Application of machine learning assisted multi-variate UV spectrophotometric models augmented by kennard stone clustering algorithm for quantifying recently approved nasal spray combination of mometasone and olopatadine along with two genotoxic impurities: comprehensive sustainability assessment
The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the app...
Saved in:
| Published in | BMC chemistry Vol. 19; no. 1; pp. 98 - 19 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
15.04.2025
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-801X 2661-801X |
| DOI | 10.1186/s13065-025-01391-8 |
Cover
| Abstract | The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods’ random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method’s reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method’s eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes. |
|---|---|
| AbstractList | The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods’ random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method’s reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method’s eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes. The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods’ random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method’s reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method’s eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes. Abstract The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods’ random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method’s reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method’s eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes. The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods' random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method's reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method's eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes.The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods' random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method's reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method's eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes. |
| ArticleNumber | 98 |
| Author | Abbas, Ahmed Emad F. Said, Basmat Amal M. Salem, Yomna A. Mansour, Mohmeed M. A. Naguib, Ibrahim A. Gamal, Mohammed Ghoneim, Mohammed M. Halim, Michael K. |
| Author_xml | – sequence: 1 givenname: Ahmed Emad F. orcidid: 0000-0002-7098-8662 surname: Abbas fullname: Abbas, Ahmed Emad F. email: dr.ahmedeemad@gmail.com, ahmed.emad.pha@o6u.edu.eg organization: Faculty of Pharmacy, Analytical Chemistry Department, October 6 University – sequence: 2 givenname: Mohammed surname: Gamal fullname: Gamal, Mohammed organization: Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University – sequence: 3 givenname: Ibrahim A. surname: Naguib fullname: Naguib, Ibrahim A. organization: Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University – sequence: 4 givenname: Michael K. surname: Halim fullname: Halim, Michael K. organization: Faculty of Pharmacy, Analytical Chemistry Department, October 6 University – sequence: 5 givenname: Basmat Amal M. surname: Said fullname: Said, Basmat Amal M. organization: College of Pharmacy, Al-Mustaqbal University – sequence: 6 givenname: Mohammed M. surname: Ghoneim fullname: Ghoneim, Mohammed M. organization: Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University – sequence: 7 givenname: Mohmeed M. A. surname: Mansour fullname: Mansour, Mohmeed M. A. organization: Chemistry Department, Faculty of Science, University of Al-Jufra – sequence: 8 givenname: Yomna A. surname: Salem fullname: Salem, Yomna A. organization: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40234857$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhQMqoqX0D7BAlth0M2A7jpOwQVXFo1IlNhSxi26cOzMujp3azpT8e5yZoQ8WiIUVKz73u-fa50V2YJ3FLHvF6FvGKvkusJzKYkF5Wiyv2aJ6mh1xKdOGsh8HD_aH2UkI15RSzgpa5uJ5digoz0VVlEdPTs-GwWgFUTtL3JL0oNbaIjEI3mq7IhCCDhE70o8m6sUGvIaI5Oo7CQOq6N2wdtH1GL1WpHcdmkBgXPVo56J2Ij_RWvAdCTENQJQZE81vyWblvI7rniydJzcj2KiX03ziUaVyMxEYBu82iWMhgEkdPUxEub7V9t7x3BzCDAfbEWfcABG6eQgwLtFuUw8Sbx1ZoU1WfyWfuh_G1FpjeD_jBo9rtEFvkIRkDxK91UbHaZ4eQ5iHeZk9W4IJeLL_HmdXnz5-O_-yuPz6-eL87HKhirqIC8HqStQlK5SQnLVlriQClVUngSItJGMgONRKAedtLbquLmVbtUxywTpaV_lxdrHjdg6um8HrHvzUONDN9ofzqwZ81MpgU7FWyhoVCJBCdNiWiqFQJefFkoFSiZXvWKMdYLoFY-6AjDZzjJpdjJoUo2Ybo2Z28GFXNYxtj938FB7MIyuPT6xeNyu3aRinlBUyT4TTPcG7mxFDbHodFBoDFt0YmpzVtKpYLWSSvvlLeu1Gb9MNb1WCc8l4Ur1-aOnOy58cJwHfCZR3IXhc_t-g--tJuUqxQ3_f-x9VvwHNPCC9 |
| Cites_doi | 10.1186/s13065-024-01254-8 10.1016/j.foodchem.2023.136579 10.3390/met10010073 10.1016/j.trac.2019.06.015 10.1186/s13065-024-01158-7 10.1016/S0731-7085(03)00521-1 10.1007/s42250-023-00835-9 10.1007/s42250-023-00819-9 10.1016/j.scp.2023.101294 10.1007/s13206-024-00144-4 10.1016/j.saa.2021.120576 10.1016/j.scp.2024.101463 10.1007/s00216-018-1283-4 10.1016/j.saa.2024.124521 10.1016/j.scitotenv.2016.06.181 10.1016/j.greeac.2024.100100 10.1186/s13065-024-01242-y 10.1016/j.saa.2019.04.064 10.1016/j.scp.2023.101412 10.1093/jaoacint/qsad087 10.1080/00401706.1969.10490666 10.3390/molecules28010328 10.1016/j.mineng.2016.04.015 10.1109/ICDMW51313.2020.00122 10.1016/j.saa.2021.120308 10.1002/sscp.202300032 10.1186/s43094-023-00546-5 10.1021/acs.analchem.9b01872 10.1155/2022/4965138 10.1016/j.trac.2013.04.010 10.1039/D3GC02347H 10.1177/17475198231195811 10.1016/j.saa.2020.118415 10.1016/j.saa.2021.119540 10.1016/j.jpba.2012.07.006 10.1186/s13065-023-01095-x 10.1093/chromsci/bmac068 10.1021/cr068359e 10.1016/j.saa.2023.123161 10.1016/j.trac.2021.116223 10.1016/j.microc.2024.110276 10.1038/s41467-021-24761-x 10.1039/D1GC02318G 10.1093/jaoacint/qsad082 10.1093/chromsci/bmac055 10.1016/j.scp.2024.101523 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Springer Nature B.V. Dec 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7SR 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ JG9 K9. KB. M0S M2O MBDVC PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s13065-025-01391-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Health & Medical Collection (Alumni Edition) ProQuest Research library Research Library (Corporate) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Engineered Materials Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) ProQuest Materials Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2661-801X |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_81b669eca4a644deb7c1e4c7225f1acc 10.1186/s13065-025-01391-8 PMC12001563 40234857 10_1186_s13065_025_01391_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Taif University grantid: TU-DSPP-2024-49 funderid: http://dx.doi.org/10.13039/501100006261 – fundername: Taif University grantid: TU-DSPP-2024-49 |
| GroupedDBID | 0R~ 7X7 8AO 8FE 8FG 8FI 8FJ 8G5 AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ABUWG ACACY ACUHS ACULB ADBBV ADUKV AFGXO AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BFQNJ BGLVJ BMC BPHCQ BVXVI C24 C6C CCPQU D1I DWQXO EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GUQSH HCIFZ HH5 HMCUK HYE IAO IGS IHR ISE ISR ITC KB. M2O ML- M~E PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ RPM SOJ TUS UKHRP AAYXX CITATION PQGLB PUEGO NPM 3V. 7SR 7XB 8BQ 8FD 8FK JG9 K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM ADTOC EJD UNPAY |
| ID | FETCH-LOGICAL-c595t-419849715c4621b73c6ea068d6a0e05611a42a9cca22b94dd976b8b16241d0983 |
| IEDL.DBID | DOA |
| ISSN | 2661-801X |
| IngestDate | Fri Oct 03 12:31:04 EDT 2025 Sun Oct 26 04:09:57 EDT 2025 Tue Sep 30 17:04:07 EDT 2025 Fri Sep 05 17:38:03 EDT 2025 Tue Oct 07 05:50:10 EDT 2025 Mon Jul 21 06:04:20 EDT 2025 Wed Oct 01 06:33:18 EDT 2025 Thu May 22 04:28:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Machine learning models Kennard stone clustering algorithm Mometasone and olopatadine Greenness whiteness and blueness evaluation Solvents selection tool and spider charts |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c595t-419849715c4621b73c6ea068d6a0e05611a42a9cca22b94dd976b8b16241d0983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7098-8662 |
| OpenAccessLink | https://doaj.org/article/81b669eca4a644deb7c1e4c7225f1acc |
| PMID | 40234857 |
| PQID | 3190422612 |
| PQPubID | 54776 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_81b669eca4a644deb7c1e4c7225f1acc unpaywall_primary_10_1186_s13065_025_01391_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12001563 proquest_miscellaneous_3190881946 proquest_journals_3190422612 pubmed_primary_40234857 crossref_primary_10_1186_s13065_025_01391_8 springer_journals_10_1186_s13065_025_01391_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-15 |
| PublicationDateYYYYMMDD | 2025-04-15 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: London |
| PublicationTitle | BMC chemistry |
| PublicationTitleAbbrev | BMC Chemistry |
| PublicationTitleAlternate | BMC Chem |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V BMC |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: BMC |
| References | 1391_CR15 P Prajapati (1391_CR2) 2024; 7 P Prajapati (1391_CR4) 2024; 39 A Elsonbaty (1391_CR11) 2020; 238 A Gałuszka (1391_CR43) 2013; 50 MK Halim (1391_CR16) 2024; 200 MAA Rahman (1391_CR33) 2023; 17 MK Halim (1391_CR17) 2024; 38 AH Abdelazim (1391_CR30) 2021; 252 J Płotka-Wasylka (1391_CR42) 2021; 23 AA El-Masry (1391_CR48) 2024; 18 1391_CR45 Y Shen (1391_CR25) 2016; 94 SA Hassan (1391_CR35) 2022; 267 KM Kelani (1391_CR28) 2015; 6 AH Abdelazim (1391_CR29) 2021; 252 KAM Attia (1391_CR39) 2023; 302 KAM Attia (1391_CR14) 2024; 107 PM Nowak (1391_CR50) 2021; 138 SA Mahmoud (1391_CR38) 2024; 37 KAM Attia (1391_CR40) 2024; 18 A Ballester-Caudet (1391_CR46) 2019; 118 P Prajapati (1391_CR3) 2024; 319 JF Farid (1391_CR34) 2022; 265 MCF Ferraro (1391_CR26) 2004; 34 P Prajapati (1391_CR32) 2024; 62 KAM Attia (1391_CR22) 2023; 47 C Larsen (1391_CR23) 2021; 12 P Prajapati (1391_CR6) 2023; 106 PM Nowak (1391_CR51) 2019; 91 HS Elbordiny (1391_CR9) 2024; 8 NS Katamesh (1391_CR47) 2024; 18 B Patel (1391_CR5) 2023; 6 NS Katamesh (1391_CR13) 2024; 18 SM Eid (1391_CR37) 2023; 426 N Manousi (1391_CR49) 2023; 25 P Prajapati (1391_CR1) 2024; 7 M Attimarad (1391_CR10) 2022; 9 P Prajapati (1391_CR31) 2023; 3 J Pla-Tolós (1391_CR44) 2016; 570 P Prajapati (1391_CR7) 2023; 9 RG Brereton (1391_CR20) 2018; 410 F Ferreira (1391_CR18) 2020; 10 MA El Hamd (1391_CR8) 2023; 36 B Székely Gy, Henriques (1391_CR19) 2012; 70 RW Kennard (1391_CR36) 1969; 11 AS Saad (1391_CR27) 2019; 219 LH Keith (1391_CR41) 2007; 107 A Mostafa (1391_CR21) 2022; 28 P Prajapati (1391_CR12) 2024; 62 Z Kayali (1391_CR24) 2023; 9 |
| References_xml | – volume: 18 start-page: 130 year: 2024 ident: 1391_CR13 publication-title: BMC Chem doi: 10.1186/s13065-024-01254-8 – volume: 426 start-page: 136579 year: 2023 ident: 1391_CR37 publication-title: Food Chem doi: 10.1016/j.foodchem.2023.136579 – volume: 10 start-page: 73 year: 2020 ident: 1391_CR18 publication-title: Membr (Basel) doi: 10.3390/met10010073 – volume: 118 start-page: 538 year: 2019 ident: 1391_CR46 publication-title: TRAC Trends Anal Chem doi: 10.1016/j.trac.2019.06.015 – volume: 18 start-page: 54 year: 2024 ident: 1391_CR47 publication-title: BMC Chem doi: 10.1186/s13065-024-01158-7 – volume: 34 start-page: 305 year: 2004 ident: 1391_CR26 publication-title: J Pharm Biomed Anal doi: 10.1016/S0731-7085(03)00521-1 – volume: 7 start-page: 1385 year: 2024 ident: 1391_CR2 publication-title: Chem Afr doi: 10.1007/s42250-023-00835-9 – volume: 3 start-page: 1 year: 2023 ident: 1391_CR31 publication-title: J AOAC Int – volume: 6 start-page: 10 year: 2015 ident: 1391_CR28 publication-title: Pharm Anal Acta – volume: 7 start-page: 1353 year: 2024 ident: 1391_CR1 publication-title: Chem Afr doi: 10.1007/s42250-023-00819-9 – volume: 36 start-page: 101294 year: 2023 ident: 1391_CR8 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2023.101294 – volume: 18 start-page: 257 year: 2024 ident: 1391_CR40 publication-title: Biochip J doi: 10.1007/s13206-024-00144-4 – volume: 267 start-page: 11 year: 2022 ident: 1391_CR35 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2021.120576 – volume: 38 start-page: 101463 year: 2024 ident: 1391_CR17 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2024.101463 – volume: 410 start-page: 6691 year: 2018 ident: 1391_CR20 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-018-1283-4 – volume: 319 start-page: 124521 year: 2024 ident: 1391_CR3 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2024.124521 – volume: 570 start-page: 611 year: 2016 ident: 1391_CR44 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.06.181 – volume: 8 start-page: 100100 year: 2024 ident: 1391_CR9 publication-title: Green Anal Chem doi: 10.1016/j.greeac.2024.100100 – volume: 18 start-page: 54129 year: 2024 ident: 1391_CR48 publication-title: BMC Chem doi: 10.1186/s13065-024-01242-y – volume: 219 start-page: 444 year: 2019 ident: 1391_CR27 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2019.04.064 – volume: 37 start-page: 101412 year: 2024 ident: 1391_CR38 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2023.101412 – volume: 107 start-page: 146 year: 2024 ident: 1391_CR14 publication-title: J AOAC Int doi: 10.1093/jaoacint/qsad087 – volume: 11 start-page: 137 year: 1969 ident: 1391_CR36 publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 28 start-page: 328 year: 2022 ident: 1391_CR21 publication-title: Molecules doi: 10.3390/molecules28010328 – volume: 94 start-page: 1 year: 2016 ident: 1391_CR25 publication-title: Min Eng doi: 10.1016/j.mineng.2016.04.015 – ident: 1391_CR15 doi: 10.1109/ICDMW51313.2020.00122 – volume: 265 start-page: 1 year: 2022 ident: 1391_CR34 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2021.120308 – volume: 6 start-page: 2300032 year: 2023 ident: 1391_CR5 publication-title: Sep Sci Plus doi: 10.1002/sscp.202300032 – volume: 9 start-page: 93 year: 2023 ident: 1391_CR7 publication-title: Futur J Pharm Sci doi: 10.1186/s43094-023-00546-5 – volume: 91 start-page: 10343 year: 2019 ident: 1391_CR51 publication-title: Anal Chem doi: 10.1021/acs.analchem.9b01872 – volume: 9 start-page: 1 year: 2022 ident: 1391_CR10 publication-title: J Spectrosc doi: 10.1155/2022/4965138 – volume: 50 start-page: 78 year: 2013 ident: 1391_CR43 publication-title: TrAC - Trends Anal Chem doi: 10.1016/j.trac.2013.04.010 – volume: 25 start-page: 7598 year: 2023 ident: 1391_CR49 publication-title: Green Chem doi: 10.1039/D3GC02347H – volume: 9 start-page: 1 year: 2023 ident: 1391_CR24 publication-title: Heliyon – volume: 47 start-page: 1 year: 2023 ident: 1391_CR22 publication-title: J Chem Res doi: 10.1177/17475198231195811 – volume: 238 start-page: 118415 year: 2020 ident: 1391_CR11 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2020.118415 – volume: 252 start-page: 119540 year: 2021 ident: 1391_CR30 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2021.119540 – volume: 70 start-page: 251 year: 2012 ident: 1391_CR19 publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2012.07.006 – volume: 17 start-page: 176 year: 2023 ident: 1391_CR33 publication-title: BMC Chem doi: 10.1186/s13065-023-01095-x – volume: 62 start-page: 201 year: 2024 ident: 1391_CR12 publication-title: J Chromatogr Sci doi: 10.1093/chromsci/bmac068 – volume: 107 start-page: 2695 year: 2007 ident: 1391_CR41 publication-title: Chem Rev doi: 10.1021/cr068359e – volume: 302 start-page: 123161 year: 2023 ident: 1391_CR39 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2023.123161 – volume: 138 start-page: 116223 year: 2021 ident: 1391_CR50 publication-title: TRAC Trends Anal Chem doi: 10.1016/j.trac.2021.116223 – volume: 200 start-page: 110276 year: 2024 ident: 1391_CR16 publication-title: Microchem J doi: 10.1016/j.microc.2024.110276 – volume: 12 start-page: 4510 year: 2021 ident: 1391_CR23 publication-title: Nat Commun doi: 10.1038/s41467-021-24761-x – volume: 23 start-page: 8657 year: 2021 ident: 1391_CR42 publication-title: Green Chem doi: 10.1039/D1GC02318G – volume: 252 start-page: 119492 year: 2021 ident: 1391_CR29 publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2021.119540 – volume: 106 start-page: 1654 year: 2023 ident: 1391_CR6 publication-title: J AOAC Int doi: 10.1093/jaoacint/qsad082 – volume: 62 start-page: 108 year: 2024 ident: 1391_CR32 publication-title: J Chromatogr Sci doi: 10.1093/chromsci/bmac055 – volume: 39 start-page: 101523 year: 2024 ident: 1391_CR4 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2024.101523 – ident: 1391_CR45 |
| SSID | ssj0002150734 |
| Score | 2.3474226 |
| Snippet | The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single... Abstract The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 98 |
| SubjectTerms | Algorithms Calibration Chemistry Chemistry and machine learning Chemistry and Materials Science Chemistry/Food Science Chemometrics Clustering Cost effectiveness Design of experiments Footprint analysis Genetic algorithms Genotoxicity Greenness whiteness and blueness evaluation Impurities Kennard stone clustering algorithm Least squares Machine learning Machine learning models Mixtures Mometasone and olopatadine Pharmaceuticals Quality control Quality standards Robustness Solvents Solvents selection tool and spider charts Spectrophotometry Sustainability Sustainable development Toluene |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwEDejexg8IL4GgYEOiQckFq1JnNRBQmibNk1IVAhRtLfIid0PkSZZk2z0v-fO-SgVaOKxTeKe3Z8vP9t3v2PsrUTO7fuJZ3t-GNskgGWHSmh76Evp4UMeF5Q7_GUcXEz450v_coeNu1wYCqvsfKJx1CpPaI_8CKFCclX4Qv5UXNlUNYpOV7sSGrItraA-Gomxu2zXJWWsAds9ORt__dbvurjEfzzeZc-I4Kh0qHa6TVVdiQ05tth6Qxkh_3-xz7-DKPuT1Ptsr84Kub6RafrHy-r8IXvQskw4bmDxiO3o7DHbO-2Kuz258-54c3AN-RSWJqZSQ1tEYgbIqQkACkzEoX2NS2pkpTD5ASY3c5UX87zKl1SPKwFTTqcEWc-MxKeCeA0_0YMj-oDIpYYkrUmRwbScznBcq_kSkC_DVS0pXImSrQCdLz6ersEInV9jO5kssRvYY7kG_JtwFb-xmH5cltS4zBSgDy9kRQkB-DnNsTXaYYbqJgeSoa3yX2jnYllQsb6FLj9Qc8VKz5v4fSi7PDIKFV5T71u90qdscn72_fTCbotG2Ikf-hWdagsejhw_4YHrxCMvCbQcBkIFcqhpueRI7soQgeu6cciVQj4Wi9gJkMqoYSi8fTbI0PbnDAKthPJiV8RT5JlIjDQuvrRIfDXVEpmoxd53QImKRhskMmsqEUQNrCKEVWRgFQmLnRCW-jtJ19t8ka9mUesmIlxEBEGoE8klElWl41HiaJ6M0OtOHQS5xQ46JEatsymjzdSw2Jv-MgKKzn5kpvO6uUcg--OBxZ41wO0t4cjbuPBHFhNbkN4ydftKtpgbKXLHNbn4nsUOO_Rv7LptLA77GfIfQ_fi9l6_ZPdcM3-57fgHbFCtav0KqWIVv27n_28HBXEH priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEDawHBYOiDeBBQ0SByQ22iZxXIfbUrFaIcGJor1Fju0-RJqEJtml_54ZJ2mpWCE4tomn4_jz5Jt6Hoy9Uci541hHfhQnmU8FsPzESOuPYqUiHBRxSbnDn7-I8yn_dBFf9Elh9RDtPhxJOkvttrUUJ3VATc59ar9KtCXw5S12G_lHSA0bJn2OA9nfkDhOxIcMmWuH7r2FXLH-6xjmn4GS29PSu-ywLSq1uVJ5_tsL6ew-u9czSTjtlv4Bu2mLh-xwMjRwe3Tj7enucBrKGaxc3KSFvlHEHJA30yIbcFGF_iW6zcg8YfoNXP7luqwWZVOuqOeWBtcypwbVzl0ZTwPZBr6jlUaEARFICzpvqeqCk5zPy_WyWawAOTH8aBWFJFFCFaCBxeH5Blwx80uUU6gap4EzVhvAlUBPfacx_biqSbgqDKCdrlRDQf_4OS9RGv2LDM1VCVRqtil_op7LVUUN-Za2fk_iqrVddDH6UA-5YhQOvKHZ9zVJH7Pp2cevk3O_bwzh6ziJGzq5ljwZB7HmIgyycaSFVSMhjVAjSy5RoHioEgRnGGYJNwY5VyazQCBdMaNERk_YQYG6P2MgrJEmykKZzZBLIvmx6GBZqWMzswrZpsfeDUBJq67-R-r8JinSDlYpwip1sEqlxz4QlrZ3Uu1u90W5nqe9KUjRURAisVpxhWTU2GysA8v1GC3rLFBae-xoQGLaG5Q6RUtJ1dqQj3rs9fYyAorOd1Rhy7a7RyLD48JjTzvgbjXhyM24jMcek3uQ3lN1_0qxXLhy40Ho8u0jjx0P6N_p9bdncbzdIf_w6J7_n_QX7E7o9jP3g_iIHTTr1r5Eethkr5w1-AVBZmdS priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5KeigceBYwFLRIHJCo0_i1WXMLFVWFRMWBoHKy9pWH6tgmtlvCr2dmbacNVAgkjonXm9ndmdlvszPfEPJKAOaOIhW4QRRLFwmw3Fhz4w4iIQJ4KQg55g5_PGHH4_DDaXS6RY67XBi5UCDson81-TxtchuwdoJZHhR60pg6Zwelh4XPXSzJilDGc_lNss0iQOU9sj0--TT6irXlYAtCR3za5cxc--LGvmTp-6_DnL-HTq7vT2-TnTorxOpCpOmVLeroLpl3g2siU876dSX76scvvI__Y_T3yJ0Wx9JRo3j3yZbJHpCdw6583MMbr0eXV-M0n9CFjdo0tC1TMaWA2lHFNLUxje45HNoB99LxF2qzP5d5McsrEBBLCFBbsKekop5aElFN5YqewR4B-k0Rvhqq0ho5H2zP6TRfzqvZggIip99qgQFRmM5Fwb3D6-mKWir1c-gnEyUMA2ZXrCjMgJxnlxLjj4sSOxeZprBLFKLClAP4nObQG_6HTauLnCLRbZV_BznniwLLAc5N-Ra7K5Zm1mQI0LLLVMNg5BWOvmVE3SXjo_efD4_dtiyFq6I4qvDenIfx0ItUyHxPDgPFjBgwrpkYGDyQeSL0RQym4fsyDrUGxCe59BiAJT2IefCI9DKQ_QmhzGiuA-lzOQEkC9DLwPHOcBXpiRGAdR3yplPKpGjYRxJ7auMsaVY_gdVP7Oon3CHvUG_XLZE53H6RL6dJ64gSOKYwFhslQgFQWBs5VJ4J1RD8-sQTSjlkr9P6pHVnZQJ-GrniAA075OX6MSgU3i6JzOR104YDvgyZQx43RrKWJARkGPJo6BC-YT4bom4-yeYzS3bu-TbbP3DIfmdpl3L9aS7219b4F1P39N-aPyO3fGt2oetFe6RXLWvzHMBpJV-0fucn1i6S8w priority: 102 providerName: Unpaywall |
| Title | Application of machine learning assisted multi-variate UV spectrophotometric models augmented by kennard stone clustering algorithm for quantifying recently approved nasal spray combination of mometasone and olopatadine along with two genotoxic impurities: comprehensive sustainability assessment |
| URI | https://link.springer.com/article/10.1186/s13065-025-01391-8 https://www.ncbi.nlm.nih.gov/pubmed/40234857 https://www.proquest.com/docview/3190422612 https://www.proquest.com/docview/3190881946 https://pubmed.ncbi.nlm.nih.gov/PMC12001563 https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01391-8 https://doaj.org/article/81b669eca4a644deb7c1e4c7225f1acc |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: HH5 dateStart: 20190101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: RBZ dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: ABDBF dateStart: 20190128 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: 7X7 dateStart: 20250101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: AAJSJ dateStart: 20071201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: C6C dateStart: 20070112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: C24 dateStart: 20070112 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bj5QwFK66Pqw-GO-i66QmPpi4ZAcopfg2O9lxY-JkYxyzPpFSOpfIAA6w6_x7zykwl2jUB19ImEI57XycfoeeCyGvJXBu31ee7flhbGMCLDtMhLb7vpQe3OQxgbHDH8f8fMI-XPqXO6W-0CesSQ_cTNwJ0CrOQ60kk7B0JzoOlKOZCgCHU0cqhdq3L8IdYwp1sIs8x2NdlIzgJ6WDNdJtrN6KrMexxd5KZBL2_45l_uosudkxvUsO66yQ62uZpjuL0ug-udeySTpoRvGA3NTZQ3I47Iq4PbrxZrDdoKb5lC6N76SmbbGIGQXujH90Qo1noX0FpjOwTzr5Qk0M5iov5nmVL7HulqKmbE5JZT0zqTwTGq_pN9DUgDKKJFJTldaYecH0nM7y1aKaLynwYvq9luiWhEFVFJQs3J6uqUlofgX9ZLKEYcCI5ZrCKwDW-lZifLgssXOZJRR0dSErdPyH8zSH3vBLMq2uc4rpZqv8B8i5WBZYlG-hy3fYXbHS88ZPn5ZdvBi6BK9x9G1e0sdkMjr7PDy32-IQtvJDv8Lda8HCwPEV464TB57iWva5SLjsazSLHMlcGQJAXTcOWZIA74pF7HCgLEk_FN4TcpCB7M8I5ToRiRe7Ip4CnwQCpMHI0kL5yVRLYJwWedsBJSqaHCCRsZ0EjxpYRQCryMAqEhY5RSxtrsT83eYHQHXUojr6G6otctQhMWqVShmBtsSMbcBJLfJq0wyAwj0emem8bq4RwPIYt8jTBrgbSRjwMyb8wCJiD9J7ou63ZIu5STnuuCbm3rPIcYf-rVx_movjzRvyD1P3_H9M3QtyxzVvObMd_4gcVKtavwTiWMU9ciu4DOAoRu975Pbp2fjiE5wNXYZHPuwZHdIzX_ygfTK-GHz9CfQpfBg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5K-lB4QNwYCgwSSEjUamyvnTVShdrSKqWHEGqqvpm1d3OIxHZjpyV_jt_GzMZOiEAVL32Mj8ms_e3Mt945GHsrkXP7fuLZnh_GNhXAskMltN30pfTwJo8Lyh0-PgnaHf7l3D9fYb_qXBgKq6xtojHUKkvoG_kmQoXKVaFD_pRf2NQ1inZX6xYasmqtoLZMibEqseNQT69wCVdsHXzG9_3Odff3TnfbdtVlwE780C9pG1TwsOX4CQ9cJ255SaBlMxAqkE1N_NqR3JUhjtR145ArhQ48FrEToO9TzVB4KPc2W-UeCmmw1Z29k6_f5l95XOJbHq-zdUSwWTjUq92mLrLEvhxbLHlE0zjgX2z376DN-c7tXbY2SXM5vZLD4R_Ocf8-u1exWtiewfABW9HpQ7a2WzeTe3Tr_fZioxyyLoxMDKeGqmlFD5DDE-AUmAhH-xKX8MiCoXMGJhd0nOX9rMxG1P8rAdO-pwA56ZmSogriKfxAj4FoByKzGpLhhCpAGMnDHr7Hsj8C5OdwMZEUHkXJXYDGHm8fTsEUVr9EOakscBg4YjkFhEU8SBca05_LgoTLVAH6jFyWlICAv4cZSqMv2lBeZUBlb8vsJ-o5GOXUHHCgi48kLh_r_ixfAIo6b41Ck6c0-qo-6mPWuRH4PGGNFHV_xiDQSigvdkXcRV6LREzjYk-LxFddLZH5WuxDDZQon9UiicwaTgTRDFYRwioysIqExXYIS_MrqY64OZCNe1FlliJctARBqBPJJRJjpeNW4mietNDKdx2cVBZbr5EYVcatiBZT0WJv5qcRULTXJFOdTWbXCGSbPLDY0xlw55pw5Ilc-C2LiSVIL6m6fCYd9E3pc8c1uf-exTZq9C_0uu5ZbMxnyH88uufXj_o1W2ufHh9FRwcnhy_YHdfMZW47_jprlOOJfok0tYxfVbYA2PebNj-_AcMuq-U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFDZjSAweEHcCA4wEEhKL2iRO4iAhNDamjcHEA536FhzbvYg2yZp0JX-NX8c5TtJSgSZe9thcTo-TL-d8ts-FkJcCOLfvS8_2_CixsQCWHSmu7a4vhAc3eYxj7vCXk-Cwxz71_f4G-dXmwmBYZWsTjaFWmcQ18g5ABctVgUPuDJqwiK_7B-_zMxs7SOFOa9tOo4bIsa4WMH0r3h3tw7t-5boHH7_tHdpNhwFb-pFf4hYoZ1Ho-JIFrpOEngy06AZcBaKrkVs7grkiglG6bhIxpcB5JzxxAvB7qhtxD-ReJddCz4swnDDsh8v1HReZlsfaPB0edAoHu7Tb2D8WeZdj8zVfaFoG_Ivn_h2uudyzvUm25mkuqoWYTP5wiwe3ya2Gz9LdGoB3yIZO75KtvbaN3L0rr3dXW-Q0G9Cpid7UtGlXMaTA3hFqiprYRvscJu_Af2nvlJos0FmWj7Iym2LnL0lN456CivnQFBNVNKnoD_AVgHOKNFZTOZlj7QcjeTKEt1aOphSYOT2bCwyMwrQuCmYebp9U1JRUPwc5qShgGDBiUVEARDJOVxrjn4sChYtUUfAWuSgx9QB-TzKQhmvZtFxkFAveltlP0HM8zbEt4FgXb1FcPtOjOlOAFm3GGgYlVzj6pjLqfdK7FPA8IJsp6P6I0EArrrzE5ckAGC1QMA3TPM2lrwZaAOe1yJsWKHFeVyGJzeyNB3ENqxhgFRtYxdwiHxBLyyuxgrg5kM2GcWOQYpiuBEGkpWACKLHSSSgdzWQI9n3gCCktst0iMW7MWhGvPkKLvFieBkDhLpNIdTavr-HAM1lgkYc1cJeaMGCIjPuhRfgapNdUXT-Tjkem6Lnjmqx_zyI7LfpXel30LHaWX8h_PLrHF4_6ObkORif-fHRy_ITccM2nzGzH3yab5WyunwI_LZNnxhBQ8v2yLc9vJy-pfw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5KeigceBYwFLRIHJCo0_i1WXMLFVWFRMWBoHKy9pWH6tgmtlvCr2dmbacNVAgkjonXm9ndmdlvszPfEPJKAOaOIhW4QRRLFwmw3Fhz4w4iIQJ4KQg55g5_PGHH4_DDaXS6RY67XBi5UCDson81-TxtchuwdoJZHhR60pg6Zwelh4XPXSzJilDGc_lNss0iQOU9sj0--TT6irXlYAtCR3za5cxc--LGvmTp-6_DnL-HTq7vT2-TnTorxOpCpOmVLeroLpl3g2siU876dSX76scvvI__Y_T3yJ0Wx9JRo3j3yZbJHpCdw6583MMbr0eXV-M0n9CFjdo0tC1TMaWA2lHFNLUxje45HNoB99LxF2qzP5d5McsrEBBLCFBbsKekop5aElFN5YqewR4B-k0Rvhqq0ho5H2zP6TRfzqvZggIip99qgQFRmM5Fwb3D6-mKWir1c-gnEyUMA2ZXrCjMgJxnlxLjj4sSOxeZprBLFKLClAP4nObQG_6HTauLnCLRbZV_BznniwLLAc5N-Ra7K5Zm1mQI0LLLVMNg5BWOvmVE3SXjo_efD4_dtiyFq6I4qvDenIfx0ItUyHxPDgPFjBgwrpkYGDyQeSL0RQym4fsyDrUGxCe59BiAJT2IefCI9DKQ_QmhzGiuA-lzOQEkC9DLwPHOcBXpiRGAdR3yplPKpGjYRxJ7auMsaVY_gdVP7Oon3CHvUG_XLZE53H6RL6dJ64gSOKYwFhslQgFQWBs5VJ4J1RD8-sQTSjlkr9P6pHVnZQJ-GrniAA075OX6MSgU3i6JzOR104YDvgyZQx43RrKWJARkGPJo6BC-YT4bom4-yeYzS3bu-TbbP3DIfmdpl3L9aS7219b4F1P39N-aPyO3fGt2oetFe6RXLWvzHMBpJV-0fucn1i6S8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+assisted+multi-variate+UV+spectrophotometric+models+augmented+by+kennard+stone+clustering+algorithm+for+quantifying+recently+approved+nasal+spray+combination+of+mometasone+and+olopatadine+along+with+two+genotoxic+impurities%3A+comprehensive+sustainability+assessment&rft.jtitle=BMC+chemistry&rft.au=Abbas%2C+Ahmed+Emad+F.&rft.au=Gamal%2C+Mohammed&rft.au=Naguib%2C+Ibrahim+A.&rft.au=Halim%2C+Michael+K.&rft.date=2025-04-15&rft.issn=2661-801X&rft.eissn=2661-801X&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs13065-025-01391-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13065_025_01391_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-801X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-801X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-801X&client=summon |