (10.1016/j.stemcr.2017.02.010_bib21) 2016 Csaszar (10.1016/j.stemcr.2017.02.010_bib9) 2012; 10 Cartier (10.1016/j.stemcr.2017.02.010_bib7) 2009; 326 Palchaudhuri (10.1016/j.stemcr.2017.02.010_bib33) 2016; 34 Sessa (10.1016/j.stemcr.2017.02.010_bib35) 2016; 388 Michallet (10.1016/j.stemcr.2017.02.010_bib28) 2000; 28 Aiuti (10.1016/j.stemcr.2017.02.010_bib1) 2013; 341 Glimm (10.1016/j.stemcr.2017.02.010_bib14) 2001; 107 Notta (10.1016/j.stemcr.2017.02.010_bib32) 2011; 333 Cavazzana-Calvo (10.1016/j.stemcr.2017.02.010_bib8) 2010; 467 Larochelle (10.1016/j.stemcr.2017.02.010_bib22) 2012; 119 Negrin (10.1016/j.stemcr.2017.02.010_bib31) 2000; 6 Boitano (10.1016/j.stemcr.2017.02.010_bib5) 2010; 329 Petrillo (10.1016/j.stemcr.2017.02.010_bib34) 2015; 23 Cutler (10.1016/j.stemcr.2017.02.010_bib10) 2013; 122 Wang (10.1016/j.stemcr.2017.02.010_bib37) 2014; 124 Genovese (10.1016/j.stemcr.2017.02.010_bib12) 2014; 510 McDermott (10.1016/j.stemcr.2017.02.010_bib26) 2010; 116 Kerre (10.1016/j.stemcr.2017.02.010_bib20) 2001; 167 Hacein-Bey Abina (10.1016/j.stemcr.2017.02.010_bib17) 2015; 313 Fares (10.1016/j.stemcr.2017.02.010_bib11) 2014; 345 Miller (10.1016/j.stemcr.2017.02.010_bib29) 2016; 44 Baldwin (10.1016/j.stemcr.2017.02.010_bib2) 2015; 33 Braun (10.1016/j.stemcr.2017.02.010_bib6) 2014; 6 Mazurier (10.1016/j.stemcr.2017.02.010_bib25) 2003; 9 |
References_xml | – volume: 24 start-page: 229 year: 2016 ident: bib18 article-title: PGE2 increases lentiviral vector transduction efficiency of human HSC publication-title: Mol. Ther. – volume: 526 start-page: 351 year: 2015 end-page: 360 ident: bib30 article-title: Gene therapy returns to centre stage publication-title: Nature – volume: 10 start-page: 218 year: 2012 end-page: 229 ident: bib9 article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling publication-title: Cell Stem Cell – volume: 35 start-page: 1429 year: 2007 end-page: 1436 ident: bib27 article-title: Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells publication-title: Exp. Hematol. – volume: 119 start-page: 1848 year: 2012 end-page: 1855 ident: bib22 article-title: Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain publication-title: Blood – volume: 34 start-page: 738 year: 2016 end-page: 747 ident: bib33 article-title: Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin publication-title: Nat. Biotechnol. – volume: 33 start-page: 1532 year: 2015 end-page: 1542 ident: bib2 article-title: Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy publication-title: Stem Cells – volume: 467 start-page: 318 year: 2010 end-page: 322 ident: bib8 article-title: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia publication-title: Nature – volume: 28 start-page: 858 year: 2000 end-page: 870 ident: bib28 article-title: Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution publication-title: Exp. Hematol. – year: 2016 ident: bib23 article-title: Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to Plerixafor alone publication-title: Haematologica – volume: 19 start-page: 107 year: 2015 end-page: 119 ident: bib3 article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases publication-title: Cell Stem Cell – volume: 44 start-page: 635 year: 2016 end-page: 640 ident: bib29 article-title: Early production of human neutrophils and platelets posttransplant is severely compromised by growth factor exposure publication-title: Exp. Hematol. – volume: 333 start-page: 218 year: 2011 end-page: 221 ident: bib32 article-title: Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment publication-title: Science – volume: 6 start-page: 227ra33 year: 2014 ident: bib6 article-title: Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity publication-title: Sci. Transl. Med. – volume: 345 start-page: 1509 year: 2014 end-page: 1512 ident: bib11 article-title: Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal publication-title: Science – volume: 23 start-page: 352 year: 2015 end-page: 362 ident: bib34 article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells publication-title: Mol. Ther. – volume: 31 start-page: 17 year: 2003 end-page: 22 ident: bib16 article-title: Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells publication-title: Bone Marrow Transpl. – volume: 167 start-page: 3692 year: 2001 end-page: 3698 ident: bib20 article-title: Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion publication-title: J. Immunol. – volume: 158 start-page: 778 year: 2012 end-page: 787 ident: bib19 article-title: Engraftment defect of cytokine-cultured adult human mobilized CD34+ cells is related to reduced adhesion to bone marrow niche elements publication-title: Br. J. Haematol. – volume: 510 start-page: 235 year: 2014 end-page: 240 ident: bib12 article-title: Targeted genome editing in human repopulating haematopoietic stem cells publication-title: Nature – volume: 313 start-page: 1550 year: 2015 end-page: 1563 ident: bib17 article-title: Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome publication-title: JAMA – volume: 8 start-page: 445 year: 2011 end-page: 458 ident: bib15 article-title: Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models publication-title: Cell Stem Cell – volume: 122 start-page: 3074 year: 2013 end-page: 3081 ident: bib10 article-title: Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation publication-title: Blood – volume: 96 start-page: 4185 year: 2000 end-page: 4193 ident: bib13 article-title: Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0) publication-title: Blood – volume: 124 start-page: 913 year: 2014 end-page: 923 ident: bib37 article-title: Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells publication-title: Blood – volume: 341 start-page: 1233158 year: 2013 ident: bib4 article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy publication-title: Science – year: 2016 ident: bib21 article-title: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review publication-title: Transfus. Med. Rev. – volume: 116 start-page: 193 year: 2010 end-page: 200 ident: bib26 article-title: Comparison of human cord blood engraftment between immunocompromised mouse strains publication-title: Blood – volume: 6 start-page: 262 year: 2000 end-page: 271 ident: bib31 article-title: Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer publication-title: Biol. Blood Marrow Transpl. – volume: 341 start-page: 1233151 year: 2013 ident: bib1 article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome publication-title: Science – volume: 1 start-page: 635 year: 2007 end-page: 645 ident: bib24 article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood publication-title: Cell Stem Cell – volume: 388 start-page: 476 year: 2016 end-page: 487 ident: bib35 article-title: Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial publication-title: Lancet – volume: 16 start-page: 198 year: 2010 end-page: 204 ident: bib36 article-title: Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease publication-title: Nat. Med. – volume: 326 start-page: 818 year: 2009 end-page: 823 ident: bib7 article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy publication-title: Science – volume: 107 start-page: 199 year: 2001 end-page: 206 ident: bib14 article-title: Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-2 microglobulin-null mice publication-title: J. Clin. Invest. – volume: 329 start-page: 1345 year: 2010 end-page: 1348 ident: bib5 article-title: Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells publication-title: Science – volume: 9 start-page: 959 year: 2003 end-page: 963 ident: bib25 article-title: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells publication-title: Nat. Med. – volume: 313 start-page: 1550 year: 2015 ident: 10.1016/j.stemcr.2017.02.010_bib17 article-title: Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome publication-title: JAMA doi: 10.1001/jama.2015.3253 – volume: 23 start-page: 352 year: 2015 ident: 10.1016/j.stemcr.2017.02.010_bib34 article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells publication-title: Mol. Ther. doi: 10.1038/mt.2014.193 – volume: 329 start-page: 1345 year: 2010 ident: 10.1016/j.stemcr.2017.02.010_bib5 article-title: Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells publication-title: Science doi: 10.1126/science.1191536 – volume: 119 start-page: 1848 year: 2012 ident: 10.1016/j.stemcr.2017.02.010_bib22 article-title: Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain publication-title: Blood doi: 10.1182/blood-2011-08-371583 – volume: 124 start-page: 913 year: 2014 ident: 10.1016/j.stemcr.2017.02.010_bib37 article-title: Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells publication-title: Blood doi: 10.1182/blood-2013-12-546218 – volume: 96 start-page: 4185 year: 2000 ident: 10.1016/j.stemcr.2017.02.010_bib13 article-title: Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0) publication-title: Blood doi: 10.1182/blood.V96.13.4185 – volume: 107 start-page: 199 year: 2001 ident: 10.1016/j.stemcr.2017.02.010_bib14 article-title: Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-2 microglobulin-null mice publication-title: J. Clin. Invest. doi: 10.1172/JCI11519 – volume: 510 start-page: 235 year: 2014 ident: 10.1016/j.stemcr.2017.02.010_bib12 article-title: Targeted genome editing in human repopulating haematopoietic stem cells publication-title: Nature doi: 10.1038/nature13420 – volume: 467 start-page: 318 year: 2010 ident: 10.1016/j.stemcr.2017.02.010_bib8 article-title: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia publication-title: Nature doi: 10.1038/nature09328 – volume: 19 start-page: 107 year: 2015 ident: 10.1016/j.stemcr.2017.02.010_bib3 article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.016 – volume: 345 start-page: 1509 year: 2014 ident: 10.1016/j.stemcr.2017.02.010_bib11 article-title: Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal publication-title: Science doi: 10.1126/science.1256337 – volume: 31 start-page: 17 year: 2003 ident: 10.1016/j.stemcr.2017.02.010_bib16 article-title: Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells publication-title: Bone Marrow Transpl. doi: 10.1038/sj.bmt.1703792 – volume: 1 start-page: 635 year: 2007 ident: 10.1016/j.stemcr.2017.02.010_bib24 article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.10.001 – volume: 16 start-page: 198 year: 2010 ident: 10.1016/j.stemcr.2017.02.010_bib36 article-title: Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease publication-title: Nat. Med. doi: 10.1038/nm.2088 – volume: 341 start-page: 1233151 year: 2013 ident: 10.1016/j.stemcr.2017.02.010_bib1 article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome publication-title: Science doi: 10.1126/science.1233151 – volume: 6 start-page: 227ra33 year: 2014 ident: 10.1016/j.stemcr.2017.02.010_bib6 article-title: Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007280 – volume: 326 start-page: 818 year: 2009 ident: 10.1016/j.stemcr.2017.02.010_bib7 article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy publication-title: Science doi: 10.1126/science.1171242 – volume: 8 start-page: 445 year: 2011 ident: 10.1016/j.stemcr.2017.02.010_bib15 article-title: Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.02.003 – volume: 33 start-page: 1532 year: 2015 ident: 10.1016/j.stemcr.2017.02.010_bib2 article-title: Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy publication-title: Stem Cells doi: 10.1002/stem.1957 – volume: 10 start-page: 218 year: 2012 ident: 10.1016/j.stemcr.2017.02.010_bib9 article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.01.003 – volume: 122 start-page: 3074 year: 2013 ident: 10.1016/j.stemcr.2017.02.010_bib10 article-title: Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation publication-title: Blood doi: 10.1182/blood-2013-05-503177 – volume: 167 start-page: 3692 year: 2001 ident: 10.1016/j.stemcr.2017.02.010_bib20 article-title: Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion publication-title: J. Immunol. doi: 10.4049/jimmunol.167.7.3692 – volume: 526 start-page: 351 year: 2015 ident: 10.1016/j.stemcr.2017.02.010_bib30 article-title: Gene therapy returns to centre stage publication-title: Nature doi: 10.1038/nature15818 – volume: 333 start-page: 218 year: 2011 ident: 10.1016/j.stemcr.2017.02.010_bib32 article-title: Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment publication-title: Science doi: 10.1126/science.1201219 – volume: 388 start-page: 476 year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib35 article-title: Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial publication-title: Lancet doi: 10.1016/S0140-6736(16)30374-9 – year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib21 article-title: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review publication-title: Transfus. Med. Rev. – volume: 9 start-page: 959 year: 2003 ident: 10.1016/j.stemcr.2017.02.010_bib25 article-title: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells publication-title: Nat. Med. doi: 10.1038/nm886 – volume: 44 start-page: 635 year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib29 article-title: Early production of human neutrophils and platelets posttransplant is severely compromised by growth factor exposure publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2016.04.003 – year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib23 article-title: Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to Plerixafor alone publication-title: Haematologica – volume: 341 start-page: 1233158 year: 2013 ident: 10.1016/j.stemcr.2017.02.010_bib4 article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy publication-title: Science doi: 10.1126/science.1233158 – volume: 24 start-page: 229 issue: S1 year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib18 article-title: PGE2 increases lentiviral vector transduction efficiency of human HSC publication-title: Mol. Ther. – volume: 116 start-page: 193 year: 2010 ident: 10.1016/j.stemcr.2017.02.010_bib26 article-title: Comparison of human cord blood engraftment between immunocompromised mouse strains publication-title: Blood doi: 10.1182/blood-2010-02-271841 – volume: 35 start-page: 1429 year: 2007 ident: 10.1016/j.stemcr.2017.02.010_bib27 article-title: Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2007.05.017 – volume: 158 start-page: 778 year: 2012 ident: 10.1016/j.stemcr.2017.02.010_bib19 article-title: Engraftment defect of cytokine-cultured adult human mobilized CD34+ cells is related to reduced adhesion to bone marrow niche elements publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2012.09219.x – volume: 28 start-page: 858 year: 2000 ident: 10.1016/j.stemcr.2017.02.010_bib28 article-title: Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(00)00169-7 – volume: 6 start-page: 262 year: 2000 ident: 10.1016/j.stemcr.2017.02.010_bib31 article-title: Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer publication-title: Biol. Blood Marrow Transpl. doi: 10.1016/S1083-8791(00)70008-5 – volume: 34 start-page: 738 year: 2016 ident: 10.1016/j.stemcr.2017.02.010_bib33 article-title: Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3584 |
SSID | ssj0000991241 |
Score | 2.4748654 |
Snippet | Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and... Ex vivo gene therapy based on CD34 hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and... Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and... Ex vivo gene therapy based on CD34 + hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 977 |
SubjectTerms | ADP-ribosyl Cyclase 1 - analysis Animals Antigens, CD34 - analysis Cell Culture Techniques Cell Engineering - methods Cell Proliferation Genetic Therapy - methods Genetic Vectors - genetics Hematopoietic Stem Cell Transplantation - methods Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism HSC expansion HSC gene therapy Humans lentiviral vector transduction Lentivirus - genetics Mice, Inbred NOD prostaglandin E2 purified HSCs Transduction, Genetic - methods UM171 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQpUpcEP8slMpIXCNsx87PkVZbrTiglWhRb1b8J1Ktkmq7i-gj8BY8C0_GjJ2ssnDYC4dcNnGy45nMfOOMvyHkPRPGBdGozIQiZFjAmFU8-IwZaVUI0vMmVlt8LhZX8tO1up60-sKasEQPnCbug5UQwLwwlhkHvjMgXTgLVnpf-BrAC3pfVrNJMnWTcA8ELsy2hOB5VpScj_vmYnEXkiRbpAPlZaTsxA20k7gU6fv3wtO_8PPvKspJWLp4TB4NeJJ-THI8IQ9895Qcpw6T98_Iz3mkiICxdP7j96-v7feeTigIadM5OAEeARfNaB8o1n2s7ulyu24DoFMaF_npApld-9u-xS2P9AuIFUcu1z3YH_iENT33qxVd7rqB3VEAwxQ5rell4i14Tq4u5pfni2zovpBZVasNqIxXHuBk03jrlctzZaRxeQOu1XDHcmFMCA7gkbeFcpD2uUY6VeXW-JLbyuUvyFHXd_4VoWXuJbei5nUlJVhBDYcUDnMlZgCSzEg-zr22AzU5dshY6bEG7UYnjWnUmGZCg8ZmJNuNuk3UHAeuP0O17q5FYu34A5ibHsxNHzK3GSlHo9ADRknYA27VHnj8u9GGNLzC-F2m6Xy_vdNIiScLSETh7i-TTe3-JKA_SOpwiso9a9uTYv9M136LNOEKl7OYeP0_xH5DHqIo-BmN8xNytFlv_VtAYxtzGl-8P6AxNI8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0u0zfaFCryaWLPlx7IYsoYcS2N2Sm7BerUuwgzcp3Z-w_6K_pb-sM_KDuD0s9OCDbcmWNaPRN_LMJ0I-xFxbz0sZaZ_6CAMYo5x5F8VaGOm9cKwM0Raf09W1-LSRmxOyGHJhMKyyt_2dTQ_Wur8y73tzvquq-SXnSDcGYxUp1wEkgh3GrFJM4tucj-ssgIBgCkO_C8tHWGHIoAthXkiXbJAYlGWBvBNTaY9mqEDkP5mo_gWif8dTHk1QF4_Jox5Z0o9d48_IiaufkAfdXpO3T8ndMpBFQF26_Pn715fqR0OPyAhpWVu4AbYBl89o4ylGgGxv6frQVh5wKg3L_XSFHK_Nrqkw-ZFewmeFmuu2AU0E69DShdtu6XrcF-yGAiymyG5NrzoGg2fk-mJ5tVhF_T4MkZGF3IPwWO4AWJalM07aJJFaaJuUYGQ1s3HCtfbeAlByJpUWHEBbCivzxGiXMZPb5Dk5rZvavSQ0S5xghhesyIUAfSjgENyi1xRrACczkgx9r0xPUo57ZWzVEI32XXUSUygxFXMFEpuRaKy160g67il_jmIdyyLFdrjQtF9Vr2PKCEBOjmsTawuTtkee-tgb4VzqCkDNM5INSqEmGguPqu55_ftBhxQMZvxDU9auOdwoJMcTKbik8PQXnU6NjQQcCO4ddlE20bbJV0zv1NW3QBgucWEr5q_-u8WvyUM8w79ojL0hp_v24N4CGNvrd2G0_QHLuzWp priority: 102 providerName: Elsevier |
Title | Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy |
URI | https://dx.doi.org/10.1016/j.stemcr.2017.02.010 https://www.ncbi.nlm.nih.gov/pubmed/28330619 https://www.proquest.com/docview/1880466257 https://pubmed.ncbi.nlm.nih.gov/PMC5390102 https://doaj.org/article/c4223e2bc0bd429f94300fc4ee6e9977 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZWi5C4IN6Ux8pIXIPixM7jgBC76qqAhIrYot6s-MVmFSVL2qLtT-Bf8Fv4Zcw4Sdnw0F44NIcmdmLP2PONPf6GkOdhpIyLChEol7gAAxiDjDkbhIpr4Ry3rPDRFu-T2YK_XYrlHhlytvYduPqra4f5pBZt9eLiy_YVDPiXv2K1kPNYI7snSz0DJ565uuZ3jDCYrwf8Zx0eAoOGXlgUsThIUsaG83T_qGhkrzyt_8hs_QlLf4-uvGSujm-Rmz3OpK87xbhN9mx9h1zvMk9u75JvU08dAWXp9OLH90_l14ZeoiakRW3gBswUuJhGG0cxHqTa0vmmLR2gVuoX_-kMGV-b86bEo5D0IzTLl5y3DeglzBUtPbJVRee7LGErCiCZItc1Pen4DO6RxfH05GgW9FkZAi1ysQZRsswCzCwKq60wcSwUVyYuYMpVzIRxpJRzBmCT1Ykw4A6aghuRxVrZlOnMxPfJft3U9iGhaWw501HO8oxz0I4cfjwy6EOFCqDKhMRD30vdU5Zj5oxKDrFpZ7KTmESJyTCSILEJCXalzjvKjiueP0Sx7p5Fwm3_R9N-lv34lZoDjrKR0qEyYMIdstaHTnNrE5sDhp6QdFAK2WOXDpNAVeUVr3826JCEoY37NUVtm81KIlUeT8BBhdofdDq1-0hAheDsYRelI20btWJ8py5PPX24wGWuMHr0P5r9mNzApuD2GmNPyP663dingNLW6sCvbsD1zfIQru8-ZAd-KP4E0KdAtA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSSuURPHTpMjW3XVhWVVabuoNyt-LUFVUmVbxP4E_gW_hV_GjPNQA4eVOPQSZ1LHM575xhl_JuR9yJRxLBeBcokLsIAxSCNng1BxLZzjNsp9tcVZMr_gH1didUCm3V4YLKtsfX_j0723bq-M29Ecb4pifM4Y0o3BXEXKdQCJt8htQAMhmvbJ6qhfaAEIBDEMEy8UCFCi20Ln67yQL1kjM2g08eyduJd2L0R5Jv9BpPoXif5dULkXoY4fkPsttKQfmt4_JAe2fETuNIdNXj8mP2eeLQJk6ezH719fiu8V3WMjpHlpoAGcA66f0cpRLAFZX9PFri4cAFXq1_vpHEleq01V4O5Heg6v5SUXdQWmCO6hplO7XtNFfzDYFQVcTJHemi4bCoMn5OJ4tpzOg_YghkCLTGxBe1FqAVnmudVWmDgWiisT5-BlVWTCmCnlnAGkZHUiDGSAJudGpLFWdhLp1MRPyWFZlfY5oZPY8kizLMpSzsEgMvhxZjBtChWgkxGJu7GXumUpx8My1rIrR_smG41J1JgMmQSNjUjQS20alo4b7j9Ctfb3Ise2v1DVl7I1Mqk5QCfLlA6VgajtkKg-dJpbm9gMYPOITDqjkAOThUcVN_z9u86GJMxm_ESTl7baXUlkx-MJ5KTw9GeNTfWdBCAI-R0O0WRgbYO3GLaUxVfPGC5wZStkL_67x2_J3fny86k8PTn79JLcwxb8pBZFr8jhtt7Z14DMtuqNn3l_AFybOMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Ex%C2%A0Vivo+Engineering+and+Expansion+of+Highly+Purified+Human+Hematopoietic+Stem+and+Progenitor+Cell+Populations+for+Gene+Therapy&rft.jtitle=Stem+cell+reports&rft.au=Erika+Zonari&rft.au=Giacomo+Desantis&rft.au=Carolina+Petrillo&rft.au=Francesco+E.+Boccalatte&rft.date=2017-04-11&rft.pub=Elsevier&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=8&rft.issue=4&rft.spage=977&rft.epage=990&rft_id=info:doi/10.1016%2Fj.stemcr.2017.02.010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |