Drug repurposing for Alzheimer’s disease using a graph-of-thoughts based large language model to infer drug-disease relationships in a comprehensive knowledge graph
Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can...
Saved in:
| Published in | BioData mining Vol. 18; no. 1; pp. 51 - 19 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
05.08.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1756-0381 1756-0381 |
| DOI | 10.1186/s13040-025-00466-5 |
Cover
| Abstract | Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing. |
|---|---|
| AbstractList | Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer's disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1-DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer's KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer's disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1-DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer's KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing. Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing. Abstract Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing. |
| ArticleNumber | 51 |
| Audience | Academic |
| Author | Choi, Hyunjun Hernandez, Miguel E. Moore, Jason H. Wang, Zhiping Paul Moran, Jay Meng, Yufei Matsumoto, Nicholas Li, Binglan Chang, Jui-Hsuan Li, Xi Venkatesan, Mythreye |
| Author_xml | – sequence: 1 givenname: Zhiping Paul surname: Wang fullname: Wang, Zhiping Paul organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 2 givenname: Xi surname: Li fullname: Li, Xi organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 3 givenname: Nicholas surname: Matsumoto fullname: Matsumoto, Nicholas organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 4 givenname: Mythreye surname: Venkatesan fullname: Venkatesan, Mythreye organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 5 givenname: Jui-Hsuan surname: Chang fullname: Chang, Jui-Hsuan organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 6 givenname: Jay surname: Moran fullname: Moran, Jay organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 7 givenname: Hyunjun surname: Choi fullname: Choi, Hyunjun organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 8 givenname: Binglan surname: Li fullname: Li, Binglan organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 9 givenname: Yufei surname: Meng fullname: Meng, Yufei organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 10 givenname: Miguel E. surname: Hernandez fullname: Hernandez, Miguel E. organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center – sequence: 11 givenname: Jason H. surname: Moore fullname: Moore, Jason H. email: jason.moore@csmc.edu organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40764997$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhiNURC_wAixQJDZlkWLHjp2s0KjcKlVC4rK2PPZJ4pLEwU5ayorX4AV4MJ6E05npZRBCKFJi-fznO_H_ez_ZGfwASfKYkiNKS_E8UkY4yUheZIRwIbLiXrJHZSEywkq6c2e9m-zHeEaIyEnBHiS7nEjBq0ruJT9fhrlJA4xzGH10Q5PWPqSL7lsLrofw6_uPmFoXQUdI51Vdp03QY5v5OptaPzftFNMllm3a6dAAvodm1rjovYUunXzqhhpCanFQdo0K0OnJ-SG2bowoQKrx_RighSG6c0g_D_6iA4uY1bSHyf1adxEebb4HyafXrz4ev81O3705OV6cZqaoiimjFTHFktC8lLJkVBpRmkpaBiSviOWlLaxgPKeQG1npWnJSVpIDp1wYTviSHSQna671-kyNwfU6XCqvnVpt-NAoHSZnOlCWIkEYyc3ScqFpyQpBl0xUhouc2RJZbM2ah1FfXuiuuwFSoq4SVOsEFSaoVgmqArterLvGedmDNTBMQXdbv7JdGVyrGn-uaM5yIXOKhMMNIfgvM8RJ9S4a6DAY8HNULGeSoEeiQunTP6Rnfg4DOrxRlazkt6pG47kxTY-DzRVULcoCLSSIQtXRX1T4WOidwZtbO9zfani21YCaCb5OjZ5jVCcf3m9rn9x15caO64uMgnwtMMHHGKD-P683CUUUDw2E2-P_o-s3naIVSw |
| Cites_doi | 10.2196/46777 10.1002/glia.20338 10.1001/jamanetworkopen.2020.1541 10.1002/glia.20268 10.1016/j.lfs.2024.123010 10.1038/s41588-024-01854-z 10.3389/fphar.2022.976799 10.1016/s0014-5793(00)02380-2 10.1038/nrd3869 10.1038/s41467-019-08965-w 10.7554/eLife.63026 10.1016/j.ejmech.2020.112275 10.1093/bib/bbac404 10.7554/eLife.26726 10.1523/JNEUROSCI.3153-08.2008 10.1093/bib/bbac409 10.1038/s41467-023-39301-y 10.1038/s41392-024-01911-3 10.1097/WNF.0b013e3181342f32 10.1093/bioadv/vbad110 10.1145/3627673.3679713 10.1038/nrd.2018.168 10.1007/s12035-024-04246-w 10.3389/fnagi.2021.753351 10.3389/fphar.2023.1257700 10.1186/s13321-020-00450-7 10.1016/j.ajhg.2023.09.001 10.1038/s41746-024-01038-3 10.1093/bib/bbae461 10.1038/s41586-023-06291-2 10.1007/s40273-021-01065-y 10.1109/TKDE.2024.3352100 10.1111/j.1755-5949.2010.00177.x 10.1186/s12967-022-03745-5 10.1093/bioinformatics/btae271 10.1016/j.ailsci.2022.100036 10.1097/JS9.0000000000000719 10.1038/s41591-024-03233-x 10.1096/fj.08-113795 10.1093/bioadv/vbad001 10.3389/fphar.2018.00697 10.1002/med.22033 10.1093/bioinformatics/btae353 10.1093/jamia/ocae074 10.1038/s41467-025-56690-4 10.1016/j.nbd.2021.105542 10.1093/bioinformatics/btae560 10.1016/j.cbpa.2021.06.001 10.18653/v1/2024.findings-acl.11 10.1016/j.drudis.2019.07.006 10.1038/s41467-021-21330-0 10.1002/cpt.2122 10.1186/s12915-025-02177-z 10.1523/JNEUROSCI.4371-06.2007 10.1002/cpt.1007 10.1001/jamanetworkopen.2024.15445 10.1093/qjmed/hcv072 10.1002/alz.12450 10.1016/j.trci.2016.05.001 10.1159/000285514 10.1001/jamaneurol.2019.3762 10.1609/aaai.v38i16.29720 10.1093/bioinformatics/btaf031 10.1016/j.chembiol.2015.03.009 10.1111/j.1460-9568.2010.07426.x 10.1038/s41573-025-01139-y 10.1016/j.jbi.2022.104133 10.1093/bib/bbae521 10.1016/j.jbi.2021.103696 10.1186/s12979-024-00445-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 8AL 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s13040-025-00466-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Public Health ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) (NIESG) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1756-0381 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_d19af6c74cbd46a183561b369c4623d8 10.1186/s13040-025-00466-5 PMC12326721 A850890693 40764997 10_1186_s13040_025_00466_5 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; R01 LM010098; R01 LM010098; U01 AG066833; U01 AG066833 – fundername: NIH HHS grantid: U01 AG066833 – fundername: NIA NIH HHS grantid: U01 AG066833 – fundername: NLM NIH HHS grantid: R01 LM010098 – fundername: NIH HHS grantid: R01 LM010098 |
| GroupedDBID | --- 0R~ 23N 2WC 5GY 5VS 6J9 7X7 8C1 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DWQXO E3Z EBD EBLON EBS ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR ISR ITC K6V K7- KQ8 LK8 M7P ML~ M~E O5R O5S OK1 P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP ~8M AAYXX CITATION ALIPV NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N M48 P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 2VQ 4.4 ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c595t-190c5b0128778317c68c97d3e0290d48d5d63421e2c79af7408974e4146c404b3 |
| IEDL.DBID | C6C |
| ISSN | 1756-0381 |
| IngestDate | Fri Oct 03 12:53:39 EDT 2025 Sun Oct 26 03:38:32 EDT 2025 Tue Sep 30 17:02:16 EDT 2025 Fri Sep 05 15:30:23 EDT 2025 Tue Oct 07 05:45:10 EDT 2025 Mon Oct 20 22:38:46 EDT 2025 Mon Oct 20 16:50:36 EDT 2025 Thu Oct 16 15:35:30 EDT 2025 Sun Aug 10 01:32:14 EDT 2025 Wed Oct 01 05:36:12 EDT 2025 Sat Sep 06 07:24:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c595t-190c5b0128778317c68c97d3e0290d48d5d63421e2c79af7408974e4146c404b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1186/s13040-025-00466-5 |
| PMID | 40764997 |
| PQID | 3237008384 |
| PQPubID | 55347 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d19af6c74cbd46a183561b369c4623d8 unpaywall_primary_10_1186_s13040_025_00466_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12326721 proquest_miscellaneous_3237001269 proquest_journals_3237008384 gale_infotracmisc_A850890693 gale_infotracacademiconefile_A850890693 gale_incontextgauss_ISR_A850890693 pubmed_primary_40764997 crossref_primary_10_1186_s13040_025_00466_5 springer_journals_10_1186_s13040_025_00466_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-05 |
| PublicationDateYYYYMMDD | 2025-08-05 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BioData mining |
| PublicationTitleAbbrev | BioData Mining |
| PublicationTitleAlternate | BioData Min |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | A Lavecchia (466_CR29) 2019; 24 466_CR18 S Yao (466_CR68) 2023; 36 466_CR17 466_CR19 466_CR25 466_CR24 466_CR27 466_CR21 466_CR65 466_CR64 466_CR23 466_CR67 466_CR22 466_CR61 466_CR60 466_CR63 TN Jarada (466_CR26) 2020; 12 S Pal (466_CR44) 2023; 109 J Wei (466_CR66) 2022; 35 Z Zhou (466_CR74) 2025; 23 466_CR28 466_CR36 466_CR35 466_CR38 466_CR37 466_CR32 466_CR31 466_CR34 466_CR33 M Schlander (466_CR54) 2021; 39 466_CR72 466_CR30 466_CR73 J Zhang (466_CR70) 2024; 9 Z Gao (466_CR20) 2022; 132 466_CR39 466_CR8 466_CR47 466_CR9 466_CR46 466_CR6 466_CR49 466_CR7 466_CR4 466_CR43 466_CR42 466_CR2 466_CR45 F Urbina (466_CR62) 2021; 65 466_CR3 JL Cummings (466_CR12) 2022; 18 466_CR1 466_CR41 R Zhang (466_CR69) 2021; 115 466_CR40 S Bonner (466_CR5) 2022; 2 Q Zhang (466_CR71) 2024; 21 466_CR14 466_CR58 466_CR13 466_CR57 466_CR16 466_CR15 JD Romano (466_CR52) 2024; 26 466_CR59 466_CR10 466_CR53 466_CR11 466_CR55 466_CR50 T Pillaiyar (466_CR48) 2020; 195 A Sertkaya (466_CR56) 2024; 7 466_CR51 |
| References_xml | – volume: 26 start-page: e46777 issue: 1 year: 2024 ident: 466_CR52 publication-title: J Med Internet Res. doi: 10.2196/46777 – ident: 466_CR55 doi: 10.1002/glia.20338 – ident: 466_CR7 doi: 10.1001/jamanetworkopen.2020.1541 – ident: 466_CR17 doi: 10.1002/glia.20268 – volume: 35 start-page: 24824 year: 2022 ident: 466_CR66 publication-title: Adv Neural Inf Process Syst. – ident: 466_CR46 doi: 10.1016/j.lfs.2024.123010 – ident: 466_CR50 doi: 10.1038/s41588-024-01854-z – ident: 466_CR2 doi: 10.3389/fphar.2022.976799 – ident: 466_CR19 doi: 10.1016/s0014-5793(00)02380-2 – ident: 466_CR10 doi: 10.1038/nrd3869 – ident: 466_CR33 doi: 10.1038/s41467-019-08965-w – ident: 466_CR30 doi: 10.7554/eLife.63026 – volume: 195 start-page: 112275 year: 2020 ident: 466_CR48 publication-title: Eur J Med Chem. doi: 10.1016/j.ejmech.2020.112275 – ident: 466_CR6 doi: 10.1093/bib/bbac404 – ident: 466_CR23 doi: 10.7554/eLife.26726 – ident: 466_CR16 doi: 10.1523/JNEUROSCI.3153-08.2008 – ident: 466_CR35 doi: 10.1093/bib/bbac409 – ident: 466_CR1 doi: 10.1038/s41467-023-39301-y – volume: 9 start-page: 211 year: 2024 ident: 466_CR70 publication-title: Signal Transduct Target Ther. doi: 10.1038/s41392-024-01911-3 – ident: 466_CR42 doi: 10.1097/WNF.0b013e3181342f32 – ident: 466_CR36 doi: 10.1093/bioadv/vbad110 – ident: 466_CR31 doi: 10.1145/3627673.3679713 – ident: 466_CR49 doi: 10.1038/nrd.2018.168 – ident: 466_CR64 doi: 10.1007/s12035-024-04246-w – ident: 466_CR8 doi: 10.3389/fnagi.2021.753351 – ident: 466_CR22 doi: 10.3389/fphar.2023.1257700 – volume: 12 start-page: 46 issue: 1 year: 2020 ident: 466_CR26 publication-title: J Cheminformatics. doi: 10.1186/s13321-020-00450-7 – ident: 466_CR32 doi: 10.1016/j.ajhg.2023.09.001 – ident: 466_CR67 doi: 10.1038/s41746-024-01038-3 – ident: 466_CR47 doi: 10.1093/bib/bbae461 – ident: 466_CR58 doi: 10.1038/s41586-023-06291-2 – volume: 39 start-page: 1243 issue: 11 year: 2021 ident: 466_CR54 publication-title: A Systematic Review and Assessment. PharmacoEconomics. doi: 10.1007/s40273-021-01065-y – ident: 466_CR45 doi: 10.1109/TKDE.2024.3352100 – ident: 466_CR40 doi: 10.1111/j.1755-5949.2010.00177.x – ident: 466_CR65 doi: 10.1186/s12967-022-03745-5 – ident: 466_CR73 doi: 10.1093/bioinformatics/btae271 – volume: 2 start-page: 100036 year: 2022 ident: 466_CR5 publication-title: Artif Intell Life Sci. doi: 10.1016/j.ailsci.2022.100036 – volume: 109 start-page: 4382 issue: 12 year: 2023 ident: 466_CR44 publication-title: Int J Surg. doi: 10.1097/JS9.0000000000000719 – ident: 466_CR25 doi: 10.1038/s41591-024-03233-x – ident: 466_CR43 doi: 10.1096/fj.08-113795 – ident: 466_CR61 – ident: 466_CR72 doi: 10.1093/bioadv/vbad001 – ident: 466_CR15 doi: 10.3389/fphar.2018.00697 – ident: 466_CR14 doi: 10.1002/med.22033 – ident: 466_CR38 doi: 10.1093/bioinformatics/btae353 – ident: 466_CR53 doi: 10.1093/jamia/ocae074 – ident: 466_CR13 doi: 10.1038/s41467-025-56690-4 – ident: 466_CR4 doi: 10.1016/j.nbd.2021.105542 – ident: 466_CR59 doi: 10.1093/bioinformatics/btae560 – volume: 65 start-page: 74 year: 2021 ident: 466_CR62 publication-title: Curr Opin Chem Biol. doi: 10.1016/j.cbpa.2021.06.001 – ident: 466_CR28 doi: 10.18653/v1/2024.findings-acl.11 – volume: 24 start-page: 2017 issue: 10 year: 2019 ident: 466_CR29 publication-title: Drug Discov Today. doi: 10.1016/j.drudis.2019.07.006 – volume: 36 start-page: 11809 year: 2023 ident: 466_CR68 publication-title: Adv Neural Inf Process Syst. – ident: 466_CR51 doi: 10.1038/s41467-021-21330-0 – ident: 466_CR39 doi: 10.1002/cpt.2122 – volume: 23 start-page: 73 issue: 1 year: 2025 ident: 466_CR74 publication-title: BMC Biol. doi: 10.1186/s12915-025-02177-z – ident: 466_CR18 doi: 10.1523/JNEUROSCI.4371-06.2007 – ident: 466_CR21 doi: 10.1002/cpt.1007 – volume: 7 start-page: e2415445 issue: 6 year: 2024 ident: 466_CR56 publication-title: JAMA Netw Open. doi: 10.1001/jamanetworkopen.2024.15445 – ident: 466_CR60 doi: 10.1093/qjmed/hcv072 – volume: 18 start-page: 469 issue: 3 year: 2022 ident: 466_CR12 publication-title: Alzheimers Dement. doi: 10.1002/alz.12450 – ident: 466_CR63 doi: 10.1016/j.trci.2016.05.001 – ident: 466_CR11 doi: 10.1159/000285514 – ident: 466_CR24 doi: 10.1001/jamaneurol.2019.3762 – ident: 466_CR3 doi: 10.1609/aaai.v38i16.29720 – ident: 466_CR37 doi: 10.1093/bioinformatics/btaf031 – ident: 466_CR9 doi: 10.1016/j.chembiol.2015.03.009 – ident: 466_CR41 – ident: 466_CR27 doi: 10.1111/j.1460-9568.2010.07426.x – ident: 466_CR34 doi: 10.1038/s41573-025-01139-y – volume: 132 start-page: 104133 year: 2022 ident: 466_CR20 publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2022.104133 – ident: 466_CR57 doi: 10.1093/bib/bbae521 – volume: 115 start-page: 103696 year: 2021 ident: 466_CR69 publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2021.103696 – volume: 21 start-page: 38 issue: 1 year: 2024 ident: 466_CR71 publication-title: Immun Ageing. doi: 10.1186/s12979-024-00445-0 |
| SSID | ssj0062053 |
| Score | 2.3419647 |
| Snippet | Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases... Abstract Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Advances in Data Mining for Biomedical Informatics and Healthcare Algorithms Alzheimer's disease Artificial intelligence Bioinformatics Biomedical and Life Sciences Chatbots Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Mining and Knowledge Discovery Drug development Drug discovery Drug therapy Graphs Knowledge bases (artificial intelligence) Knowledge representation Large language models Learning algorithms Life Sciences Machine learning Methods Neurodegenerative diseases Patient outcomes Performance enhancement Performance evaluation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJQQsEO8GCjIIiQW1mnEc21kOj6ogwQKo1J0VP9IZaUhGeQiVFb_BD_BhfAnXzoMGJGDBdnzjjH2P78M5vkbosRWJKKQRxELoRliic1hSsSW6kIXTJnMuFPV585YfHbPXJ-nJuau-PCesLw_cT9yBXWR5wY1gRlvGc0AgeHyd8Mww8Nw2HPONZTYmU70N5hSwNR6RkfygAUvtaYw0JT4h5CSduaFQrf93m3zOKf1KmJy-ml5Bl7pym599yjebc47p8Bq6OkSUeNmP5Dq64Mob6GJ_x-TZTfTtRd2d4tptYUYrvzGAIUzFy83nlVt_dPX3L18bPHylwV1oz3GoYk2qgrQrf4lP22Dv7CzeeNo4Hrc4cbhFB7cV9oyuGlt4ERm7qkeS3Wq9bUAAevXs9dqtesY8njbz-rfdQseHLz88PyLD5QzEpFnaEggkTKq9exNCQhBiuDSZsImLaRZbJm1qecLowlEjQIOCgZIEcwwss2Ex08lttFNWpdtFmHJpC5caCz0zrVmeyFzzRFtHRSGMidDTUVdq29fgUCF3kVz1mlWgWRU0q9IIPfPqnCR9_ezwA6BKDahSf0NVhB55MChfIaP0FJzTvGsa9er9O7WUENNmMc-SCD0ZhIoKYGHy4UQDjMoX1ZpJ7s0kYQmbefOIOTWYkEYlNBE-QJYsQg-nZv-kp8WVrupGmQXlWYTu9BCdxg2ZOod0VkRIzsA7m5h5S7lehQLjPszmgi4itD_i_Of_-tPM709r4R8Udfd_KOoeukzDspYkTvfQTlt37j6Eia1-ECzCDxjiZKo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IF6FQEEGIXGgVrOJYzsHhLbQqiBRoUKl3qz4kd2VlmTJQ6ic-Bv8AX4Yv4RxXm1AqrjGEyf2PPyNPZ5B6LnhIU-F5sQAdCM0VAmolG-ISkVqlY6tbZL6fDhihyf0_Wl0uoGO-rswLqyyt4mNoTa5dnvku2EQcocXBH29_kpc1Sh3utqX0Ei60grmVZNi7AraDFxmrAna3Ns_-njc22YWgMz1V2cE2y3BgrvwxiAizlFkJBotT00W_39t9YXF6u9AyuE09Qa6Vmfr5OxbslpdWLAObqGbHdLEs1Y0bqMNm91BV9vak2d30a-3RT3HhV3DTOduwwADfMWz1feFXX6xxe8fP0vcnd7gumlPcJPdmuQpqRauuE9VYrcIGrxy4eS43_rETXUdXOXYRXoV2MCHSN9V0QffLZbrEgigVxfVXthFG0mPh02-9mv30MnB_uc3h6Qr2kB0FEcVAYChI-WWPc4FgBPNhI65Ca0fxL6hwkSGhTSY2kDzOEk59QW4NJaCxdbUpyrcQpMsz-wDhAMmTGojbaBnqhRNQpEoFipjA55yrT30sueVXLe5OWTj0wgmW85K4KxsOCsjD-05dg6ULq928yAv5rJTU2mm8E9Mc6qVoSwBewf4UoUs1hRwohEeeuaEQbrMGZkLzZkndVnKd5-O5UwA1o19FoceetERpTmIhU66mw4wKpdsa0S5PaIE1dbj5l7mZGdaSnmuCB56OjS7N124XGbzuqeZBiz20P1WRIdxgwfPwM3lHhIj4R1NzLglWy6axOMOfjMeTD2008v5-X9dNvM7gy78B6MeXj7qR-h60CisIH60jSZVUdvHAAwr9aTT9j9DOWLh priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbKVAg4sC-BggxC4kAzzSSO7RyHpSpIjBBQqZyseMnMiGkyyiLUnvgb_AF-GL-E52xMCkIgcY1fnPjlLZ-dtyD0WLOAJVwxVwN0c0kgY1ApT7sy4YmRKjKmLurzZkYPDsnro_BoC826XBi5zGxo5HHdHWG8mYK-ajIcbAcFk--tddIoPKd7BdhhG6Toh67d7lE3PIe2aQjYfIS2D2dvpx_rrMgQts7gn7rMmd_eOPBOdRH_X031hq86G0fZ_0y9hC5U6To--RyvVhv-av8KyrqVNmEqn8ZVKcfq9EwRyP_Hiqvocgtt8bSRxWtoy6TX0fmm2eXJDfTtRV7NcW7W8Gkze0KBAS_j6ep0YZbHJv_-5WuB299FuKrHY1yX03azxC0XtptQWWDrdTVe2fh13J214rqdDy4zbEPLcqzhQW43Vd5F-y2W6wIIYFYbRp-bRRO6j_tTxeZpN9Hh_ssPzw_ctkuEq8IoLF1ANCqU1s8yxgENKcpVxHRgPD_yNOE61DQg_sT4ikVxwojHYQ9lCLgIRTwig1tolGapuYOwT7lOTKg0zEykJHHAY0kDqY3PEqaUg5520iHWTTEQUW-iOBUN5wVwXtScF6GDnlkB6iltIe_6QpbPRWsXhJ7AO1HFiJKa0BgMLABaGdBIEQCmmjvokRU_YUt1pDYWaB5XRSFevX8nphzAdeTRKHDQk5YoyUA8VNymVsCqbHWvAeXOgBJsiRoOd1IuWltWiMAPmEXqnDjoYT9s77TxeanJqo5m4tPIQbcbpejXTTxGYV_NHMQH6jJgzHAkXS7qSucW71PmTxy022nWz_f6E-d3e-37iw9199_I76GLfq1g3PXCHTQq88rcB2RaygetufkBgfqKNw priority: 102 providerName: Unpaywall |
| Title | Drug repurposing for Alzheimer’s disease using a graph-of-thoughts based large language model to infer drug-disease relationships in a comprehensive knowledge graph |
| URI | https://link.springer.com/article/10.1186/s13040-025-00466-5 https://www.ncbi.nlm.nih.gov/pubmed/40764997 https://www.proquest.com/docview/3237008384 https://www.proquest.com/docview/3237001269 https://pubmed.ncbi.nlm.nih.gov/PMC12326721 https://biodatamining.biomedcentral.com/counter/pdf/10.1186/s13040-025-00466-5 https://doaj.org/article/d19af6c74cbd46a183561b369c4623d8 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) (NIESG) customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: ADMLS dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: AAJSJ dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1756-0381 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062053 issn: 1756-0381 databaseCode: C6C dateStart: 20080112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfYJgQ8IP4TGJVBSDywiDRxbOexKyujEtW0UWk8WYntrJVKUuWP0Hjia_AF-GB8Es5OUhpACF4SKb7Yie989zv7fEbouWIBS7lkrgLo5pIgiWFIecpNUp7qREZa26Q-72b0eE6m5-F5mybH7IXZXr8fcvqqBB1rAhD90DWuHHXDHbQHRorahVk67rQu9UGauk0xf3yvZ3hsfv7ftfCWGfo1RHKzTnoDXauzdXz5KV6ttkzR5Ba62WJIPGqYfhtd0dkddLU5VfLyLvr2uqgvcKHX0Ie5mQrAAEzxaPV5oZcfdfH9y9cSt-syuLblMbZ5q908dauFObanKrExbwqvTKA47iY1sT03B1c5NjFcBVbQkNtVVXRhdYvlugQCqNXEqxd60cTI4830XdPaPTSfHL0fH7vtcQyuDKOwcgE6yDAxBo0xDrBDUi4jpgLt-ZGnCFehogHxh9qXLIpTRjwOzoomoIsl8UgS3Ee7WZ7phwj7lKtUh1JBzSRJSBzwOKFBorTPUialg152vBLrJuuGsN4Kp6LhrADOCstZETro0LBzQ2kyZtsHIEiiHYBCDeGbqGREJorQGDQZIMckoJEkgAAVd9AzIwzC5MTITNDNRVyXpXh7dipGHFBs5NEocNCLlijNQSxk3O5hgL8yabR6lPs9Shi0sl_cyZxolUYpAj9gBhJz4qCnm2LzpgmEy3RedzQg_5GDHjQiuvlv8M0pOLDMQbwnvL2O6Zdky4VNKW6ANWX-0EEHnZz__K6_9fzBZiz8A6Me_V_tj9F13w5g7nrhPtqtilo_AQhYJQO0w84ZXPl4aK6TNwO0NxpNz6ZwPzyanZwOrHYY2CkWeDafnYw-_ACx1V2M |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKESosEG8CBQwCsaBWM45jOwuEBkrV0scCWml2JrGdTqUhGZIZVcOK3-AHWPJRfAnXebUBqWLT7fiOE-e-7eN7EXpuRCBSqQUxELoRFiQxqJRvSJLK1CY6srYq6rO3z7cO2YdROFpCv9q7MA5W2drEylCbXLs98vWABsLFC5K9mX4lrmuUO11tW2jUYrFjFyeQspWvtzeAvy8o3Xx_8G6LNF0FiA6jcEbAA-owcXZZCAneU3OpI2EC69PIN0ya0PCA0YGlWkRxKpgvIea2DEyKZj5LApj3ErrMArAloD9i1CV4nIJEtxdzJF8vwT848CQNiUtDOQl7zq_qEfCvJzjjCv-GaXZntdfQyjybxouTeDI54w43b6DrTRyLh7Xg3URLNruFrtSdLRe30c-NYn6ECzsFPuZuOwJDcIyHk29je_zFFr-__yhxczaE59V4jKva2SRPyWzsWgfNSuxcrMETB1bH7cYqrnr34FmOHY6swAYeRNqpihbaNz6elkAAszrMfGHHNU4fd1uI9dPuoMMLYd5dtJzlmb2PMOXSpDbUBmZmScLiQMYJDxJjqUiF1h561fJKTevKH6rKmCRXNWcVcFZVnFWhh946dnaUrmp39UNeHKnGCCgzgHfiWjCdGMZjsKYQvSYBjzSDKNRIDz1zwqBcXY7MAX-O4nlZqu1PH9VQQiQd-TwKPPSyIUpzEAsdN_coYFWulFePcrVHCYZD94dbmVON4SrVqZp56Gk37P7pwHiZzectzYDyyEP3ahHt1s18wSGJFh6SPeHtfZj-SHY8rsqau-CeCzrw0For56fvdd6XX-t04T8Y9eD8VT9BK1sHe7tqd3t_5yG6SivllcQPV9HyrJjbRxCCzpLHld5j9PmiDc0f7GeWHA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagiO2A2AkUMAiJA7WaSRzbOQ5TRi1LhYBKvVmJ7cyMNCSjLELlxN_gD_DD-CU8OwsNIATX-MWJ_bbv2c_PCD3RPOSZUJxogG6EhmkCKuVrkmYiM6mKjXFFfd4csv0j-vI4Oj51it9lu_dbku2ZBlulKa93NzprVVyw3Qosr01LDCJiAzxGorPoHAXvZu8wmLFZb4tZADLWH5X543sjd-Sq9v9um085p18TJ4fd08voYpNvkpNPyXp9ykHNr6IrHbLE01YUrqEzJr-Ozrd3TZ7cQN_2ymaBS7OBmS3sAgEGuIqn689Ls_poyu9fvla4263BjWtPsKtmTYqM1Et7mU9dYev0NF7b9HHcL3Vid5sOrgtsM7tKrOFDpO-q7JPtlqtNBQTQq81iL82yzZzHw6Je-7Wb6Gj-4sNsn3SXNBAVxVFNAFCoKLVujnMBYEQxoWKuQ-MHsa-p0JFmIQ0mJlA8TjIOXIIQxlCw0Ir6NA1voa28yM0dhAMmdGYipaFnmqY0CUWSsjDVJuAZV8pDz3peyU1bi0O6GEYw2XJWAmel46yMPPTcsnOgtHW03YOiXMhOLaWewD8xxalKNWUJ2DfAk2nIYkUBF2rhocdWGKStlJHbVJxF0lSVPHj_Tk4FYNvYZ3HooacdUVaAWKikO9kAo7LFtUaU2yNKUGU1bu5lTnampJJhEHILlAX10KOh2b5p0-NyUzQ9zSRgsYdutyI6jBsidgZhLfeQGAnvaGLGLflq6QqNW7jNeDDx0E4v5z__628zvzPowj8w6u7_9f4QXXi7N5evDw5f3UOXAqfLgvjRNtqqy8bcB4xYpw-cGfgBBlBgXQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbKVAg4sC-BggxC4kAzzSSO7RyHpSpIjBBQqZyseMnMiGkyyiLUnvgb_AF-GL-E52xMCkIgcY1fnPjlLZ-dtyD0WLOAJVwxVwN0c0kgY1ApT7sy4YmRKjKmLurzZkYPDsnro_BoC826XBi5zGxo5HHdHWG8mYK-ajIcbAcFk--tddIoPKd7BdhhG6Toh67d7lE3PIe2aQjYfIS2D2dvpx_rrMgQts7gn7rMmd_eOPBOdRH_X031hq86G0fZ_0y9hC5U6To--RyvVhv-av8KyrqVNmEqn8ZVKcfq9EwRyP_Hiqvocgtt8bSRxWtoy6TX0fmm2eXJDfTtRV7NcW7W8Gkze0KBAS_j6ep0YZbHJv_-5WuB299FuKrHY1yX03azxC0XtptQWWDrdTVe2fh13J214rqdDy4zbEPLcqzhQW43Vd5F-y2W6wIIYFYbRp-bRRO6j_tTxeZpN9Hh_ssPzw_ctkuEq8IoLF1ANCqU1s8yxgENKcpVxHRgPD_yNOE61DQg_sT4ikVxwojHYQ9lCLgIRTwig1tolGapuYOwT7lOTKg0zEykJHHAY0kDqY3PEqaUg5520iHWTTEQUW-iOBUN5wVwXtScF6GDnlkB6iltIe_6QpbPRWsXhJ7AO1HFiJKa0BgMLABaGdBIEQCmmjvokRU_YUt1pDYWaB5XRSFevX8nphzAdeTRKHDQk5YoyUA8VNymVsCqbHWvAeXOgBJsiRoOd1IuWltWiMAPmEXqnDjoYT9s77TxeanJqo5m4tPIQbcbpejXTTxGYV_NHMQH6jJgzHAkXS7qSucW71PmTxy022nWz_f6E-d3e-37iw9199_I76GLfq1g3PXCHTQq88rcB2RaygetufkBgfqKNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+repurposing+for+Alzheimer%E2%80%99s+disease+using+a+graph-of-thoughts+based+large+language+model+to+infer+drug-disease+relationships+in+a+comprehensive+knowledge+graph&rft.jtitle=BioData+mining&rft.au=Wang%2C+Zhiping+Paul&rft.au=Li%2C+Xi&rft.au=Matsumoto%2C+Nicholas&rft.au=Venkatesan%2C+Mythreye&rft.date=2025-08-05&rft.pub=BioMed+Central&rft.eissn=1756-0381&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13040-025-00466-5&rft.externalDocID=10_1186_s13040_025_00466_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon |