Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy

Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized p...

Full description

Saved in:
Bibliographic Details
Published inStem cell reports Vol. 8; no. 4; pp. 977 - 990
Main Authors Zonari, Erika, Desantis, Giacomo, Petrillo, Carolina, Boccalatte, Francesco E., Lidonnici, Maria Rosa, Kajaste-Rudnitski, Anna, Aiuti, Alessandro, Ferrari, Giuliana, Naldini, Luigi, Gentner, Bernhard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.04.2017
Elsevier
Subjects
Online AccessGet full text
ISSN2213-6711
2213-6711
DOI10.1016/j.stemcr.2017.02.010

Cover

Abstract Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. •CD34+CD38− cells as an HSC-enriched starting population for ex vivo gene therapy•Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency•Prostaglandin E2 increases LV transduction up to 2× enabling shorter protocols•UM171 supports ex vivo expansion of mobilized peripheral blood HSCs In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion.
AbstractList Ex vivo gene therapy based on CD34 + hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34 + cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E 2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34 + CD38 − cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. • CD34 + CD38 − cells as an HSC-enriched starting population for ex vivo gene therapy • Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency • Prostaglandin E 2 increases LV transduction up to 2× enabling shorter protocols • UM171 supports ex vivo expansion of mobilized peripheral blood HSCs In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion.
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. •CD34+CD38− cells as an HSC-enriched starting population for ex vivo gene therapy•Reduced culture time (<38 hr) alleviates negative impact on progenitor cell potency•Prostaglandin E2 increases LV transduction up to 2× enabling shorter protocols•UM171 supports ex vivo expansion of mobilized peripheral blood HSCs In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion.
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. : In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. Keywords: HSC gene therapy, purified HSCs, HSC expansion, lentiviral vector transduction, prostaglandin E2, UM171
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.
Ex vivo gene therapy based on CD34 hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34 cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34 CD38 cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.
Author Boccalatte, Francesco E.
Kajaste-Rudnitski, Anna
Naldini, Luigi
Gentner, Bernhard
Desantis, Giacomo
Aiuti, Alessandro
Petrillo, Carolina
Zonari, Erika
Lidonnici, Maria Rosa
Ferrari, Giuliana
AuthorAffiliation 4 Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy
1 San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
2 Vita-Salute San Raffaele University, Milan 20132, Italy
3 Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy
AuthorAffiliation_xml – name: 4 Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy
– name: 1 San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– name: 3 Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy
– name: 2 Vita-Salute San Raffaele University, Milan 20132, Italy
Author_xml – sequence: 1
  givenname: Erika
  surname: Zonari
  fullname: Zonari, Erika
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 2
  givenname: Giacomo
  surname: Desantis
  fullname: Desantis, Giacomo
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 3
  givenname: Carolina
  surname: Petrillo
  fullname: Petrillo, Carolina
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 4
  givenname: Francesco E.
  surname: Boccalatte
  fullname: Boccalatte, Francesco E.
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 5
  givenname: Maria Rosa
  surname: Lidonnici
  fullname: Lidonnici, Maria Rosa
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 6
  givenname: Anna
  surname: Kajaste-Rudnitski
  fullname: Kajaste-Rudnitski, Anna
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 7
  givenname: Alessandro
  surname: Aiuti
  fullname: Aiuti, Alessandro
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 8
  givenname: Giuliana
  surname: Ferrari
  fullname: Ferrari, Giuliana
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 9
  givenname: Luigi
  surname: Naldini
  fullname: Naldini, Luigi
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
– sequence: 10
  givenname: Bernhard
  surname: Gentner
  fullname: Gentner, Bernhard
  email: gentner.bernhard@hsr.it
  organization: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28330619$$D View this record in MEDLINE/PubMed
BookMark eNqFkktuFDEQhlsoiISQGyDkJZtp_OgnCyQ0GjKRIjESga3ltss9HnXbjd09yhyBW3AWTobnEZSwAG9s1eOr8l_1MjmzzkKSvCY4JZgU7zZpGKGXPqWYlCmmKSb4WXJBKWGzoiTk7NH7PLkKYYPjqWtCM_IiOacVY7gg9UXyY6G1kQbsiBb3v35-M1uHFrY1FsAb2yJhVXQMwgbjLHIaLU277nZoNXmjDSi0nHph0RJ6MbrBGRiNRF9ib4fMlXctWDM6j-bQdWjlhqkTY0QFpKPxGiyguzV4MexeJc-16AJcne7L5Ounxd18Obv9fH0z_3g7k3mdj7OKkAoqjIUACbliLG-yRjFBsqIhCjPaNFormhOQRa5ITZTIVF4x2UBJZKXYZXJz5ConNnzwphd-x50w_GBwvuXCx190wGVGKQPaSNyojNa6zhjGWmYABdR1WUbWhyNrmJoelIwyetE9gT71WLPmrdvynNVxYjQC3p4A3n2fIIy8N0FGqYQFNwVOqgpnRUHzfa03j2v9KfIwyxjw_hggvQvBg-bSjAexY2nTcYL5fnf4hh93h-93h2PKYycxOfsr-YH_n7STABAntjXgedgvkwRlPMgxSmr-DfgNV8_jpQ
CitedBy_id crossref_primary_10_1016_j_copbio_2018_11_016
crossref_primary_10_1016_j_stem_2017_10_010
crossref_primary_10_1038_s41467_023_38448_y
crossref_primary_10_1007_s12015_021_10177_z
crossref_primary_10_1038_s41434_021_00229_x
crossref_primary_10_1016_j_omtm_2018_06_009
crossref_primary_10_1016_j_omtm_2021_02_009
crossref_primary_10_2174_1566523221666210707125342
crossref_primary_10_3389_fmed_2022_1065377
crossref_primary_10_3390_pharmaceutics12060549
crossref_primary_10_3390_ijms25052771
crossref_primary_10_1007_s00109_017_1611_8
crossref_primary_10_1172_jci_insight_151847
crossref_primary_10_15252_embj_2021108536
crossref_primary_10_1007_s12288_022_01576_4
crossref_primary_10_1016_j_omtm_2018_08_003
crossref_primary_10_1039_C8BM01503A
crossref_primary_10_1186_s13287_024_03895_x
crossref_primary_10_1016_j_omtm_2023_02_014
crossref_primary_10_3324_haematol_2019_238261
crossref_primary_10_1016_j_omtm_2018_04_001
crossref_primary_10_1016_j_omtm_2023_101131
crossref_primary_10_3389_fbioe_2020_00620
crossref_primary_10_3390_cancers14071723
crossref_primary_10_1038_s41573_019_0020_9
crossref_primary_10_1038_s41467_019_10291_0
crossref_primary_10_1007_s40291_019_00383_4
crossref_primary_10_1093_hmg_ddz172
crossref_primary_10_1016_j_bcmd_2017_12_001
crossref_primary_10_1126_scitranslmed_aan1145
crossref_primary_10_2967_jnumed_118_220004
crossref_primary_10_3389_fimmu_2020_607926
crossref_primary_10_3390_pharmaceutics15051329
crossref_primary_10_1016_j_jgeb_2018_09_002
crossref_primary_10_1016_j_omtn_2018_04_017
crossref_primary_10_1039_D0BM01367F
crossref_primary_10_3923_ijp_2017_1029_1037
crossref_primary_10_3390_v12111311
crossref_primary_10_1016_j_bbmt_2019_02_012
crossref_primary_10_1002_acg2_10
crossref_primary_10_1016_j_omtm_2019_03_005
crossref_primary_10_1056_NEJMoa2106596
crossref_primary_10_1038_s41591_018_0195_3
crossref_primary_10_1007_s40291_019_00391_4
crossref_primary_10_3324_haematol_2019_233924
crossref_primary_10_1016_j_ymthe_2017_10_015
crossref_primary_10_1073_pnas_2400783121
crossref_primary_10_1016_j_ymthe_2021_08_019
crossref_primary_10_1038_s41409_019_0510_8
crossref_primary_10_1016_j_jmb_2018_05_005
crossref_primary_10_1016_j_ymthe_2018_08_025
crossref_primary_10_1016_j_bcmd_2020_102492
crossref_primary_10_1016_j_bej_2020_107868
crossref_primary_10_1056_NEJMoa2113206
crossref_primary_10_1038_s41434_020_0175_3
crossref_primary_10_1016_j_exphem_2018_05_004
crossref_primary_10_1038_s41434_022_00357_y
crossref_primary_10_1038_s41409_022_01662_1
crossref_primary_10_1007_s40778_018_0115_y
crossref_primary_10_1016_j_ymthe_2023_11_020
crossref_primary_10_1016_j_xcrm_2024_101823
crossref_primary_10_1038_gt_2017_92
crossref_primary_10_1089_hum_2017_183
crossref_primary_10_1080_14712598_2022_2101361
crossref_primary_10_1038_s41598_019_43054_4
crossref_primary_10_1016_j_ymthe_2019_05_014
crossref_primary_10_1038_s41576_020_00298_5
crossref_primary_10_1182_blood_2017_03_774174
crossref_primary_10_1016_j_stem_2018_10_008
crossref_primary_10_1042_ETLS20180147
crossref_primary_10_1186_s13052_018_0565_y
crossref_primary_10_1016_j_omtm_2021_05_013
crossref_primary_10_1182_blood_2023020189
crossref_primary_10_3389_fimmu_2017_01616
crossref_primary_10_1016_j_bcp_2019_113692
crossref_primary_10_1089_hgtb_2017_100
crossref_primary_10_3390_cells8020169
crossref_primary_10_3389_fgeed_2021_618378
crossref_primary_10_1038_s41434_021_00261_x
crossref_primary_10_1016_j_blre_2021_100853
crossref_primary_10_1111_imr_12944
crossref_primary_10_3390_cells12010024
crossref_primary_10_1126_sciadv_aay9206
crossref_primary_10_1111_bjh_15902
crossref_primary_10_15252_emmm_201809958
crossref_primary_10_1016_j_celrep_2020_108093
crossref_primary_10_1016_j_omtm_2020_07_010
crossref_primary_10_1186_s42269_019_0078_x
crossref_primary_10_1016_j_crmeth_2022_100354
crossref_primary_10_1016_j_ymthe_2025_01_031
crossref_primary_10_15252_emmm_201707922
crossref_primary_10_1016_j_omtm_2024_101271
crossref_primary_10_1093_stcltm_szac064
crossref_primary_10_1089_hum_2021_089
crossref_primary_10_1016_j_transci_2021_103060
crossref_primary_10_1038_s41587_020_0551_y
crossref_primary_10_1111_bjh_17867
crossref_primary_10_1182_bloodadvances_2020003811
crossref_primary_10_1007_s10544_017_0255_3
crossref_primary_10_3389_fimmu_2022_966084
crossref_primary_10_3389_fbioe_2024_1380950
crossref_primary_10_1016_j_nbd_2019_104667
crossref_primary_10_3390_cells10061492
crossref_primary_10_1016_j_ymthe_2023_08_003
crossref_primary_10_3390_cells13121039
crossref_primary_10_1016_j_exphem_2018_08_001
crossref_primary_10_1182_bloodadvances_2024013932
crossref_primary_10_3389_fbioe_2020_573282
crossref_primary_10_1016_j_omtm_2024_101297
crossref_primary_10_1042_ETLS20180157
crossref_primary_10_1016_j_omtn_2024_102423
crossref_primary_10_1016_j_biomaterials_2019_119492
crossref_primary_10_1182_blood_2023021426
crossref_primary_10_1016_j_omtm_2018_07_012
crossref_primary_10_1016_j_xcrm_2023_100919
crossref_primary_10_1182_blood_2019002350
crossref_primary_10_1039_C8TB01026A
crossref_primary_10_1016_j_biomaterials_2022_121568
crossref_primary_10_1016_j_stem_2023_04_014
crossref_primary_10_1016_j_stem_2021_05_008
crossref_primary_10_1038_s41598_019_41803_z
crossref_primary_10_1089_hum_2017_141
crossref_primary_10_1089_hum_2019_016
Cites_doi 10.1001/jama.2015.3253
10.1038/mt.2014.193
10.1126/science.1191536
10.1182/blood-2011-08-371583
10.1182/blood-2013-12-546218
10.1182/blood.V96.13.4185
10.1172/JCI11519
10.1038/nature13420
10.1038/nature09328
10.1016/j.stem.2016.04.016
10.1126/science.1256337
10.1038/sj.bmt.1703792
10.1016/j.stem.2007.10.001
10.1038/nm.2088
10.1126/science.1233151
10.1126/scitranslmed.3007280
10.1126/science.1171242
10.1016/j.stem.2011.02.003
10.1002/stem.1957
10.1016/j.stem.2012.01.003
10.1182/blood-2013-05-503177
10.4049/jimmunol.167.7.3692
10.1038/nature15818
10.1126/science.1201219
10.1016/S0140-6736(16)30374-9
10.1038/nm886
10.1016/j.exphem.2016.04.003
10.1126/science.1233158
10.1182/blood-2010-02-271841
10.1016/j.exphem.2007.05.017
10.1111/j.1365-2141.2012.09219.x
10.1016/S0301-472X(00)00169-7
10.1016/S1083-8791(00)70008-5
10.1038/nbt.3584
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
2017 The Author(s) 2017
Copyright_xml – notice: 2017 The Author(s)
– notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2017 The Author(s) 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.stemcr.2017.02.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-6711
EndPage 990
ExternalDocumentID oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977
PMC5390102
28330619
10_1016_j_stemcr_2017_02_010
S2213671117300772
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon
  grantid: TGT16C01
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAVLU
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RCE
RIG
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-8118e800aaece5d335b4bd3a146b1d032bbffd251ec65d191da4d583cbe71c8d3
IEDL.DBID M48
ISSN 2213-6711
IngestDate Mon Sep 08 19:52:48 EDT 2025
Thu Aug 21 18:36:54 EDT 2025
Fri Jul 11 02:28:30 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Thu Apr 24 23:09:22 EDT 2025
Tue Jul 01 02:44:12 EDT 2025
Wed May 17 02:21:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords lentiviral vector transduction
UM171
HSC gene therapy
HSC expansion
purified HSCs
prostaglandin E2
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-8118e800aaece5d335b4bd3a146b1d032bbffd251ec65d191da4d583cbe71c8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2017.02.010
PMID 28330619
PQID 1880466257
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5390102
proquest_miscellaneous_1880466257
pubmed_primary_28330619
crossref_citationtrail_10_1016_j_stemcr_2017_02_010
crossref_primary_10_1016_j_stemcr_2017_02_010
elsevier_sciencedirect_doi_10_1016_j_stemcr_2017_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-11
PublicationDateYYYYMMDD 2017-04-11
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cell reports
PublicationTitleAlternate Stem Cell Reports
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Boitano, Wang, Romeo, Bouchez, Parker, Sutton, Walker, Flaveny, Perdew, Denison (bib5) 2010; 329
Cartier, Hacein-Bey-Abina, Bartholomae, Veres, Schmidt, Kutschera, Vidaud, Abel, Dal-Cortivo, Caccavelli (bib7) 2009; 326
Kerre, De Smet, De Smedt, Offner, De Bosscher, Plum, Vandekerckhove (bib20) 2001; 167
Aiuti, Biasco, Scaramuzza, Ferrua, Cicalese, Baricordi, Dionisio, Calabria, Giannelli, Castiello (bib1) 2013; 341
Palchaudhuri, Saez, Hoggatt, Schajnovitz, Sykes, Tate, Czechowicz, Kfoury, Ruchika, Rossi (bib33) 2016; 34
Fares, Chagraoui, Gareau, Gingras, Ruel, Mayotte, Csaszar, Knapp, Miller, Ngom (bib11) 2014; 345
Notta, Doulatov, Laurenti, Poeppl, Jurisica, Dick (bib32) 2011; 333
Stein, Ott, Schultze-Strasser, Jauch, Burwinkel, Kinner, Schmidt, Krämer, Schwäble, Glimm (bib36) 2010; 16
Miller, Knapp, Beer, MacAldaz, Rabu, Cheung, Wei, Eaves (bib29) 2016; 44
McDermott, Eppert, Lechman, Doedens, Dick (bib26) 2010; 116
Cutler, Multani, Robbins, Kim, Le, Hoggatt, Pelus, Desponts, Chen (bib10) 2013; 122
Negrin, Atkinson, Leemhuis, Hanania, Juttner, Tierney, Hu, Johnston, Shizurn, Stockerl-Goldstein (bib31) 2000; 6
Kallinikou, Anjos-Afonso, Blundell, Ings, Watts, Thrasher, Linch, Bonnet, Yong (bib19) 2012; 158
Kiernan, Damien, Monaghan, Shorr, McIntyre, Fergusson, Tinmouth, Allan (bib21) 2016
Wang, Sather, Wang, Adair, Khan, Singh, Lang, Adams, Curinga, Kiem (bib37) 2014; 124
Michallet, Philip, Philip, Godinot, Sebban, Salles, Thiebaut, Biron, Lopez, Mazars (bib28) 2000; 28
Petrillo, Cesana, Piras, Bartolaccini, Naldini, Montini, Kajaste-Rudnitski (bib34) 2015; 23
Heffner, Bonner, Campbell, Christiansen, Pierciey, Zhang, Lewis, Smurnyy, Hamel, Shah (bib18) 2016; 24
Biffi, Montini, Lorioli, Cesani, Fumagalli, Plati, Baldoli, Martino, Calabria, Canale (bib4) 2013; 341
Mazurier, Doedens, Gan, Dick (bib25) 2003; 9
Genovese, Schiroli, Escobar, Di Tomaso, Firrito, Calabria, Moi, Mazzieri, Bonini, Holmes (bib12) 2014; 510
Goessling, Allen, Guan, Jin, Uchida, Dovey, Harris, Metzger, Bonifacino, Stroncek (bib15) 2011; 8
Baldwin, Urbinati, Romero, Campo-Fernandez, Kaufman, Cooper, Maziuk, Hollis, Kohn (bib2) 2015; 33
Naldini (bib30) 2015; 526
Lidonnici, Aprile, Frittoli, Mandelli, Paleari, Spinelli, Gentner, Zambelli, Parisi, Bellio (bib23) 2016
Biasco, Pellin, Scala, Dionisio, Basso-Ricci, Leonardelli, Scaramuzza, Baricordi, Ferrua, Cicalese (bib3) 2015; 19
Glimm, Oh, Eaves (bib13) 2000; 96
Majeti, Park, Weissman (bib24) 2007; 1
Larochelle, Gillette, Desmond, Ichwan, Cantilena, Cerf, Barrett, Wayne, Lippincott-Schwartz, Dunbar (bib22) 2012; 119
Cavazzana-Calvo, Payen, Negre, Wang, Hehir, Fusil, Down, Denaro, Brady, Westerman (bib8) 2010; 467
McKenzie, Gan, Doedens, Dick (bib27) 2007; 35
Hacein-Bey Abina, Gaspar, Blondeau, Caccavelli, Charrier, Buckland, Picard, Six, Himoudi, Gilmour (bib17) 2015; 313
Csaszar, Kirouac, Yu, Wang, Qiao, Cooke, Boitano, Ito, Zandstra (bib9) 2012; 10
Braun, Boztug, Paruzynski, Witzel, Schwarzer, Rothe, Modlich, Beier, Göhring, Steinemann (bib6) 2014; 6
Glimm, Eisterer, Lee, Cashman, Holyoake, Nicolini, Shultz, Von Kalle, Eaves (bib14) 2001; 107
Gordon, Leimig, Babarin-Dorner, Houston, Holladay, Mueller, Geiger, Handgretinger (bib16) 2003; 31
Sessa, Lorioli, Fumagalli, Acquati, Redaelli, Baldoli, Canale, Lopez, Morena, Calabria (bib35) 2016; 388
Biffi (10.1016/j.stemcr.2017.02.010_bib4) 2013; 341
Heffner (10.1016/j.stemcr.2017.02.010_bib18) 2016; 24
Gordon (10.1016/j.stemcr.2017.02.010_bib16) 2003; 31
Kallinikou (10.1016/j.stemcr.2017.02.010_bib19) 2012; 158
Biasco (10.1016/j.stemcr.2017.02.010_bib3) 2015; 19
Naldini (10.1016/j.stemcr.2017.02.010_bib30) 2015; 526
McKenzie (10.1016/j.stemcr.2017.02.010_bib27) 2007; 35
Lidonnici (10.1016/j.stemcr.2017.02.010_bib23) 2016
Goessling (10.1016/j.stemcr.2017.02.010_bib15) 2011; 8
Stein (10.1016/j.stemcr.2017.02.010_bib36) 2010; 16
Majeti (10.1016/j.stemcr.2017.02.010_bib24) 2007; 1
Glimm (10.1016/j.stemcr.2017.02.010_bib13) 2000; 96
Kiernan (10.1016/j.stemcr.2017.02.010_bib21) 2016
Csaszar (10.1016/j.stemcr.2017.02.010_bib9) 2012; 10
Cartier (10.1016/j.stemcr.2017.02.010_bib7) 2009; 326
Palchaudhuri (10.1016/j.stemcr.2017.02.010_bib33) 2016; 34
Sessa (10.1016/j.stemcr.2017.02.010_bib35) 2016; 388
Michallet (10.1016/j.stemcr.2017.02.010_bib28) 2000; 28
Aiuti (10.1016/j.stemcr.2017.02.010_bib1) 2013; 341
Glimm (10.1016/j.stemcr.2017.02.010_bib14) 2001; 107
Notta (10.1016/j.stemcr.2017.02.010_bib32) 2011; 333
Cavazzana-Calvo (10.1016/j.stemcr.2017.02.010_bib8) 2010; 467
Larochelle (10.1016/j.stemcr.2017.02.010_bib22) 2012; 119
Negrin (10.1016/j.stemcr.2017.02.010_bib31) 2000; 6
Boitano (10.1016/j.stemcr.2017.02.010_bib5) 2010; 329
Petrillo (10.1016/j.stemcr.2017.02.010_bib34) 2015; 23
Cutler (10.1016/j.stemcr.2017.02.010_bib10) 2013; 122
Wang (10.1016/j.stemcr.2017.02.010_bib37) 2014; 124
Genovese (10.1016/j.stemcr.2017.02.010_bib12) 2014; 510
McDermott (10.1016/j.stemcr.2017.02.010_bib26) 2010; 116
Kerre (10.1016/j.stemcr.2017.02.010_bib20) 2001; 167
Hacein-Bey Abina (10.1016/j.stemcr.2017.02.010_bib17) 2015; 313
Fares (10.1016/j.stemcr.2017.02.010_bib11) 2014; 345
Miller (10.1016/j.stemcr.2017.02.010_bib29) 2016; 44
Baldwin (10.1016/j.stemcr.2017.02.010_bib2) 2015; 33
Braun (10.1016/j.stemcr.2017.02.010_bib6) 2014; 6
Mazurier (10.1016/j.stemcr.2017.02.010_bib25) 2003; 9
References_xml – volume: 24
  start-page: 229
  year: 2016
  ident: bib18
  article-title: PGE2 increases lentiviral vector transduction efficiency of human HSC
  publication-title: Mol. Ther.
– volume: 526
  start-page: 351
  year: 2015
  end-page: 360
  ident: bib30
  article-title: Gene therapy returns to centre stage
  publication-title: Nature
– volume: 10
  start-page: 218
  year: 2012
  end-page: 229
  ident: bib9
  article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling
  publication-title: Cell Stem Cell
– volume: 35
  start-page: 1429
  year: 2007
  end-page: 1436
  ident: bib27
  article-title: Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells
  publication-title: Exp. Hematol.
– volume: 119
  start-page: 1848
  year: 2012
  end-page: 1855
  ident: bib22
  article-title: Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain
  publication-title: Blood
– volume: 34
  start-page: 738
  year: 2016
  end-page: 747
  ident: bib33
  article-title: Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin
  publication-title: Nat. Biotechnol.
– volume: 33
  start-page: 1532
  year: 2015
  end-page: 1542
  ident: bib2
  article-title: Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy
  publication-title: Stem Cells
– volume: 467
  start-page: 318
  year: 2010
  end-page: 322
  ident: bib8
  article-title: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
  publication-title: Nature
– volume: 28
  start-page: 858
  year: 2000
  end-page: 870
  ident: bib28
  article-title: Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution
  publication-title: Exp. Hematol.
– year: 2016
  ident: bib23
  article-title: Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to Plerixafor alone
  publication-title: Haematologica
– volume: 19
  start-page: 107
  year: 2015
  end-page: 119
  ident: bib3
  article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases
  publication-title: Cell Stem Cell
– volume: 44
  start-page: 635
  year: 2016
  end-page: 640
  ident: bib29
  article-title: Early production of human neutrophils and platelets posttransplant is severely compromised by growth factor exposure
  publication-title: Exp. Hematol.
– volume: 333
  start-page: 218
  year: 2011
  end-page: 221
  ident: bib32
  article-title: Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
  publication-title: Science
– volume: 6
  start-page: 227ra33
  year: 2014
  ident: bib6
  article-title: Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity
  publication-title: Sci. Transl. Med.
– volume: 345
  start-page: 1509
  year: 2014
  end-page: 1512
  ident: bib11
  article-title: Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal
  publication-title: Science
– volume: 23
  start-page: 352
  year: 2015
  end-page: 362
  ident: bib34
  article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells
  publication-title: Mol. Ther.
– volume: 31
  start-page: 17
  year: 2003
  end-page: 22
  ident: bib16
  article-title: Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells
  publication-title: Bone Marrow Transpl.
– volume: 167
  start-page: 3692
  year: 2001
  end-page: 3698
  ident: bib20
  article-title: Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion
  publication-title: J. Immunol.
– volume: 158
  start-page: 778
  year: 2012
  end-page: 787
  ident: bib19
  article-title: Engraftment defect of cytokine-cultured adult human mobilized CD34+ cells is related to reduced adhesion to bone marrow niche elements
  publication-title: Br. J. Haematol.
– volume: 510
  start-page: 235
  year: 2014
  end-page: 240
  ident: bib12
  article-title: Targeted genome editing in human repopulating haematopoietic stem cells
  publication-title: Nature
– volume: 313
  start-page: 1550
  year: 2015
  end-page: 1563
  ident: bib17
  article-title: Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome
  publication-title: JAMA
– volume: 8
  start-page: 445
  year: 2011
  end-page: 458
  ident: bib15
  article-title: Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models
  publication-title: Cell Stem Cell
– volume: 122
  start-page: 3074
  year: 2013
  end-page: 3081
  ident: bib10
  article-title: Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation
  publication-title: Blood
– volume: 96
  start-page: 4185
  year: 2000
  end-page: 4193
  ident: bib13
  article-title: Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0)
  publication-title: Blood
– volume: 124
  start-page: 913
  year: 2014
  end-page: 923
  ident: bib37
  article-title: Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells
  publication-title: Blood
– volume: 341
  start-page: 1233158
  year: 2013
  ident: bib4
  article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy
  publication-title: Science
– year: 2016
  ident: bib21
  article-title: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review
  publication-title: Transfus. Med. Rev.
– volume: 116
  start-page: 193
  year: 2010
  end-page: 200
  ident: bib26
  article-title: Comparison of human cord blood engraftment between immunocompromised mouse strains
  publication-title: Blood
– volume: 6
  start-page: 262
  year: 2000
  end-page: 271
  ident: bib31
  article-title: Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer
  publication-title: Biol. Blood Marrow Transpl.
– volume: 341
  start-page: 1233151
  year: 2013
  ident: bib1
  article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome
  publication-title: Science
– volume: 1
  start-page: 635
  year: 2007
  end-page: 645
  ident: bib24
  article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood
  publication-title: Cell Stem Cell
– volume: 388
  start-page: 476
  year: 2016
  end-page: 487
  ident: bib35
  article-title: Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial
  publication-title: Lancet
– volume: 16
  start-page: 198
  year: 2010
  end-page: 204
  ident: bib36
  article-title: Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease
  publication-title: Nat. Med.
– volume: 326
  start-page: 818
  year: 2009
  end-page: 823
  ident: bib7
  article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy
  publication-title: Science
– volume: 107
  start-page: 199
  year: 2001
  end-page: 206
  ident: bib14
  article-title: Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-2 microglobulin-null mice
  publication-title: J. Clin. Invest.
– volume: 329
  start-page: 1345
  year: 2010
  end-page: 1348
  ident: bib5
  article-title: Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
  publication-title: Science
– volume: 9
  start-page: 959
  year: 2003
  end-page: 963
  ident: bib25
  article-title: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells
  publication-title: Nat. Med.
– volume: 313
  start-page: 1550
  year: 2015
  ident: 10.1016/j.stemcr.2017.02.010_bib17
  article-title: Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome
  publication-title: JAMA
  doi: 10.1001/jama.2015.3253
– volume: 23
  start-page: 352
  year: 2015
  ident: 10.1016/j.stemcr.2017.02.010_bib34
  article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2014.193
– volume: 329
  start-page: 1345
  year: 2010
  ident: 10.1016/j.stemcr.2017.02.010_bib5
  article-title: Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
  publication-title: Science
  doi: 10.1126/science.1191536
– volume: 119
  start-page: 1848
  year: 2012
  ident: 10.1016/j.stemcr.2017.02.010_bib22
  article-title: Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain
  publication-title: Blood
  doi: 10.1182/blood-2011-08-371583
– volume: 124
  start-page: 913
  year: 2014
  ident: 10.1016/j.stemcr.2017.02.010_bib37
  article-title: Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells
  publication-title: Blood
  doi: 10.1182/blood-2013-12-546218
– volume: 96
  start-page: 4185
  year: 2000
  ident: 10.1016/j.stemcr.2017.02.010_bib13
  article-title: Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0)
  publication-title: Blood
  doi: 10.1182/blood.V96.13.4185
– volume: 107
  start-page: 199
  year: 2001
  ident: 10.1016/j.stemcr.2017.02.010_bib14
  article-title: Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-2 microglobulin-null mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI11519
– volume: 510
  start-page: 235
  year: 2014
  ident: 10.1016/j.stemcr.2017.02.010_bib12
  article-title: Targeted genome editing in human repopulating haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature13420
– volume: 467
  start-page: 318
  year: 2010
  ident: 10.1016/j.stemcr.2017.02.010_bib8
  article-title: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
  publication-title: Nature
  doi: 10.1038/nature09328
– volume: 19
  start-page: 107
  year: 2015
  ident: 10.1016/j.stemcr.2017.02.010_bib3
  article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.04.016
– volume: 345
  start-page: 1509
  year: 2014
  ident: 10.1016/j.stemcr.2017.02.010_bib11
  article-title: Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal
  publication-title: Science
  doi: 10.1126/science.1256337
– volume: 31
  start-page: 17
  year: 2003
  ident: 10.1016/j.stemcr.2017.02.010_bib16
  article-title: Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells
  publication-title: Bone Marrow Transpl.
  doi: 10.1038/sj.bmt.1703792
– volume: 1
  start-page: 635
  year: 2007
  ident: 10.1016/j.stemcr.2017.02.010_bib24
  article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.10.001
– volume: 16
  start-page: 198
  year: 2010
  ident: 10.1016/j.stemcr.2017.02.010_bib36
  article-title: Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.2088
– volume: 341
  start-page: 1233151
  year: 2013
  ident: 10.1016/j.stemcr.2017.02.010_bib1
  article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome
  publication-title: Science
  doi: 10.1126/science.1233151
– volume: 6
  start-page: 227ra33
  year: 2014
  ident: 10.1016/j.stemcr.2017.02.010_bib6
  article-title: Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007280
– volume: 326
  start-page: 818
  year: 2009
  ident: 10.1016/j.stemcr.2017.02.010_bib7
  article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy
  publication-title: Science
  doi: 10.1126/science.1171242
– volume: 8
  start-page: 445
  year: 2011
  ident: 10.1016/j.stemcr.2017.02.010_bib15
  article-title: Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.02.003
– volume: 33
  start-page: 1532
  year: 2015
  ident: 10.1016/j.stemcr.2017.02.010_bib2
  article-title: Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy
  publication-title: Stem Cells
  doi: 10.1002/stem.1957
– volume: 10
  start-page: 218
  year: 2012
  ident: 10.1016/j.stemcr.2017.02.010_bib9
  article-title: Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.01.003
– volume: 122
  start-page: 3074
  year: 2013
  ident: 10.1016/j.stemcr.2017.02.010_bib10
  article-title: Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation
  publication-title: Blood
  doi: 10.1182/blood-2013-05-503177
– volume: 167
  start-page: 3692
  year: 2001
  ident: 10.1016/j.stemcr.2017.02.010_bib20
  article-title: Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.7.3692
– volume: 526
  start-page: 351
  year: 2015
  ident: 10.1016/j.stemcr.2017.02.010_bib30
  article-title: Gene therapy returns to centre stage
  publication-title: Nature
  doi: 10.1038/nature15818
– volume: 333
  start-page: 218
  year: 2011
  ident: 10.1016/j.stemcr.2017.02.010_bib32
  article-title: Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
  publication-title: Science
  doi: 10.1126/science.1201219
– volume: 388
  start-page: 476
  year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib35
  article-title: Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30374-9
– year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib21
  article-title: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review
  publication-title: Transfus. Med. Rev.
– volume: 9
  start-page: 959
  year: 2003
  ident: 10.1016/j.stemcr.2017.02.010_bib25
  article-title: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm886
– volume: 44
  start-page: 635
  year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib29
  article-title: Early production of human neutrophils and platelets posttransplant is severely compromised by growth factor exposure
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2016.04.003
– year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib23
  article-title: Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to Plerixafor alone
  publication-title: Haematologica
– volume: 341
  start-page: 1233158
  year: 2013
  ident: 10.1016/j.stemcr.2017.02.010_bib4
  article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy
  publication-title: Science
  doi: 10.1126/science.1233158
– volume: 24
  start-page: 229
  issue: S1
  year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib18
  article-title: PGE2 increases lentiviral vector transduction efficiency of human HSC
  publication-title: Mol. Ther.
– volume: 116
  start-page: 193
  year: 2010
  ident: 10.1016/j.stemcr.2017.02.010_bib26
  article-title: Comparison of human cord blood engraftment between immunocompromised mouse strains
  publication-title: Blood
  doi: 10.1182/blood-2010-02-271841
– volume: 35
  start-page: 1429
  year: 2007
  ident: 10.1016/j.stemcr.2017.02.010_bib27
  article-title: Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2007.05.017
– volume: 158
  start-page: 778
  year: 2012
  ident: 10.1016/j.stemcr.2017.02.010_bib19
  article-title: Engraftment defect of cytokine-cultured adult human mobilized CD34+ cells is related to reduced adhesion to bone marrow niche elements
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2012.09219.x
– volume: 28
  start-page: 858
  year: 2000
  ident: 10.1016/j.stemcr.2017.02.010_bib28
  article-title: Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(00)00169-7
– volume: 6
  start-page: 262
  year: 2000
  ident: 10.1016/j.stemcr.2017.02.010_bib31
  article-title: Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer
  publication-title: Biol. Blood Marrow Transpl.
  doi: 10.1016/S1083-8791(00)70008-5
– volume: 34
  start-page: 738
  year: 2016
  ident: 10.1016/j.stemcr.2017.02.010_bib33
  article-title: Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3584
SSID ssj0000991241
Score 2.4748654
Snippet Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and...
Ex vivo gene therapy based on CD34 hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and...
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and...
Ex vivo gene therapy based on CD34 + hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 977
SubjectTerms ADP-ribosyl Cyclase 1 - analysis
Animals
Antigens, CD34 - analysis
Cell Culture Techniques
Cell Engineering - methods
Cell Proliferation
Genetic Therapy - methods
Genetic Vectors - genetics
Hematopoietic Stem Cell Transplantation - methods
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
HSC expansion
HSC gene therapy
Humans
lentiviral vector transduction
Lentivirus - genetics
Mice, Inbred NOD
prostaglandin E2
purified HSCs
Transduction, Genetic - methods
UM171
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQpUpcEP8slMpIXCNsx87PkVZbrTiglWhRb1b8J1Ktkmq7i-gj8BY8C0_GjJ2ssnDYC4dcNnGy45nMfOOMvyHkPRPGBdGozIQiZFjAmFU8-IwZaVUI0vMmVlt8LhZX8tO1up60-sKasEQPnCbug5UQwLwwlhkHvjMgXTgLVnpf-BrAC3pfVrNJMnWTcA8ELsy2hOB5VpScj_vmYnEXkiRbpAPlZaTsxA20k7gU6fv3wtO_8PPvKspJWLp4TB4NeJJ-THI8IQ9895Qcpw6T98_Iz3mkiICxdP7j96-v7feeTigIadM5OAEeARfNaB8o1n2s7ulyu24DoFMaF_npApld-9u-xS2P9AuIFUcu1z3YH_iENT33qxVd7rqB3VEAwxQ5rell4i14Tq4u5pfni2zovpBZVasNqIxXHuBk03jrlctzZaRxeQOu1XDHcmFMCA7gkbeFcpD2uUY6VeXW-JLbyuUvyFHXd_4VoWXuJbei5nUlJVhBDYcUDnMlZgCSzEg-zr22AzU5dshY6bEG7UYnjWnUmGZCg8ZmJNuNuk3UHAeuP0O17q5FYu34A5ibHsxNHzK3GSlHo9ADRknYA27VHnj8u9GGNLzC-F2m6Xy_vdNIiScLSETh7i-TTe3-JKA_SOpwiso9a9uTYv9M136LNOEKl7OYeP0_xH5DHqIo-BmN8xNytFlv_VtAYxtzGl-8P6AxNI8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0u0zfaFCryaWLPlx7IYsoYcS2N2Sm7BerUuwgzcp3Z-w_6K_pb-sM_KDuD0s9OCDbcmWNaPRN_LMJ0I-xFxbz0sZaZ_6CAMYo5x5F8VaGOm9cKwM0Raf09W1-LSRmxOyGHJhMKyyt_2dTQ_Wur8y73tzvquq-SXnSDcGYxUp1wEkgh3GrFJM4tucj-ssgIBgCkO_C8tHWGHIoAthXkiXbJAYlGWBvBNTaY9mqEDkP5mo_gWif8dTHk1QF4_Jox5Z0o9d48_IiaufkAfdXpO3T8ndMpBFQF26_Pn715fqR0OPyAhpWVu4AbYBl89o4ylGgGxv6frQVh5wKg3L_XSFHK_Nrqkw-ZFewmeFmuu2AU0E69DShdtu6XrcF-yGAiymyG5NrzoGg2fk-mJ5tVhF_T4MkZGF3IPwWO4AWJalM07aJJFaaJuUYGQ1s3HCtfbeAlByJpUWHEBbCivzxGiXMZPb5Dk5rZvavSQ0S5xghhesyIUAfSjgENyi1xRrACczkgx9r0xPUo57ZWzVEI32XXUSUygxFXMFEpuRaKy160g67il_jmIdyyLFdrjQtF9Vr2PKCEBOjmsTawuTtkee-tgb4VzqCkDNM5INSqEmGguPqu55_ftBhxQMZvxDU9auOdwoJMcTKbik8PQXnU6NjQQcCO4ddlE20bbJV0zv1NW3QBgucWEr5q_-u8WvyUM8w79ojL0hp_v24N4CGNvrd2G0_QHLuzWp
  priority: 102
  providerName: Elsevier
Title Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy
URI https://dx.doi.org/10.1016/j.stemcr.2017.02.010
https://www.ncbi.nlm.nih.gov/pubmed/28330619
https://www.proquest.com/docview/1880466257
https://pubmed.ncbi.nlm.nih.gov/PMC5390102
https://doaj.org/article/c4223e2bc0bd429f94300fc4ee6e9977
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZWi5C4IN6Ux8pIXIPixM7jgBC76qqAhIrYot6s-MVmFSVL2qLtT-Bf8Fv4Zcw4Sdnw0F44NIcmdmLP2PONPf6GkOdhpIyLChEol7gAAxiDjDkbhIpr4Ry3rPDRFu-T2YK_XYrlHhlytvYduPqra4f5pBZt9eLiy_YVDPiXv2K1kPNYI7snSz0DJ565uuZ3jDCYrwf8Zx0eAoOGXlgUsThIUsaG83T_qGhkrzyt_8hs_QlLf4-uvGSujm-Rmz3OpK87xbhN9mx9h1zvMk9u75JvU08dAWXp9OLH90_l14ZeoiakRW3gBswUuJhGG0cxHqTa0vmmLR2gVuoX_-kMGV-b86bEo5D0IzTLl5y3DeglzBUtPbJVRee7LGErCiCZItc1Pen4DO6RxfH05GgW9FkZAi1ysQZRsswCzCwKq60wcSwUVyYuYMpVzIRxpJRzBmCT1Ykw4A6aghuRxVrZlOnMxPfJft3U9iGhaWw501HO8oxz0I4cfjwy6EOFCqDKhMRD30vdU5Zj5oxKDrFpZ7KTmESJyTCSILEJCXalzjvKjiueP0Sx7p5Fwm3_R9N-lv34lZoDjrKR0qEyYMIdstaHTnNrE5sDhp6QdFAK2WOXDpNAVeUVr3826JCEoY37NUVtm81KIlUeT8BBhdofdDq1-0hAheDsYRelI20btWJ8py5PPX24wGWuMHr0P5r9mNzApuD2GmNPyP663dingNLW6sCvbsD1zfIQru8-ZAd-KP4E0KdAtA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSSuURPHTpMjW3XVhWVVabuoNyt-LUFVUmVbxP4E_gW_hV_GjPNQA4eVOPQSZ1LHM575xhl_JuR9yJRxLBeBcokLsIAxSCNng1BxLZzjNsp9tcVZMr_gH1didUCm3V4YLKtsfX_j0723bq-M29Ecb4pifM4Y0o3BXEXKdQCJt8htQAMhmvbJ6qhfaAEIBDEMEy8UCFCi20Ln67yQL1kjM2g08eyduJd2L0R5Jv9BpPoXif5dULkXoY4fkPsttKQfmt4_JAe2fETuNIdNXj8mP2eeLQJk6ezH719fiu8V3WMjpHlpoAGcA66f0cpRLAFZX9PFri4cAFXq1_vpHEleq01V4O5Heg6v5SUXdQWmCO6hplO7XtNFfzDYFQVcTJHemi4bCoMn5OJ4tpzOg_YghkCLTGxBe1FqAVnmudVWmDgWiisT5-BlVWTCmCnlnAGkZHUiDGSAJudGpLFWdhLp1MRPyWFZlfY5oZPY8kizLMpSzsEgMvhxZjBtChWgkxGJu7GXumUpx8My1rIrR_smG41J1JgMmQSNjUjQS20alo4b7j9Ctfb3Ise2v1DVl7I1Mqk5QCfLlA6VgajtkKg-dJpbm9gMYPOITDqjkAOThUcVN_z9u86GJMxm_ESTl7baXUlkx-MJ5KTw9GeNTfWdBCAI-R0O0WRgbYO3GLaUxVfPGC5wZStkL_67x2_J3fny86k8PTn79JLcwxb8pBZFr8jhtt7Z14DMtuqNn3l_AFybOMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Ex%C2%A0Vivo+Engineering+and+Expansion+of+Highly+Purified+Human+Hematopoietic+Stem+and+Progenitor+Cell+Populations+for+Gene+Therapy&rft.jtitle=Stem+cell+reports&rft.au=Erika+Zonari&rft.au=Giacomo+Desantis&rft.au=Carolina+Petrillo&rft.au=Francesco+E.+Boccalatte&rft.date=2017-04-11&rft.pub=Elsevier&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=8&rft.issue=4&rft.spage=977&rft.epage=990&rft_id=info:doi/10.1016%2Fj.stemcr.2017.02.010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c4223e2bc0bd429f94300fc4ee6e9977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon