Drug repurposing for Alzheimer’s disease using a graph-of-thoughts based large language model to infer drug-disease relationships in a comprehensive knowledge graph

Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can...

Full description

Saved in:
Bibliographic Details
Published inBioData mining Vol. 18; no. 1; pp. 51 - 19
Main Authors Wang, Zhiping Paul, Li, Xi, Matsumoto, Nicholas, Venkatesan, Mythreye, Chang, Jui-Hsuan, Moran, Jay, Choi, Hyunjun, Li, Binglan, Meng, Yufei, Hernandez, Miguel E., Moore, Jason H.
Format Journal Article
LanguageEnglish
Published London BioMed Central 05.08.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1756-0381
1756-0381
DOI10.1186/s13040-025-00466-5

Cover

Abstract Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.
AbstractList Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer's disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1-DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer's KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer's disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1-DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer's KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.
Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.
Abstract Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer’s disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1–DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer’s KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.
ArticleNumber 51
Audience Academic
Author Choi, Hyunjun
Hernandez, Miguel E.
Moore, Jason H.
Wang, Zhiping Paul
Moran, Jay
Meng, Yufei
Matsumoto, Nicholas
Li, Binglan
Chang, Jui-Hsuan
Li, Xi
Venkatesan, Mythreye
Author_xml – sequence: 1
  givenname: Zhiping Paul
  surname: Wang
  fullname: Wang, Zhiping Paul
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 2
  givenname: Xi
  surname: Li
  fullname: Li, Xi
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 3
  givenname: Nicholas
  surname: Matsumoto
  fullname: Matsumoto, Nicholas
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 4
  givenname: Mythreye
  surname: Venkatesan
  fullname: Venkatesan, Mythreye
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 5
  givenname: Jui-Hsuan
  surname: Chang
  fullname: Chang, Jui-Hsuan
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 6
  givenname: Jay
  surname: Moran
  fullname: Moran, Jay
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 7
  givenname: Hyunjun
  surname: Choi
  fullname: Choi, Hyunjun
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 8
  givenname: Binglan
  surname: Li
  fullname: Li, Binglan
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 9
  givenname: Yufei
  surname: Meng
  fullname: Meng, Yufei
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 10
  givenname: Miguel E.
  surname: Hernandez
  fullname: Hernandez, Miguel E.
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
– sequence: 11
  givenname: Jason H.
  surname: Moore
  fullname: Moore, Jason H.
  email: jason.moore@csmc.edu
  organization: Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40764997$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC_wAixQJDZlkWLHjp2s0KjcKlVC4rK2PPZJ4pLEwU5ayorX4AV4MJ6E05npZRBCKFJi-fznO_H_ez_ZGfwASfKYkiNKS_E8UkY4yUheZIRwIbLiXrJHZSEywkq6c2e9m-zHeEaIyEnBHiS7nEjBq0ruJT9fhrlJA4xzGH10Q5PWPqSL7lsLrofw6_uPmFoXQUdI51Vdp03QY5v5OptaPzftFNMllm3a6dAAvodm1rjovYUunXzqhhpCanFQdo0K0OnJ-SG2bowoQKrx_RighSG6c0g_D_6iA4uY1bSHyf1adxEebb4HyafXrz4ev81O3705OV6cZqaoiimjFTHFktC8lLJkVBpRmkpaBiSviOWlLaxgPKeQG1npWnJSVpIDp1wYTviSHSQna671-kyNwfU6XCqvnVpt-NAoHSZnOlCWIkEYyc3ScqFpyQpBl0xUhouc2RJZbM2ah1FfXuiuuwFSoq4SVOsEFSaoVgmqArterLvGedmDNTBMQXdbv7JdGVyrGn-uaM5yIXOKhMMNIfgvM8RJ9S4a6DAY8HNULGeSoEeiQunTP6Rnfg4DOrxRlazkt6pG47kxTY-DzRVULcoCLSSIQtXRX1T4WOidwZtbO9zfani21YCaCb5OjZ5jVCcf3m9rn9x15caO64uMgnwtMMHHGKD-P683CUUUDw2E2-P_o-s3naIVSw
Cites_doi 10.2196/46777
10.1002/glia.20338
10.1001/jamanetworkopen.2020.1541
10.1002/glia.20268
10.1016/j.lfs.2024.123010
10.1038/s41588-024-01854-z
10.3389/fphar.2022.976799
10.1016/s0014-5793(00)02380-2
10.1038/nrd3869
10.1038/s41467-019-08965-w
10.7554/eLife.63026
10.1016/j.ejmech.2020.112275
10.1093/bib/bbac404
10.7554/eLife.26726
10.1523/JNEUROSCI.3153-08.2008
10.1093/bib/bbac409
10.1038/s41467-023-39301-y
10.1038/s41392-024-01911-3
10.1097/WNF.0b013e3181342f32
10.1093/bioadv/vbad110
10.1145/3627673.3679713
10.1038/nrd.2018.168
10.1007/s12035-024-04246-w
10.3389/fnagi.2021.753351
10.3389/fphar.2023.1257700
10.1186/s13321-020-00450-7
10.1016/j.ajhg.2023.09.001
10.1038/s41746-024-01038-3
10.1093/bib/bbae461
10.1038/s41586-023-06291-2
10.1007/s40273-021-01065-y
10.1109/TKDE.2024.3352100
10.1111/j.1755-5949.2010.00177.x
10.1186/s12967-022-03745-5
10.1093/bioinformatics/btae271
10.1016/j.ailsci.2022.100036
10.1097/JS9.0000000000000719
10.1038/s41591-024-03233-x
10.1096/fj.08-113795
10.1093/bioadv/vbad001
10.3389/fphar.2018.00697
10.1002/med.22033
10.1093/bioinformatics/btae353
10.1093/jamia/ocae074
10.1038/s41467-025-56690-4
10.1016/j.nbd.2021.105542
10.1093/bioinformatics/btae560
10.1016/j.cbpa.2021.06.001
10.18653/v1/2024.findings-acl.11
10.1016/j.drudis.2019.07.006
10.1038/s41467-021-21330-0
10.1002/cpt.2122
10.1186/s12915-025-02177-z
10.1523/JNEUROSCI.4371-06.2007
10.1002/cpt.1007
10.1001/jamanetworkopen.2024.15445
10.1093/qjmed/hcv072
10.1002/alz.12450
10.1016/j.trci.2016.05.001
10.1159/000285514
10.1001/jamaneurol.2019.3762
10.1609/aaai.v38i16.29720
10.1093/bioinformatics/btaf031
10.1016/j.chembiol.2015.03.009
10.1111/j.1460-9568.2010.07426.x
10.1038/s41573-025-01139-y
10.1016/j.jbi.2022.104133
10.1093/bib/bbae521
10.1016/j.jbi.2021.103696
10.1186/s12979-024-00445-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
8AL
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13040-025-00466-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Public Health
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (NIESG)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0381
EndPage 19
ExternalDocumentID oai_doaj_org_article_d19af6c74cbd46a183561b369c4623d8
10.1186/s13040-025-00466-5
PMC12326721
A850890693
40764997
10_1186_s13040_025_00466_5
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institutes of Health
  grantid: U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; U01 AG066833; R01 LM010098; R01 LM010098; U01 AG066833; U01 AG066833
– fundername: NIH HHS
  grantid: U01 AG066833
– fundername: NIA NIH HHS
  grantid: U01 AG066833
– fundername: NLM NIH HHS
  grantid: R01 LM010098
– fundername: NIH HHS
  grantid: R01 LM010098
GroupedDBID ---
0R~
23N
2WC
5GY
5VS
6J9
7X7
8C1
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
ISR
ITC
K6V
K7-
KQ8
LK8
M7P
ML~
M~E
O5R
O5S
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c595t-190c5b0128778317c68c97d3e0290d48d5d63421e2c79af7408974e4146c404b3
IEDL.DBID C6C
ISSN 1756-0381
IngestDate Fri Oct 03 12:53:39 EDT 2025
Sun Oct 26 03:38:32 EDT 2025
Tue Sep 30 17:02:16 EDT 2025
Fri Sep 05 15:30:23 EDT 2025
Tue Oct 07 05:45:10 EDT 2025
Mon Oct 20 22:38:46 EDT 2025
Mon Oct 20 16:50:36 EDT 2025
Thu Oct 16 15:35:30 EDT 2025
Sun Aug 10 01:32:14 EDT 2025
Wed Oct 01 05:36:12 EDT 2025
Sat Sep 06 07:24:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-190c5b0128778317c68c97d3e0290d48d5d63421e2c79af7408974e4146c404b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s13040-025-00466-5
PMID 40764997
PQID 3237008384
PQPubID 55347
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_d19af6c74cbd46a183561b369c4623d8
unpaywall_primary_10_1186_s13040_025_00466_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12326721
proquest_miscellaneous_3237001269
proquest_journals_3237008384
gale_infotracmisc_A850890693
gale_infotracacademiconefile_A850890693
gale_incontextgauss_ISR_A850890693
pubmed_primary_40764997
crossref_primary_10_1186_s13040_025_00466_5
springer_journals_10_1186_s13040_025_00466_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-05
PublicationDateYYYYMMDD 2025-08-05
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BioData mining
PublicationTitleAbbrev BioData Mining
PublicationTitleAlternate BioData Min
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References A Lavecchia (466_CR29) 2019; 24
466_CR18
S Yao (466_CR68) 2023; 36
466_CR17
466_CR19
466_CR25
466_CR24
466_CR27
466_CR21
466_CR65
466_CR64
466_CR23
466_CR67
466_CR22
466_CR61
466_CR60
466_CR63
TN Jarada (466_CR26) 2020; 12
S Pal (466_CR44) 2023; 109
J Wei (466_CR66) 2022; 35
Z Zhou (466_CR74) 2025; 23
466_CR28
466_CR36
466_CR35
466_CR38
466_CR37
466_CR32
466_CR31
466_CR34
466_CR33
M Schlander (466_CR54) 2021; 39
466_CR72
466_CR30
466_CR73
J Zhang (466_CR70) 2024; 9
Z Gao (466_CR20) 2022; 132
466_CR39
466_CR8
466_CR47
466_CR9
466_CR46
466_CR6
466_CR49
466_CR7
466_CR4
466_CR43
466_CR42
466_CR2
466_CR45
F Urbina (466_CR62) 2021; 65
466_CR3
JL Cummings (466_CR12) 2022; 18
466_CR1
466_CR41
R Zhang (466_CR69) 2021; 115
466_CR40
S Bonner (466_CR5) 2022; 2
Q Zhang (466_CR71) 2024; 21
466_CR14
466_CR58
466_CR13
466_CR57
466_CR16
466_CR15
JD Romano (466_CR52) 2024; 26
466_CR59
466_CR10
466_CR53
466_CR11
466_CR55
466_CR50
T Pillaiyar (466_CR48) 2020; 195
A Sertkaya (466_CR56) 2024; 7
466_CR51
References_xml – volume: 26
  start-page: e46777
  issue: 1
  year: 2024
  ident: 466_CR52
  publication-title: J Med Internet Res.
  doi: 10.2196/46777
– ident: 466_CR55
  doi: 10.1002/glia.20338
– ident: 466_CR7
  doi: 10.1001/jamanetworkopen.2020.1541
– ident: 466_CR17
  doi: 10.1002/glia.20268
– volume: 35
  start-page: 24824
  year: 2022
  ident: 466_CR66
  publication-title: Adv Neural Inf Process Syst.
– ident: 466_CR46
  doi: 10.1016/j.lfs.2024.123010
– ident: 466_CR50
  doi: 10.1038/s41588-024-01854-z
– ident: 466_CR2
  doi: 10.3389/fphar.2022.976799
– ident: 466_CR19
  doi: 10.1016/s0014-5793(00)02380-2
– ident: 466_CR10
  doi: 10.1038/nrd3869
– ident: 466_CR33
  doi: 10.1038/s41467-019-08965-w
– ident: 466_CR30
  doi: 10.7554/eLife.63026
– volume: 195
  start-page: 112275
  year: 2020
  ident: 466_CR48
  publication-title: Eur J Med Chem.
  doi: 10.1016/j.ejmech.2020.112275
– ident: 466_CR6
  doi: 10.1093/bib/bbac404
– ident: 466_CR23
  doi: 10.7554/eLife.26726
– ident: 466_CR16
  doi: 10.1523/JNEUROSCI.3153-08.2008
– ident: 466_CR35
  doi: 10.1093/bib/bbac409
– ident: 466_CR1
  doi: 10.1038/s41467-023-39301-y
– volume: 9
  start-page: 211
  year: 2024
  ident: 466_CR70
  publication-title: Signal Transduct Target Ther.
  doi: 10.1038/s41392-024-01911-3
– ident: 466_CR42
  doi: 10.1097/WNF.0b013e3181342f32
– ident: 466_CR36
  doi: 10.1093/bioadv/vbad110
– ident: 466_CR31
  doi: 10.1145/3627673.3679713
– ident: 466_CR49
  doi: 10.1038/nrd.2018.168
– ident: 466_CR64
  doi: 10.1007/s12035-024-04246-w
– ident: 466_CR8
  doi: 10.3389/fnagi.2021.753351
– ident: 466_CR22
  doi: 10.3389/fphar.2023.1257700
– volume: 12
  start-page: 46
  issue: 1
  year: 2020
  ident: 466_CR26
  publication-title: J Cheminformatics.
  doi: 10.1186/s13321-020-00450-7
– ident: 466_CR32
  doi: 10.1016/j.ajhg.2023.09.001
– ident: 466_CR67
  doi: 10.1038/s41746-024-01038-3
– ident: 466_CR47
  doi: 10.1093/bib/bbae461
– ident: 466_CR58
  doi: 10.1038/s41586-023-06291-2
– volume: 39
  start-page: 1243
  issue: 11
  year: 2021
  ident: 466_CR54
  publication-title: A Systematic Review and Assessment. PharmacoEconomics.
  doi: 10.1007/s40273-021-01065-y
– ident: 466_CR45
  doi: 10.1109/TKDE.2024.3352100
– ident: 466_CR40
  doi: 10.1111/j.1755-5949.2010.00177.x
– ident: 466_CR65
  doi: 10.1186/s12967-022-03745-5
– ident: 466_CR73
  doi: 10.1093/bioinformatics/btae271
– volume: 2
  start-page: 100036
  year: 2022
  ident: 466_CR5
  publication-title: Artif Intell Life Sci.
  doi: 10.1016/j.ailsci.2022.100036
– volume: 109
  start-page: 4382
  issue: 12
  year: 2023
  ident: 466_CR44
  publication-title: Int J Surg.
  doi: 10.1097/JS9.0000000000000719
– ident: 466_CR25
  doi: 10.1038/s41591-024-03233-x
– ident: 466_CR43
  doi: 10.1096/fj.08-113795
– ident: 466_CR61
– ident: 466_CR72
  doi: 10.1093/bioadv/vbad001
– ident: 466_CR15
  doi: 10.3389/fphar.2018.00697
– ident: 466_CR14
  doi: 10.1002/med.22033
– ident: 466_CR38
  doi: 10.1093/bioinformatics/btae353
– ident: 466_CR53
  doi: 10.1093/jamia/ocae074
– ident: 466_CR13
  doi: 10.1038/s41467-025-56690-4
– ident: 466_CR4
  doi: 10.1016/j.nbd.2021.105542
– ident: 466_CR59
  doi: 10.1093/bioinformatics/btae560
– volume: 65
  start-page: 74
  year: 2021
  ident: 466_CR62
  publication-title: Curr Opin Chem Biol.
  doi: 10.1016/j.cbpa.2021.06.001
– ident: 466_CR28
  doi: 10.18653/v1/2024.findings-acl.11
– volume: 24
  start-page: 2017
  issue: 10
  year: 2019
  ident: 466_CR29
  publication-title: Drug Discov Today.
  doi: 10.1016/j.drudis.2019.07.006
– volume: 36
  start-page: 11809
  year: 2023
  ident: 466_CR68
  publication-title: Adv Neural Inf Process Syst.
– ident: 466_CR51
  doi: 10.1038/s41467-021-21330-0
– ident: 466_CR39
  doi: 10.1002/cpt.2122
– volume: 23
  start-page: 73
  issue: 1
  year: 2025
  ident: 466_CR74
  publication-title: BMC Biol.
  doi: 10.1186/s12915-025-02177-z
– ident: 466_CR18
  doi: 10.1523/JNEUROSCI.4371-06.2007
– ident: 466_CR21
  doi: 10.1002/cpt.1007
– volume: 7
  start-page: e2415445
  issue: 6
  year: 2024
  ident: 466_CR56
  publication-title: JAMA Netw Open.
  doi: 10.1001/jamanetworkopen.2024.15445
– ident: 466_CR60
  doi: 10.1093/qjmed/hcv072
– volume: 18
  start-page: 469
  issue: 3
  year: 2022
  ident: 466_CR12
  publication-title: Alzheimers Dement.
  doi: 10.1002/alz.12450
– ident: 466_CR63
  doi: 10.1016/j.trci.2016.05.001
– ident: 466_CR11
  doi: 10.1159/000285514
– ident: 466_CR24
  doi: 10.1001/jamaneurol.2019.3762
– ident: 466_CR3
  doi: 10.1609/aaai.v38i16.29720
– ident: 466_CR37
  doi: 10.1093/bioinformatics/btaf031
– ident: 466_CR9
  doi: 10.1016/j.chembiol.2015.03.009
– ident: 466_CR41
– ident: 466_CR27
  doi: 10.1111/j.1460-9568.2010.07426.x
– ident: 466_CR34
  doi: 10.1038/s41573-025-01139-y
– volume: 132
  start-page: 104133
  year: 2022
  ident: 466_CR20
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2022.104133
– ident: 466_CR57
  doi: 10.1093/bib/bbae521
– volume: 115
  start-page: 103696
  year: 2021
  ident: 466_CR69
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2021.103696
– volume: 21
  start-page: 38
  issue: 1
  year: 2024
  ident: 466_CR71
  publication-title: Immun Ageing.
  doi: 10.1186/s12979-024-00445-0
SSID ssj0062053
Score 2.3419647
Snippet Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases...
Abstract Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 51
SubjectTerms Advances in Data Mining for Biomedical Informatics and Healthcare
Algorithms
Alzheimer's disease
Artificial intelligence
Bioinformatics
Biomedical and Life Sciences
Chatbots
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining and Knowledge Discovery
Drug development
Drug discovery
Drug therapy
Graphs
Knowledge bases (artificial intelligence)
Knowledge representation
Large language models
Learning algorithms
Life Sciences
Machine learning
Methods
Neurodegenerative diseases
Patient outcomes
Performance enhancement
Performance evaluation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJQQsEO8GCjIIiQW1mnEc21kOj6ogwQKo1J0VP9IZaUhGeQiVFb_BD_BhfAnXzoMGJGDBdnzjjH2P78M5vkbosRWJKKQRxELoRliic1hSsSW6kIXTJnMuFPV585YfHbPXJ-nJuau-PCesLw_cT9yBXWR5wY1gRlvGc0AgeHyd8Mww8Nw2HPONZTYmU70N5hSwNR6RkfygAUvtaYw0JT4h5CSduaFQrf93m3zOKf1KmJy-ml5Bl7pym599yjebc47p8Bq6OkSUeNmP5Dq64Mob6GJ_x-TZTfTtRd2d4tptYUYrvzGAIUzFy83nlVt_dPX3L18bPHylwV1oz3GoYk2qgrQrf4lP22Dv7CzeeNo4Hrc4cbhFB7cV9oyuGlt4ERm7qkeS3Wq9bUAAevXs9dqtesY8njbz-rfdQseHLz88PyLD5QzEpFnaEggkTKq9exNCQhBiuDSZsImLaRZbJm1qecLowlEjQIOCgZIEcwwss2Ex08lttFNWpdtFmHJpC5caCz0zrVmeyFzzRFtHRSGMidDTUVdq29fgUCF3kVz1mlWgWRU0q9IIPfPqnCR9_ezwA6BKDahSf0NVhB55MChfIaP0FJzTvGsa9er9O7WUENNmMc-SCD0ZhIoKYGHy4UQDjMoX1ZpJ7s0kYQmbefOIOTWYkEYlNBE-QJYsQg-nZv-kp8WVrupGmQXlWYTu9BCdxg2ZOod0VkRIzsA7m5h5S7lehQLjPszmgi4itD_i_Of_-tPM709r4R8Udfd_KOoeukzDspYkTvfQTlt37j6Eia1-ECzCDxjiZKo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IF6FQEEGIXGgVrOJYzsHhLbQqiBRoUKl3qz4kd2VlmTJQ6ic-Bv8AX4Yv4RxXm1AqrjGEyf2PPyNPZ5B6LnhIU-F5sQAdCM0VAmolG-ISkVqlY6tbZL6fDhihyf0_Wl0uoGO-rswLqyyt4mNoTa5dnvku2EQcocXBH29_kpc1Sh3utqX0Ei60grmVZNi7AraDFxmrAna3Ns_-njc22YWgMz1V2cE2y3BgrvwxiAizlFkJBotT00W_39t9YXF6u9AyuE09Qa6Vmfr5OxbslpdWLAObqGbHdLEs1Y0bqMNm91BV9vak2d30a-3RT3HhV3DTOduwwADfMWz1feFXX6xxe8fP0vcnd7gumlPcJPdmuQpqRauuE9VYrcIGrxy4eS43_rETXUdXOXYRXoV2MCHSN9V0QffLZbrEgigVxfVXthFG0mPh02-9mv30MnB_uc3h6Qr2kB0FEcVAYChI-WWPc4FgBPNhI65Ca0fxL6hwkSGhTSY2kDzOEk59QW4NJaCxdbUpyrcQpMsz-wDhAMmTGojbaBnqhRNQpEoFipjA55yrT30sueVXLe5OWTj0wgmW85K4KxsOCsjD-05dg6ULq928yAv5rJTU2mm8E9Mc6qVoSwBewf4UoUs1hRwohEeeuaEQbrMGZkLzZkndVnKd5-O5UwA1o19FoceetERpTmIhU66mw4wKpdsa0S5PaIE1dbj5l7mZGdaSnmuCB56OjS7N124XGbzuqeZBiz20P1WRIdxgwfPwM3lHhIj4R1NzLglWy6axOMOfjMeTD2008v5-X9dNvM7gy78B6MeXj7qR-h60CisIH60jSZVUdvHAAwr9aTT9j9DOWLh
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbKVAg4sC-BggxC4kAzzSSO7RyHpSpIjBBQqZyseMnMiGkyyiLUnvgb_AF-GL-E52xMCkIgcY1fnPjlLZ-dtyD0WLOAJVwxVwN0c0kgY1ApT7sy4YmRKjKmLurzZkYPDsnro_BoC826XBi5zGxo5HHdHWG8mYK-ajIcbAcFk--tddIoPKd7BdhhG6Toh67d7lE3PIe2aQjYfIS2D2dvpx_rrMgQts7gn7rMmd_eOPBOdRH_X031hq86G0fZ_0y9hC5U6To--RyvVhv-av8KyrqVNmEqn8ZVKcfq9EwRyP_Hiqvocgtt8bSRxWtoy6TX0fmm2eXJDfTtRV7NcW7W8Gkze0KBAS_j6ep0YZbHJv_-5WuB299FuKrHY1yX03azxC0XtptQWWDrdTVe2fh13J214rqdDy4zbEPLcqzhQW43Vd5F-y2W6wIIYFYbRp-bRRO6j_tTxeZpN9Hh_ssPzw_ctkuEq8IoLF1ANCqU1s8yxgENKcpVxHRgPD_yNOE61DQg_sT4ikVxwojHYQ9lCLgIRTwig1tolGapuYOwT7lOTKg0zEykJHHAY0kDqY3PEqaUg5520iHWTTEQUW-iOBUN5wVwXtScF6GDnlkB6iltIe_6QpbPRWsXhJ7AO1HFiJKa0BgMLABaGdBIEQCmmjvokRU_YUt1pDYWaB5XRSFevX8nphzAdeTRKHDQk5YoyUA8VNymVsCqbHWvAeXOgBJsiRoOd1IuWltWiMAPmEXqnDjoYT9s77TxeanJqo5m4tPIQbcbpejXTTxGYV_NHMQH6jJgzHAkXS7qSucW71PmTxy022nWz_f6E-d3e-37iw9199_I76GLfq1g3PXCHTQq88rcB2RaygetufkBgfqKNw
  priority: 102
  providerName: Unpaywall
Title Drug repurposing for Alzheimer’s disease using a graph-of-thoughts based large language model to infer drug-disease relationships in a comprehensive knowledge graph
URI https://link.springer.com/article/10.1186/s13040-025-00466-5
https://www.ncbi.nlm.nih.gov/pubmed/40764997
https://www.proquest.com/docview/3237008384
https://www.proquest.com/docview/3237001269
https://pubmed.ncbi.nlm.nih.gov/PMC12326721
https://biodatamining.biomedcentral.com/counter/pdf/10.1186/s13040-025-00466-5
https://doaj.org/article/d19af6c74cbd46a183561b369c4623d8
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ) (NIESG)
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: ADMLS
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: AAJSJ
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: C6C
  dateStart: 20080112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfYJgQ8IP4TGJVBSDywiDRxbOexKyujEtW0UWk8WYntrJVKUuWP0Hjia_AF-GB8Es5OUhpACF4SKb7Yie989zv7fEbouWIBS7lkrgLo5pIgiWFIecpNUp7qREZa26Q-72b0eE6m5-F5mybH7IXZXr8fcvqqBB1rAhD90DWuHHXDHbQHRorahVk67rQu9UGauk0xf3yvZ3hsfv7ftfCWGfo1RHKzTnoDXauzdXz5KV6ttkzR5Ba62WJIPGqYfhtd0dkddLU5VfLyLvr2uqgvcKHX0Ie5mQrAAEzxaPV5oZcfdfH9y9cSt-syuLblMbZ5q908dauFObanKrExbwqvTKA47iY1sT03B1c5NjFcBVbQkNtVVXRhdYvlugQCqNXEqxd60cTI4830XdPaPTSfHL0fH7vtcQyuDKOwcgE6yDAxBo0xDrBDUi4jpgLt-ZGnCFehogHxh9qXLIpTRjwOzoomoIsl8UgS3Ee7WZ7phwj7lKtUh1JBzSRJSBzwOKFBorTPUialg152vBLrJuuGsN4Kp6LhrADOCstZETro0LBzQ2kyZtsHIEiiHYBCDeGbqGREJorQGDQZIMckoJEkgAAVd9AzIwzC5MTITNDNRVyXpXh7dipGHFBs5NEocNCLlijNQSxk3O5hgL8yabR6lPs9Shi0sl_cyZxolUYpAj9gBhJz4qCnm2LzpgmEy3RedzQg_5GDHjQiuvlv8M0pOLDMQbwnvL2O6Zdky4VNKW6ANWX-0EEHnZz__K6_9fzBZiz8A6Me_V_tj9F13w5g7nrhPtqtilo_AQhYJQO0w84ZXPl4aK6TNwO0NxpNz6ZwPzyanZwOrHYY2CkWeDafnYw-_ACx1V2M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKESosEG8CBQwCsaBWM45jOwuEBkrV0scCWml2JrGdTqUhGZIZVcOK3-AHWPJRfAnXebUBqWLT7fiOE-e-7eN7EXpuRCBSqQUxELoRFiQxqJRvSJLK1CY6srYq6rO3z7cO2YdROFpCv9q7MA5W2drEylCbXLs98vWABsLFC5K9mX4lrmuUO11tW2jUYrFjFyeQspWvtzeAvy8o3Xx_8G6LNF0FiA6jcEbAA-owcXZZCAneU3OpI2EC69PIN0ya0PCA0YGlWkRxKpgvIea2DEyKZj5LApj3ErrMArAloD9i1CV4nIJEtxdzJF8vwT848CQNiUtDOQl7zq_qEfCvJzjjCv-GaXZntdfQyjybxouTeDI54w43b6DrTRyLh7Xg3URLNruFrtSdLRe30c-NYn6ECzsFPuZuOwJDcIyHk29je_zFFr-__yhxczaE59V4jKva2SRPyWzsWgfNSuxcrMETB1bH7cYqrnr34FmOHY6swAYeRNqpihbaNz6elkAAszrMfGHHNU4fd1uI9dPuoMMLYd5dtJzlmb2PMOXSpDbUBmZmScLiQMYJDxJjqUiF1h561fJKTevKH6rKmCRXNWcVcFZVnFWhh946dnaUrmp39UNeHKnGCCgzgHfiWjCdGMZjsKYQvSYBjzSDKNRIDz1zwqBcXY7MAX-O4nlZqu1PH9VQQiQd-TwKPPSyIUpzEAsdN_coYFWulFePcrVHCYZD94dbmVON4SrVqZp56Gk37P7pwHiZzectzYDyyEP3ahHt1s18wSGJFh6SPeHtfZj-SHY8rsqau-CeCzrw0For56fvdd6XX-t04T8Y9eD8VT9BK1sHe7tqd3t_5yG6SivllcQPV9HyrJjbRxCCzpLHld5j9PmiDc0f7GeWHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagiO2A2AkUMAiJA7WaSRzbOQ5TRi1LhYBKvVmJ7cyMNCSjLELlxN_gD_DD-CU8OwsNIATX-MWJ_bbv2c_PCD3RPOSZUJxogG6EhmkCKuVrkmYiM6mKjXFFfd4csv0j-vI4Oj51it9lu_dbku2ZBlulKa93NzprVVyw3Qosr01LDCJiAzxGorPoHAXvZu8wmLFZb4tZADLWH5X543sjd-Sq9v9um085p18TJ4fd08voYpNvkpNPyXp9ykHNr6IrHbLE01YUrqEzJr-Ozrd3TZ7cQN_2ymaBS7OBmS3sAgEGuIqn689Ls_poyu9fvla4263BjWtPsKtmTYqM1Et7mU9dYev0NF7b9HHcL3Vid5sOrgtsM7tKrOFDpO-q7JPtlqtNBQTQq81iL82yzZzHw6Je-7Wb6Gj-4sNsn3SXNBAVxVFNAFCoKLVujnMBYEQxoWKuQ-MHsa-p0JFmIQ0mJlA8TjIOXIIQxlCw0Ir6NA1voa28yM0dhAMmdGYipaFnmqY0CUWSsjDVJuAZV8pDz3peyU1bi0O6GEYw2XJWAmel46yMPPTcsnOgtHW03YOiXMhOLaWewD8xxalKNWUJ2DfAk2nIYkUBF2rhocdWGKStlJHbVJxF0lSVPHj_Tk4FYNvYZ3HooacdUVaAWKikO9kAo7LFtUaU2yNKUGU1bu5lTnampJJhEHILlAX10KOh2b5p0-NyUzQ9zSRgsYdutyI6jBsidgZhLfeQGAnvaGLGLflq6QqNW7jNeDDx0E4v5z__628zvzPowj8w6u7_9f4QXXi7N5evDw5f3UOXAqfLgvjRNtqqy8bcB4xYpw-cGfgBBlBgXQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLbKVAg4sC-BggxC4kAzzSSO7RyHpSpIjBBQqZyseMnMiGkyyiLUnvgb_AF-GL-E52xMCkIgcY1fnPjlLZ-dtyD0WLOAJVwxVwN0c0kgY1ApT7sy4YmRKjKmLurzZkYPDsnro_BoC826XBi5zGxo5HHdHWG8mYK-ajIcbAcFk--tddIoPKd7BdhhG6Toh67d7lE3PIe2aQjYfIS2D2dvpx_rrMgQts7gn7rMmd_eOPBOdRH_X031hq86G0fZ_0y9hC5U6To--RyvVhv-av8KyrqVNmEqn8ZVKcfq9EwRyP_Hiqvocgtt8bSRxWtoy6TX0fmm2eXJDfTtRV7NcW7W8Gkze0KBAS_j6ep0YZbHJv_-5WuB299FuKrHY1yX03azxC0XtptQWWDrdTVe2fh13J214rqdDy4zbEPLcqzhQW43Vd5F-y2W6wIIYFYbRp-bRRO6j_tTxeZpN9Hh_ssPzw_ctkuEq8IoLF1ANCqU1s8yxgENKcpVxHRgPD_yNOE61DQg_sT4ikVxwojHYQ9lCLgIRTwig1tolGapuYOwT7lOTKg0zEykJHHAY0kDqY3PEqaUg5520iHWTTEQUW-iOBUN5wVwXtScF6GDnlkB6iltIe_6QpbPRWsXhJ7AO1HFiJKa0BgMLABaGdBIEQCmmjvokRU_YUt1pDYWaB5XRSFevX8nphzAdeTRKHDQk5YoyUA8VNymVsCqbHWvAeXOgBJsiRoOd1IuWltWiMAPmEXqnDjoYT9s77TxeanJqo5m4tPIQbcbpejXTTxGYV_NHMQH6jJgzHAkXS7qSucW71PmTxy022nWz_f6E-d3e-37iw9199_I76GLfq1g3PXCHTQq88rcB2RaygetufkBgfqKNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+repurposing+for+Alzheimer%E2%80%99s+disease+using+a+graph-of-thoughts+based+large+language+model+to+infer+drug-disease+relationships+in+a+comprehensive+knowledge+graph&rft.jtitle=BioData+mining&rft.au=Wang%2C+Zhiping+Paul&rft.au=Li%2C+Xi&rft.au=Matsumoto%2C+Nicholas&rft.au=Venkatesan%2C+Mythreye&rft.date=2025-08-05&rft.pub=BioMed+Central&rft.eissn=1756-0381&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13040-025-00466-5&rft.externalDocID=10_1186_s13040_025_00466_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon