Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data
Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms. Methods ARLO, LM,...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 73; no. 2; pp. 843 - 850 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.02.2015
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.25137 |
Cover
| Abstract | Purpose
To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms.
Methods
ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n = 15) and myocardial (n = 1) iron overload patients and the brain (two healthy volunteers).
Results
In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole‐brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time.
Conclusion
Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843–850, 2015. © 2014 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Purpose
To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms.
Methods
ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n = 15) and myocardial (n = 1) iron overload patients and the brain (two healthy volunteers).
Results
In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole‐brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time.
Conclusion
Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843–850, 2015. © 2014 Wiley Periodicals, Inc. To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms.PURPOSETo develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms.ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers).METHODSARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers).In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time.RESULTSIn simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time.Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping.CONCLUSIONDue to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping. To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time. Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping. Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843-850, 2015. © 2014 Wiley Periodicals, Inc. Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T sub(2)* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T sub(2)* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T sub(2)* mapping. Magn Reson Med 73:843-850, 2015. copyright 2014 Wiley Periodicals, Inc. |
| Author | Wang, Yi Salustri, Carlo Li, Jianqi Nguyen, Thanh D. Dong, Fang Cooper, Mitch A. Prince, Martin R. Pei, Mengchao Thimmappa, Nanda D. |
| Author_xml | – sequence: 1 givenname: Mengchao surname: Pei fullname: Pei, Mengchao organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China – sequence: 2 givenname: Thanh D. surname: Nguyen fullname: Nguyen, Thanh D. organization: Radiology, Weill Cornell Medical College, New York, New York, USA – sequence: 3 givenname: Nanda D. surname: Thimmappa fullname: Thimmappa, Nanda D. organization: Radiology, Weill Cornell Medical College, New York, New York, USA – sequence: 4 givenname: Carlo surname: Salustri fullname: Salustri, Carlo organization: Radiology, Weill Cornell Medical College, New York, New York, USA – sequence: 5 givenname: Fang surname: Dong fullname: Dong, Fang organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China – sequence: 6 givenname: Mitch A. surname: Cooper fullname: Cooper, Mitch A. organization: Radiology, Weill Cornell Medical College, New York, New York, USA – sequence: 7 givenname: Jianqi surname: Li fullname: Li, Jianqi organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China – sequence: 8 givenname: Martin R. surname: Prince fullname: Prince, Martin R. organization: Radiology, Weill Cornell Medical College, New York, New York, USA – sequence: 9 givenname: Yi surname: Wang fullname: Wang, Yi email: yiwang@med.cornell.edu organization: Radiology, Weill Cornell Medical College, New York, New York, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24664497$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV1LHDEUhkOx1NX2on-gBHqjwmg-J5PLZVttYe3CYmnvQmYm2cbOTKZJBt1_3-iqF0KlcCCc8Lzn4z0HYG_wgwHgPUanGCFy1of-lHBMxSsww5yQgnDJ9sAMCYYKiiXbBwcxXiOEpBTsDdgnrCwZk2IGNvNu44NLv3pofYBWxwR7P3hzO-YeQ3K6g9al5IYNrHU0LfQDnE_JF2uzCSZGl_McSzcYHeBqNEGn_Bfh0Xy9XB1Db2Grk34LXlvdRfPu4T0E388_Xy2-FMvVxdfFfFk0XHJR1LZmDPOam7blVlJbSoZ4ra2pBLE1aRil0mLLjC5bUVWWyJJzYiVBFLe2pIfgZFd3Gka9vdFdp8bgeh22CiN155bKbql7tzJ8tIPH4P9MJibVu9iYrtOD8VNUuOSsFJUU-H9QwmiFZZXRj8_Qaz-FIW-dKcYrivLgmfrwQE11b9qnKR9Pk4HjHdAEH2Mw9sVFzp6xjUv3d0hBu-4lxY3rzPbfpdXl-vJRUewULiZz-6TQ4bcqBRVc_fh2obg4_7kgn6S6on8BMPfKww |
| CODEN | MRMEEN |
| CitedBy_id | crossref_primary_10_1016_j_net_2024_04_037 crossref_primary_10_7554_eLife_75523 crossref_primary_10_1016_j_neuroimage_2023_119886 crossref_primary_10_1111_ejn_15558 crossref_primary_10_1002_mrm_26088 crossref_primary_10_3390_tomography8060243 crossref_primary_10_1002_mrm_25358 crossref_primary_10_1002_mrm_26964 crossref_primary_10_1007_s12194_024_00878_8 crossref_primary_10_1002_mrm_26808 crossref_primary_10_1109_TBME_2023_3347441 crossref_primary_10_1002_mrm_26648 crossref_primary_10_1007_s10334_025_01229_3 crossref_primary_10_1016_j_mri_2024_01_018 crossref_primary_10_1016_j_ejmp_2021_07_015 crossref_primary_10_1111_jon_12923 crossref_primary_10_1038_s41531_024_00641_1 crossref_primary_10_1016_j_jmr_2016_01_019 crossref_primary_10_1148_radiol_2018172322 crossref_primary_10_1016_j_nicl_2022_102938 crossref_primary_10_1111_jon_13014 crossref_primary_10_1002_mrm_28893 crossref_primary_10_1002_mrm_29065 crossref_primary_10_1016_j_jmr_2021_107033 crossref_primary_10_1002_mrm_27967 crossref_primary_10_1002_mrm_28814 crossref_primary_10_1002_nbm_4847 crossref_primary_10_1002_mrm_25463 crossref_primary_10_1212_NXI_0000000000200271 crossref_primary_10_1016_j_mri_2020_06_006 crossref_primary_10_1002_hbm_70102 crossref_primary_10_1016_j_neuroimage_2019_116335 crossref_primary_10_1111_jon_12658 crossref_primary_10_1016_j_parkreldis_2024_107135 crossref_primary_10_1016_j_neuroimage_2024_120892 crossref_primary_10_1002_acn3_52053 crossref_primary_10_1016_j_neuroimage_2022_118931 crossref_primary_10_1016_j_neuroimage_2025_121060 crossref_primary_10_1002_nbm_4156 crossref_primary_10_1007_s00234_021_02846_0 crossref_primary_10_1002_mrm_29854 crossref_primary_10_1038_s41531_023_00586_x crossref_primary_10_3390_tomography8030127 crossref_primary_10_1002_hbm_70136 crossref_primary_10_1002_mrm_25257 crossref_primary_10_1002_hbm_26816 crossref_primary_10_1007_s10334_019_00737_3 crossref_primary_10_1111_jon_12669 crossref_primary_10_1002_jmri_26632 crossref_primary_10_1038_s41598_024_83593_z crossref_primary_10_1016_j_nicl_2021_102736 crossref_primary_10_1016_j_mri_2022_05_020 crossref_primary_10_1016_j_mri_2024_03_039 crossref_primary_10_1016_j_neuroimage_2020_117358 crossref_primary_10_1002_jmri_29583 crossref_primary_10_1002_mrm_27900 crossref_primary_10_1002_nbm_4788 crossref_primary_10_1002_mrm_29963 crossref_primary_10_3389_fneur_2023_1251230 crossref_primary_10_1016_j_mri_2020_08_012 |
| Cites_doi | 10.1002/jmri.21835 10.1002/mrm.24772 10.1002/mrm.1910340618 10.1002/jmri.23545 10.1002/mrm.21904 10.1007/s00247-011-2082-7 10.1515/9780691218632 10.1002/nbm.1539 10.1212/WNL.0b013e318236ef0e 10.1002/mrm.23185 10.1007/s00256-011-1171-x 10.1182/blood-2008-12-191643 10.1161/CIRCULATIONAHA.110.007641 10.1002/mrm.1910380524 10.1002/mrm.21737 10.1002/mrm.1910360216 10.1148/radiol.2522081399 10.1007/s00330-012-2448-8 10.1002/mrm.21744 10.1148/radiol.10100495 10.1007/s00330-012-2506-2 10.1182/blood-2004-10-3982 |
| ContentType | Journal Article |
| Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO ADTOC UNPAY |
| DOI | 10.1002/mrm.25137 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 850 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4175304 3559195591 24664497 10_1002_mrm_25137 MRM25137 ark_67375_WNG_57FXC2D9_T |
| Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: The National Natural Science Foundation of China funderid: 81271533 – fundername: NIBIB NIH HHS grantid: T35 EB006732 – fundername: NIBIB NIH HHS grantid: R13 EB017627 – fundername: NINDS NIH HHS grantid: R01 NS072370 – fundername: NIBIB NIH HHS grantid: R01 EB013443 – fundername: NINDS NIH HHS grantid: R13 NS079016 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5957-bfb4415b5edd5f93f69405bafe872fb2c4339f1f4ea6d788f296552f92031df63 |
| IEDL.DBID | UNPAY |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 04:15:36 EDT 2025 Tue Oct 07 09:54:36 EDT 2025 Wed Oct 01 14:48:59 EDT 2025 Tue Oct 07 06:02:27 EDT 2025 Wed Feb 19 02:34:05 EST 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Oct 01 02:05:12 EDT 2025 Wed Jan 22 16:48:38 EST 2025 Sun Sep 21 06:19:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Levenberg-Marquardt Log-Linear iron overload autoregression T2 mapping |
| Language | English |
| License | 2014 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5957-bfb4415b5edd5f93f69405bafe872fb2c4339f1f4ea6d788f296552f92031df63 |
| Notes | ark:/67375/WNG-57FXC2D9-T ArticleID:MRM25137 The National Natural Science Foundation of China - No. 81271533 istex:82FB255F0BC2CBF93AD2EDE34E17560133132FD9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/mrm.25137 |
| PMID | 24664497 |
| PQID | 1645830788 |
| PQPubID | 1016391 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_25137 proquest_miscellaneous_1654678971 proquest_miscellaneous_1652438198 proquest_journals_1645830788 pubmed_primary_24664497 crossref_primary_10_1002_mrm_25137 crossref_citationtrail_10_1002_mrm_25137 wiley_primary_10_1002_mrm_25137_MRM25137 istex_primary_ark_67375_WNG_57FXC2D9_T |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465. Bonny JM, Zanca M, Boire JY, Veyre A. T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 1996;36:287-293. Hardy PA, Andersen AH. Calculating T2 in images from a phased array receiver. Magn Reson Med 2009;61:962-969. Khalil M, Langkammer C, Ropele S, et al. Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 2011;77:1691-1697. Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T. Magn Reson Med 2012;67:1684-1693. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172. Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 2012;35:1125-1132. Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol 2012;22:2013-2019. Hamilton JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994. xiv, 799 p. Ropele S, Wattjes MP, Langkammer C, et al. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2014;71:1103-1107. He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med 2008;60:1082-1089. Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011;123:1519-1528. Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009;113:4853-4855. Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover; 1970. xiv, 1046 p. Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009;30:313-320. Yin X, Shah S, Katsaggelos AK, Larson AC. Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination. NMR Biomed 2010;23:1127-1136. Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012;41:287-292. Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 2012;22:2478-2486. Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997;38:852-857. Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol 2011;41:1259-1265. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134. 2010; 23 2009; 30 2009; 61 2010; 257 1995; 34 2005; 106 2011; 41 2011; 77 2009; 113 1997; 38 1994 1970 2009; 252 1996; 36 2012; 35 2012; 67 2014; 71 2008; 60 2012; 22 2011; 123 2012; 41 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_23_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_24_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_21_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_22_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 Abramowitz M (e_1_2_5_15_1) 1970 e_1_2_5_20_1 Hamilton JD (e_1_2_5_18_1) 1994 31301108 - Magn Reson Med. 2019 Oct;82(4):1576 |
| References_xml | – reference: Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009;113:4853-4855. – reference: Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012;41:287-292. – reference: Khalil M, Langkammer C, Ropele S, et al. Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 2011;77:1691-1697. – reference: Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009;30:313-320. – reference: Ropele S, Wattjes MP, Langkammer C, et al. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2014;71:1103-1107. – reference: Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997;38:852-857. – reference: Hardy PA, Andersen AH. Calculating T2 in images from a phased array receiver. Magn Reson Med 2009;61:962-969. – reference: Yin X, Shah S, Katsaggelos AK, Larson AC. Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination. NMR Biomed 2010;23:1127-1136. – reference: Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T. Magn Reson Med 2012;67:1684-1693. – reference: Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011;123:1519-1528. – reference: Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134. – reference: Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol 2012;22:2013-2019. – reference: He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med 2008;60:1082-1089. – reference: Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 2012;35:1125-1132. – reference: Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol 2011;41:1259-1265. – reference: Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914. – reference: Hamilton JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994. xiv, 799 p. – reference: Bonny JM, Zanca M, Boire JY, Veyre A. T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 1996;36:287-293. – reference: Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. – reference: Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 2012;22:2478-2486. – reference: Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover; 1970. xiv, 1046 p. – reference: Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172. – reference: Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465. – volume: 67 start-page: 1684 year: 2012 end-page: 1693 article-title: Three‐dimensional water/fat separation and T2* estimation based on whole‐image optimization‐‐application in breathhold liver imaging at 1.5 T publication-title: Magn Reson Med – volume: 60 start-page: 1082 year: 2008 end-page: 1089 article-title: Myocardial T2* measurements in iron‐overloaded thalassemia: An in vivo study to investigate optimal methods of quantification publication-title: Magn Reson Med – volume: 123 start-page: 1519 year: 2011 end-page: 1528 article-title: On T2* magnetic resonance and cardiac iron publication-title: Circulation – volume: 36 start-page: 287 year: 1996 end-page: 293 article-title: T2 maximum likelihood estimation from multiple spin‐echo magnitude images publication-title: Magn Reson Med – volume: 113 start-page: 4853 year: 2009 end-page: 4855 article-title: R2* magnetic resonance imaging of the liver in patients with iron overload publication-title: Blood – volume: 257 start-page: 455 year: 2010 end-page: 462 article-title: Quantitative MR imaging of brain iron: a postmortem validation study publication-title: Radiology – volume: 30 start-page: 313 year: 2009 end-page: 320 article-title: Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study publication-title: J Magn Reson Imaging – volume: 41 start-page: 1259 year: 2011 end-page: 1265 article-title: Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron‐loaded liver publication-title: Pediatr Radiol – volume: 38 start-page: 852 year: 1997 end-page: 857 article-title: Signal‐to‐noise measurements in magnitude images from NMR phased arrays publication-title: Magn Reson Med – volume: 61 start-page: 962 year: 2009 end-page: 969 article-title: Calculating T2 in images from a phased array receiver publication-title: Magn Reson Med – volume: 60 start-page: 1122 year: 2008 end-page: 1134 article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling publication-title: Magn Reson Med – volume: 22 start-page: 2013 year: 2012 end-page: 2019 article-title: Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration publication-title: Eur Radiol – volume: 71 start-page: 1103 year: 2014 end-page: 1107 article-title: Multicenter R2* mapping in the healthy brain publication-title: Magn Reson Med – start-page: 799 year: 1994 – volume: 22 start-page: 2478 year: 2012 end-page: 2486 article-title: Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload publication-title: Eur Radiol – volume: 35 start-page: 1125 year: 2012 end-page: 1132 article-title: Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling publication-title: J Magn Reson Imaging – volume: 34 start-page: 910 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 41 start-page: 287 year: 2012 end-page: 292 article-title: T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study publication-title: Skeletal Radiol – volume: 23 start-page: 1127 year: 2010 end-page: 1136 article-title: Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination publication-title: NMR Biomed – volume: 252 start-page: 165 year: 2009 end-page: 172 article-title: Age‐related iron deposition in the basal ganglia: quantitative analysis in healthy subjects publication-title: Radiology – start-page: 1046 year: 1970 – volume: 106 start-page: 1460 year: 2005 end-page: 1465 article-title: MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion‐dependent thalassemia and sickle cell disease patients publication-title: Blood – volume: 77 start-page: 1691 year: 2011 end-page: 1697 article-title: Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study publication-title: Neurology – ident: e_1_2_5_20_1 doi: 10.1002/jmri.21835 – ident: e_1_2_5_3_1 doi: 10.1002/mrm.24772 – ident: e_1_2_5_16_1 doi: 10.1002/mrm.1910340618 – ident: e_1_2_5_10_1 doi: 10.1002/jmri.23545 – ident: e_1_2_5_21_1 doi: 10.1002/mrm.21904 – ident: e_1_2_5_14_1 doi: 10.1007/s00247-011-2082-7 – start-page: 799 volume-title: Time series analysis year: 1994 ident: e_1_2_5_18_1 doi: 10.1515/9780691218632 – ident: e_1_2_5_22_1 doi: 10.1002/nbm.1539 – ident: e_1_2_5_4_1 doi: 10.1212/WNL.0b013e318236ef0e – ident: e_1_2_5_24_1 doi: 10.1002/mrm.23185 – ident: e_1_2_5_13_1 doi: 10.1007/s00256-011-1171-x – ident: e_1_2_5_8_1 doi: 10.1182/blood-2008-12-191643 – ident: e_1_2_5_6_1 doi: 10.1161/CIRCULATIONAHA.110.007641 – ident: e_1_2_5_17_1 doi: 10.1002/mrm.1910380524 – ident: e_1_2_5_23_1 doi: 10.1002/mrm.21737 – ident: e_1_2_5_19_1 doi: 10.1002/mrm.1910360216 – ident: e_1_2_5_2_1 doi: 10.1148/radiol.2522081399 – ident: e_1_2_5_12_1 doi: 10.1007/s00330-012-2448-8 – ident: e_1_2_5_5_1 doi: 10.1002/mrm.21744 – ident: e_1_2_5_11_1 doi: 10.1148/radiol.10100495 – start-page: 1046 volume-title: Handbook of mathematical functions: with formulas, graphs, and mathematical tables year: 1970 ident: e_1_2_5_15_1 – ident: e_1_2_5_9_1 doi: 10.1007/s00330-012-2506-2 – ident: e_1_2_5_7_1 doi: 10.1182/blood-2004-10-3982 – reference: 31301108 - Magn Reson Med. 2019 Oct;82(4):1576 |
| SSID | ssj0009974 |
| Score | 2.4409056 |
| Snippet | Purpose
To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its... To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and... Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its... |
| SourceID | unpaywall proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 843 |
| SubjectTerms | Adult Algorithms autoregression Brain - pathology Computer Simulation Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods iron overload Levenberg-Marquardt Linear Models Log-Linear Male Numerical Analysis, Computer-Assisted Regression Analysis Reproducibility of Results Sensitivity and Specificity T2 mapping |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIW4PXAaMwEDmIlQe0jWOncTiqRqUCdFNqjbRh0mRndhbtTapmkQMnvgJ_EZ-CcdxkmloTIi3KDmxbOc7t_j4M0KvQzkQlKWem_CEujRV0pVESNcT2vCF8zDRZjfyeC_YPaSfpmy6ht61e2EsP0T3w81oRm2vjYILWWyfk4YuVos-OGff7CT3_KBOpybn1FGcWwbmkBo7w2nLKjQg292bF3zRNTOtZ5cFmrfRzSpbim9fxXx-MYatndDoLjpqu29rT077VSn7yfc_mB3_c3z30J0mOMVDi6b7aE1lG-jGuFl-30DX63rRpHiAZsP5cb6alScLDFEv1qIoMQA6V2fLPDMFSNCMntU11dg4yhTnGR5WZf7rx8-JOrbFt5m5CckwKBveXyqLxQL3hpPP-29xrrEpX32IDkcfDnZ23ebUBjdhnIWu1NLkaJKpNGWa-zrgEBRKoVUUEi1JQn2fa09TJYIUEnBNeMAY0ZyAfUl14D9C6xl09THCIcSuGlIupn0AFIU2Ib3xpfYCNRCKDxzUa79fnDSU5uZkjXlsyZhJDJMY15PooJed6NLyeFwm9KYGQSchVqem8C1k8Ze9jzELR9Md8p7HBw7aalESNzpfxJB4sghMZhQ56EX3GLTVLMGITOWVkWHEkKrxq2XAe0U89By0aRHYdYiY0wAoh56-6iB51Xh6NcL-LhGPJ-P64sm_iz5FtyBqZLZ0fQutl6tKPYPIrJTPaxX8DVddM0o priority: 102 providerName: Wiley-Blackwell |
| Title | Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data |
| URI | https://api.istex.fr/ark:/67375/WNG-57FXC2D9-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25137 https://www.ncbi.nlm.nih.gov/pubmed/24664497 https://www.proquest.com/docview/1645830788 https://www.proquest.com/docview/1652438198 https://www.proquest.com/docview/1654678971 http://doi.org/10.1002/mrm.25137 |
| UnpaywallVersion | submittedVersion |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbg9cBm3wJjMRag8pLROnNSP0aBMiHaoWkV5iuzEHtXapGoSMXjiJ_Ab-SUcJ2lExTbxFiUnlu2c4_Md-ctngJe-7AmXxX074pFru7GStqRC2n2hjV449yNt_kYejb3DqfthxmY7sDmybnv7nr5ZrpddzMCOfwXaHkO03YL2dPwp-FKpa5olpDzrELMQtRHJuxvxoL_f3Uo5bTN7Z-fhyZtwvUhW4vs3sVhsQ9Uy1wxvV5zHrJQoNBST026Ry270418BxwuHcQdu1UCTBJVn3IUdlezCtVG9lb4LV0vuZ5Tdg3mwOEnX8_zrkiCCJVpkOUHnTNXZKk0MmQib0fOSH01M0otJmpCgyNPfP39N1ElFpE3MTSxsMXDI0UpVfpWRTjD5ePSapJoYKup9mA7fHR8c2vUJDHbEOPNtqaWptyRTccw0d7THEeBJodXAp1rSyHUcrvvaVcKLsZjWlHuMUc0prhWx9pwH0Eqwq4-A-IhDNZZPTDvoHC62iaWKI3XfUz2heM-CzuYjhVEtT25OyViElbAyDXESw3ISLXjemK4qTY7zjF6VX7qxEOtTQ2LzWfh5_D5k_nB2QN_y8NiCvY0rhHX8ZiEWkWyAy99gYMGz5jFGntlOEYlKC2PDqBFI45fbYCYacL9vwcPKzZoOUaPs73Ls6YvG7y4bT6f0yIstwtFkVF48_q8Gn8ANBH-sYqDvQStfF-opAqxc7mNpMaH7daT9AZxSH7w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am2DwwGXcCgPMRag8pGsdO6klXqpBKdB2UtWJviDLTuxRrU2qNhWDJ34Cv5FfwnHSZhoaE-ItSk4i2_mOz3eck88AL0JdV4zHDS8SEfNYbLSnqdJeQ1mnFy7CyLq_kXv9oHPIPoz4aANer_-FKfQhygU35xn5fO0c3C1I752qhk7n0xpGZz-8BFsswDzFUaLBqXiUEIUGc8jcTCPYWleoTvfKW89Eoy03sCfnUc1rsL1MZurbVzWZnGWxeRhq34DP6w4U1SfHtWWma9H3P7Qd_7eHN-H6ip-SVgGoW7Bhkh240lt9gd-By3nJaLS4DePW5Cidj7MvU4LEl1i1yAhiOjUnszRxNUj4GDvOy6qJi5UxSRPSWmbprx8_B-aoqL9N3EnMh9HfyMHMFHBckGpr0D14RVJLXAXrHThsvx3ud7zVxg1exAUPPW21S9M0N3HMrfBtIJAXamVNM6RW04j5vrANy4wKYszBLRUB59QKilNMbAP_Lmwm2NT7QEKkrxazLm59xBTDZ2KG42vbCExdGVGvQHX9AmW0UjV3m2tMZKHHTCUOoswHsQLPStNZIeVxntHLHAWlhZofu9q3kMtP_XeSh-3RPn0j5LACu2uYyJXbLyTmnryJs2azWYGn5WV0WPcVRiUmXTobTp2umrjYBgNYU4SNCtwrIFg2iLoNAZjAlj4vMXlRf6o5xP5uIXuDXn7w4N9Nn8B2Z9jryu77_seHcBVJJC8q2XdhM5svzSMkapl-nPvjb4JdN2s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amxjwwGXcCgPMRag8pGsdO4klXqqVMmDdULWJviDLTuxRrU2qNhWDJ34Cv5FfwnHSZhoaE-ItSk4i2_mOzznxl88AL0LdVIwnLS8WMfNYYrSnqdJeS1mnFy7C2Lq_kXt7wc4hez_ggxV4vfwXptSHqD64Oc8o5mvn4GaS2K1T1dDxdNzA6OyHl2CNcRE5Ql-nfyoeJUSpwRwyN9MIttQVatKt6tYz0WjNDezJeanmNbgyTyfq21c1Gp3NYosw1L0Bn5cdKNknx415rhvx9z-0Hf-3hzfh-iI_Je0SULdgxaQbsN5brMBvwOWCMhrPbsOwPTrKpsP8y5hg4kusmuUEMZ2Zk0mWOg4SPsYOC1o1cbEyIVlK2vM8-_XjZ98clfzb1J3Eehj9jexPTAnHGam3-7v7r0hmiWOw3oHD7puD7R1vsXGDF3PBQ09b7co0zU2ScCt8GwjMC7WyJgqp1TRmvi9syzKjggRrcEtFwDm1guIUk9jAvwurKTb1PpAQ01eLVRe3PmKK4TOxwvG1bQWmqYxo1qC-fIEyXqiau801RrLUY6YSB1EWg1iDZ5XppJTyOM_oZYGCykJNjx33LeTy095bycPuYJt2hDyoweYSJnLh9jOJtSePcNaMoho8rS6jw7pVGJWabO5sOHW6auJiGwxgkQhbNbhXQrBqEHUbAjCBLX1eYfKi_tQLiP3dQvb6veLgwb-bPoH1j52u3H239-EhXMUckpdE9k1Yzadz8wjztFw_LtzxN9-8Nu8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbg9cBm3wEDmIlQeUlonTuLHaFAmRDtUrVp5iuzEHtXapGpSMXjiJ_Ab-SUcJ2lExTbxFiUnlu2c4_Md-ctngFe-7AmXJX075rFru4mStqRC2n2hjV4492Nt_kYejryDiftxyqY7sDmybnv7nr5drBZdzMCOfwXaHkO03YL2ZPQ5_FKpa5olpDzrELMQtRHJuxvxoL_f3Uo5bTN7Z-fhyZtwfZ0uxfdvYj7fhqplrhncrjiPeSlRaCgmp911Ibvxj38FHC8cxh24VQNNElaecRd2VLoL14b1VvouXC25n3F-D2bh_CRbzYqvC4IIlmiRFwSdM1Nnyyw1ZCJsRs9KfjQxSS8hWUrCdZH9_vlrrE4qIm1qbmJhi4FDDpeq8qucdMLxp8M3JNPEUFHvw2Tw_mj_wK5PYLBjxplvSy1NvSWZShKmuaM9jgBPCq0Cn2pJY9dxuO5rVwkvwWJaU-4xRjWnuFYk2nMeQCvFrj4C4iMO1Vg-Me2gc7jYJpYqjtR9T_WE4j0LOpuPFMW1PLk5JWMeVcLKNMJJjMpJtOBFY7qsNDnOM3pdfunGQqxODYnNZ9Hx6EPE_MF0n77j0ZEFextXiOr4zSMsIlmAy18QWPC8eYyRZ7ZTRKqytbFh1Aik8cttMBMF3O9b8LBys6ZD1Cj7uxx7-rLxu8vG0yk98mKLaDgelheP_6vBJ3ADwR-rGOh70CpWa_UUAVYhn9Ux9gfjxx7T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+fast+monoexponential+fitting+based+on+Auto-Regression+on+Linear+Operations+%28ARLO%29+of+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pei%2C+Mengchao&rft.au=Nguyen%2C+Thanh+D&rft.au=Thimmappa%2C+Nanda+D&rft.au=Salustri%2C+Carlo&rft.date=2015-02-01&rft.eissn=1522-2594&rft.volume=73&rft.issue=2&rft.spage=843&rft_id=info:doi/10.1002%2Fmrm.25137&rft_id=info%3Apmid%2F24664497&rft.externalDocID=24664497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |