Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data

Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms. Methods ARLO, LM,...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 73; no. 2; pp. 843 - 850
Main Authors Pei, Mengchao, Nguyen, Thanh D., Thimmappa, Nanda D., Salustri, Carlo, Dong, Fang, Cooper, Mitch A., Li, Jianqi, Prince, Martin R., Wang, Yi
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25137

Cover

Abstract Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n = 15) and myocardial (n = 1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole‐brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843–850, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg‐Marquardt (LM) and Log‐Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n = 15) and myocardial (n = 1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole‐brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843–850, 2015. © 2014 Wiley Periodicals, Inc.
To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms.PURPOSETo develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms.ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers).METHODSARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers).In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time.RESULTSIn simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time.Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping.CONCLUSIONDue to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping.
To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2 * values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2 * maps approximately in real time. Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2 * mapping.
Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T2* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T2* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T2* mapping. Magn Reson Med 73:843-850, 2015. © 2014 Wiley Periodicals, Inc.
Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and computational speed by comparing it with the conventional Levenberg-Marquardt (LM) and Log-Linear (LL) algorithms. Methods ARLO, LM, and LL performances for T2* mapping were evaluated in simulation and in vivo imaging of liver (n=15) and myocardial (n=1) iron overload patients and the brain (two healthy volunteers). Results In simulations, ARLO consistently delivered accuracy similar to LM and significantly superior to LL. In in vivo mapping of T sub(2)* values, ARLO showed excellent agreement with LM, while LL showed only limited agreements with ARLO and LM. Compared with LM and LL in the liver, ARLO was 125 and 8 times faster using our Matlab implementations, and 156 and 13 times faster using our C++ implementations. In C++ implementations, ARLO reduced the online whole-brain processing time from 9 min 15 s of LM and 35 s of LL to 2.7 s, providing T sub(2)* maps approximately in real time. Conclusion Due to comparable accuracy and significantly higher speed, ARLO can be considered as a valid alternative to the conventional LM algorithm for online T sub(2)* mapping. Magn Reson Med 73:843-850, 2015. copyright 2014 Wiley Periodicals, Inc.
Author Wang, Yi
Salustri, Carlo
Li, Jianqi
Nguyen, Thanh D.
Dong, Fang
Cooper, Mitch A.
Prince, Martin R.
Pei, Mengchao
Thimmappa, Nanda D.
Author_xml – sequence: 1
  givenname: Mengchao
  surname: Pei
  fullname: Pei, Mengchao
  organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
– sequence: 2
  givenname: Thanh D.
  surname: Nguyen
  fullname: Nguyen, Thanh D.
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
– sequence: 3
  givenname: Nanda D.
  surname: Thimmappa
  fullname: Thimmappa, Nanda D.
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
– sequence: 4
  givenname: Carlo
  surname: Salustri
  fullname: Salustri, Carlo
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
– sequence: 5
  givenname: Fang
  surname: Dong
  fullname: Dong, Fang
  organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
– sequence: 6
  givenname: Mitch A.
  surname: Cooper
  fullname: Cooper, Mitch A.
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
– sequence: 7
  givenname: Jianqi
  surname: Li
  fullname: Li, Jianqi
  organization: Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
– sequence: 8
  givenname: Martin R.
  surname: Prince
  fullname: Prince, Martin R.
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
– sequence: 9
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: yiwang@med.cornell.edu
  organization: Radiology, Weill Cornell Medical College, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24664497$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhkOx1NX2on-gBHqjwmg-J5PLZVttYe3CYmnvQmYm2cbOTKZJBt1_3-iqF0KlcCCc8Lzn4z0HYG_wgwHgPUanGCFy1of-lHBMxSsww5yQgnDJ9sAMCYYKiiXbBwcxXiOEpBTsDdgnrCwZk2IGNvNu44NLv3pofYBWxwR7P3hzO-YeQ3K6g9al5IYNrHU0LfQDnE_JF2uzCSZGl_McSzcYHeBqNEGn_Bfh0Xy9XB1Db2Grk34LXlvdRfPu4T0E388_Xy2-FMvVxdfFfFk0XHJR1LZmDPOam7blVlJbSoZ4ra2pBLE1aRil0mLLjC5bUVWWyJJzYiVBFLe2pIfgZFd3Gka9vdFdp8bgeh22CiN155bKbql7tzJ8tIPH4P9MJibVu9iYrtOD8VNUuOSsFJUU-H9QwmiFZZXRj8_Qaz-FIW-dKcYrivLgmfrwQE11b9qnKR9Pk4HjHdAEH2Mw9sVFzp6xjUv3d0hBu-4lxY3rzPbfpdXl-vJRUewULiZz-6TQ4bcqBRVc_fh2obg4_7kgn6S6on8BMPfKww
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_net_2024_04_037
crossref_primary_10_7554_eLife_75523
crossref_primary_10_1016_j_neuroimage_2023_119886
crossref_primary_10_1111_ejn_15558
crossref_primary_10_1002_mrm_26088
crossref_primary_10_3390_tomography8060243
crossref_primary_10_1002_mrm_25358
crossref_primary_10_1002_mrm_26964
crossref_primary_10_1007_s12194_024_00878_8
crossref_primary_10_1002_mrm_26808
crossref_primary_10_1109_TBME_2023_3347441
crossref_primary_10_1002_mrm_26648
crossref_primary_10_1007_s10334_025_01229_3
crossref_primary_10_1016_j_mri_2024_01_018
crossref_primary_10_1016_j_ejmp_2021_07_015
crossref_primary_10_1111_jon_12923
crossref_primary_10_1038_s41531_024_00641_1
crossref_primary_10_1016_j_jmr_2016_01_019
crossref_primary_10_1148_radiol_2018172322
crossref_primary_10_1016_j_nicl_2022_102938
crossref_primary_10_1111_jon_13014
crossref_primary_10_1002_mrm_28893
crossref_primary_10_1002_mrm_29065
crossref_primary_10_1016_j_jmr_2021_107033
crossref_primary_10_1002_mrm_27967
crossref_primary_10_1002_mrm_28814
crossref_primary_10_1002_nbm_4847
crossref_primary_10_1002_mrm_25463
crossref_primary_10_1212_NXI_0000000000200271
crossref_primary_10_1016_j_mri_2020_06_006
crossref_primary_10_1002_hbm_70102
crossref_primary_10_1016_j_neuroimage_2019_116335
crossref_primary_10_1111_jon_12658
crossref_primary_10_1016_j_parkreldis_2024_107135
crossref_primary_10_1016_j_neuroimage_2024_120892
crossref_primary_10_1002_acn3_52053
crossref_primary_10_1016_j_neuroimage_2022_118931
crossref_primary_10_1016_j_neuroimage_2025_121060
crossref_primary_10_1002_nbm_4156
crossref_primary_10_1007_s00234_021_02846_0
crossref_primary_10_1002_mrm_29854
crossref_primary_10_1038_s41531_023_00586_x
crossref_primary_10_3390_tomography8030127
crossref_primary_10_1002_hbm_70136
crossref_primary_10_1002_mrm_25257
crossref_primary_10_1002_hbm_26816
crossref_primary_10_1007_s10334_019_00737_3
crossref_primary_10_1111_jon_12669
crossref_primary_10_1002_jmri_26632
crossref_primary_10_1038_s41598_024_83593_z
crossref_primary_10_1016_j_nicl_2021_102736
crossref_primary_10_1016_j_mri_2022_05_020
crossref_primary_10_1016_j_mri_2024_03_039
crossref_primary_10_1016_j_neuroimage_2020_117358
crossref_primary_10_1002_jmri_29583
crossref_primary_10_1002_mrm_27900
crossref_primary_10_1002_nbm_4788
crossref_primary_10_1002_mrm_29963
crossref_primary_10_3389_fneur_2023_1251230
crossref_primary_10_1016_j_mri_2020_08_012
Cites_doi 10.1002/jmri.21835
10.1002/mrm.24772
10.1002/mrm.1910340618
10.1002/jmri.23545
10.1002/mrm.21904
10.1007/s00247-011-2082-7
10.1515/9780691218632
10.1002/nbm.1539
10.1212/WNL.0b013e318236ef0e
10.1002/mrm.23185
10.1007/s00256-011-1171-x
10.1182/blood-2008-12-191643
10.1161/CIRCULATIONAHA.110.007641
10.1002/mrm.1910380524
10.1002/mrm.21737
10.1002/mrm.1910360216
10.1148/radiol.2522081399
10.1007/s00330-012-2448-8
10.1002/mrm.21744
10.1148/radiol.10100495
10.1007/s00330-012-2506-2
10.1182/blood-2004-10-3982
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ADTOC
UNPAY
DOI 10.1002/mrm.25137
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 850
ExternalDocumentID oai:pubmedcentral.nih.gov:4175304
3559195591
24664497
10_1002_mrm_25137
MRM25137
ark_67375_WNG_57FXC2D9_T
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  funderid: 81271533
– fundername: NIBIB NIH HHS
  grantid: T35 EB006732
– fundername: NIBIB NIH HHS
  grantid: R13 EB017627
– fundername: NINDS NIH HHS
  grantid: R01 NS072370
– fundername: NIBIB NIH HHS
  grantid: R01 EB013443
– fundername: NINDS NIH HHS
  grantid: R13 NS079016
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ADTOC
UNPAY
ID FETCH-LOGICAL-c5957-bfb4415b5edd5f93f69405bafe872fb2c4339f1f4ea6d788f296552f92031df63
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 04:15:36 EDT 2025
Tue Oct 07 09:54:36 EDT 2025
Wed Oct 01 14:48:59 EDT 2025
Tue Oct 07 06:02:27 EDT 2025
Wed Feb 19 02:34:05 EST 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Oct 01 02:05:12 EDT 2025
Wed Jan 22 16:48:38 EST 2025
Sun Sep 21 06:19:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Levenberg-Marquardt
Log-Linear
iron overload
autoregression
T2 mapping
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5957-bfb4415b5edd5f93f69405bafe872fb2c4339f1f4ea6d788f296552f92031df63
Notes ark:/67375/WNG-57FXC2D9-T
ArticleID:MRM25137
The National Natural Science Foundation of China - No. 81271533
istex:82FB255F0BC2CBF93AD2EDE34E17560133132FD9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/mrm.25137
PMID 24664497
PQID 1645830788
PQPubID 1016391
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mrm_25137
proquest_miscellaneous_1654678971
proquest_miscellaneous_1652438198
proquest_journals_1645830788
pubmed_primary_24664497
crossref_primary_10_1002_mrm_25137
crossref_citationtrail_10_1002_mrm_25137
wiley_primary_10_1002_mrm_25137_MRM25137
istex_primary_ark_67375_WNG_57FXC2D9_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465.
Bonny JM, Zanca M, Boire JY, Veyre A. T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 1996;36:287-293.
Hardy PA, Andersen AH. Calculating T2 in images from a phased array receiver. Magn Reson Med 2009;61:962-969.
Khalil M, Langkammer C, Ropele S, et al. Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 2011;77:1691-1697.
Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T. Magn Reson Med 2012;67:1684-1693.
Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172.
Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 2012;35:1125-1132.
Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol 2012;22:2013-2019.
Hamilton JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994. xiv, 799 p.
Ropele S, Wattjes MP, Langkammer C, et al. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2014;71:1103-1107.
He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med 2008;60:1082-1089.
Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011;123:1519-1528.
Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009;113:4853-4855.
Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover; 1970. xiv, 1046 p.
Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009;30:313-320.
Yin X, Shah S, Katsaggelos AK, Larson AC. Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination. NMR Biomed 2010;23:1127-1136.
Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012;41:287-292.
Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 2012;22:2478-2486.
Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997;38:852-857.
Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol 2011;41:1259-1265.
Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462.
Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914.
Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134.
2010; 23
2009; 30
2009; 61
2010; 257
1995; 34
2005; 106
2011; 41
2011; 77
2009; 113
1997; 38
1994
1970
2009; 252
1996; 36
2012; 35
2012; 67
2014; 71
2008; 60
2012; 22
2011; 123
2012; 41
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
Abramowitz M (e_1_2_5_15_1) 1970
e_1_2_5_20_1
Hamilton JD (e_1_2_5_18_1) 1994
31301108 - Magn Reson Med. 2019 Oct;82(4):1576
References_xml – reference: Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009;113:4853-4855.
– reference: Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012;41:287-292.
– reference: Khalil M, Langkammer C, Ropele S, et al. Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 2011;77:1691-1697.
– reference: Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL. Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 2009;30:313-320.
– reference: Ropele S, Wattjes MP, Langkammer C, et al. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2014;71:1103-1107.
– reference: Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997;38:852-857.
– reference: Hardy PA, Andersen AH. Calculating T2 in images from a phased array receiver. Magn Reson Med 2009;61:962-969.
– reference: Yin X, Shah S, Katsaggelos AK, Larson AC. Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination. NMR Biomed 2010;23:1127-1136.
– reference: Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T. Magn Reson Med 2012;67:1684-1693.
– reference: Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011;123:1519-1528.
– reference: Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134.
– reference: Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol 2012;22:2013-2019.
– reference: He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med 2008;60:1082-1089.
– reference: Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM. Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 2012;35:1125-1132.
– reference: Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol 2011;41:1259-1265.
– reference: Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914.
– reference: Hamilton JD. Time series analysis. Princeton, NJ: Princeton University Press; 1994. xiv, 799 p.
– reference: Bonny JM, Zanca M, Boire JY, Veyre A. T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 1996;36:287-293.
– reference: Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462.
– reference: Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 2012;22:2478-2486.
– reference: Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover; 1970. xiv, 1046 p.
– reference: Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172.
– reference: Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465.
– volume: 67
  start-page: 1684
  year: 2012
  end-page: 1693
  article-title: Three‐dimensional water/fat separation and T2* estimation based on whole‐image optimization‐‐application in breathhold liver imaging at 1.5 T
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1082
  year: 2008
  end-page: 1089
  article-title: Myocardial T2* measurements in iron‐overloaded thalassemia: An in vivo study to investigate optimal methods of quantification
  publication-title: Magn Reson Med
– volume: 123
  start-page: 1519
  year: 2011
  end-page: 1528
  article-title: On T2* magnetic resonance and cardiac iron
  publication-title: Circulation
– volume: 36
  start-page: 287
  year: 1996
  end-page: 293
  article-title: T2 maximum likelihood estimation from multiple spin‐echo magnitude images
  publication-title: Magn Reson Med
– volume: 113
  start-page: 4853
  year: 2009
  end-page: 4855
  article-title: R2* magnetic resonance imaging of the liver in patients with iron overload
  publication-title: Blood
– volume: 257
  start-page: 455
  year: 2010
  end-page: 462
  article-title: Quantitative MR imaging of brain iron: a postmortem validation study
  publication-title: Radiology
– volume: 30
  start-page: 313
  year: 2009
  end-page: 320
  article-title: Accurate liver T2* measurement of iron overload: a simulations investigation and in vivo study
  publication-title: J Magn Reson Imaging
– volume: 41
  start-page: 1259
  year: 2011
  end-page: 1265
  article-title: Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron‐loaded liver
  publication-title: Pediatr Radiol
– volume: 38
  start-page: 852
  year: 1997
  end-page: 857
  article-title: Signal‐to‐noise measurements in magnitude images from NMR phased arrays
  publication-title: Magn Reson Med
– volume: 61
  start-page: 962
  year: 2009
  end-page: 969
  article-title: Calculating T2 in images from a phased array receiver
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1122
  year: 2008
  end-page: 1134
  article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling
  publication-title: Magn Reson Med
– volume: 22
  start-page: 2013
  year: 2012
  end-page: 2019
  article-title: Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration
  publication-title: Eur Radiol
– volume: 71
  start-page: 1103
  year: 2014
  end-page: 1107
  article-title: Multicenter R2* mapping in the healthy brain
  publication-title: Magn Reson Med
– start-page: 799
  year: 1994
– volume: 22
  start-page: 2478
  year: 2012
  end-page: 2486
  article-title: Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload
  publication-title: Eur Radiol
– volume: 35
  start-page: 1125
  year: 2012
  end-page: 1132
  article-title: Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling
  publication-title: J Magn Reson Imaging
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 41
  start-page: 287
  year: 2012
  end-page: 292
  article-title: T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study
  publication-title: Skeletal Radiol
– volume: 23
  start-page: 1127
  year: 2010
  end-page: 1136
  article-title: Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination
  publication-title: NMR Biomed
– volume: 252
  start-page: 165
  year: 2009
  end-page: 172
  article-title: Age‐related iron deposition in the basal ganglia: quantitative analysis in healthy subjects
  publication-title: Radiology
– start-page: 1046
  year: 1970
– volume: 106
  start-page: 1460
  year: 2005
  end-page: 1465
  article-title: MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion‐dependent thalassemia and sickle cell disease patients
  publication-title: Blood
– volume: 77
  start-page: 1691
  year: 2011
  end-page: 1697
  article-title: Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study
  publication-title: Neurology
– ident: e_1_2_5_20_1
  doi: 10.1002/jmri.21835
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.24772
– ident: e_1_2_5_16_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_5_10_1
  doi: 10.1002/jmri.23545
– ident: e_1_2_5_21_1
  doi: 10.1002/mrm.21904
– ident: e_1_2_5_14_1
  doi: 10.1007/s00247-011-2082-7
– start-page: 799
  volume-title: Time series analysis
  year: 1994
  ident: e_1_2_5_18_1
  doi: 10.1515/9780691218632
– ident: e_1_2_5_22_1
  doi: 10.1002/nbm.1539
– ident: e_1_2_5_4_1
  doi: 10.1212/WNL.0b013e318236ef0e
– ident: e_1_2_5_24_1
  doi: 10.1002/mrm.23185
– ident: e_1_2_5_13_1
  doi: 10.1007/s00256-011-1171-x
– ident: e_1_2_5_8_1
  doi: 10.1182/blood-2008-12-191643
– ident: e_1_2_5_6_1
  doi: 10.1161/CIRCULATIONAHA.110.007641
– ident: e_1_2_5_17_1
  doi: 10.1002/mrm.1910380524
– ident: e_1_2_5_23_1
  doi: 10.1002/mrm.21737
– ident: e_1_2_5_19_1
  doi: 10.1002/mrm.1910360216
– ident: e_1_2_5_2_1
  doi: 10.1148/radiol.2522081399
– ident: e_1_2_5_12_1
  doi: 10.1007/s00330-012-2448-8
– ident: e_1_2_5_5_1
  doi: 10.1002/mrm.21744
– ident: e_1_2_5_11_1
  doi: 10.1148/radiol.10100495
– start-page: 1046
  volume-title: Handbook of mathematical functions: with formulas, graphs, and mathematical tables
  year: 1970
  ident: e_1_2_5_15_1
– ident: e_1_2_5_9_1
  doi: 10.1007/s00330-012-2506-2
– ident: e_1_2_5_7_1
  doi: 10.1182/blood-2004-10-3982
– reference: 31301108 - Magn Reson Med. 2019 Oct;82(4):1576
SSID ssj0009974
Score 2.4409056
Snippet Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto‐Regression on Linear Operations (ARLO) of data, and to validate its...
To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its accuracy and...
Purpose To develop a fast and accurate monoexponential fitting algorithm based on Auto-Regression on Linear Operations (ARLO) of data, and to validate its...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 843
SubjectTerms Adult
Algorithms
autoregression
Brain - pathology
Computer Simulation
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
iron overload
Levenberg-Marquardt
Linear Models
Log-Linear
Male
Numerical Analysis, Computer-Assisted
Regression Analysis
Reproducibility of Results
Sensitivity and Specificity
T2 mapping
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIW4PXAaMwEDmIlQe0jWOncTiqRqUCdFNqjbRh0mRndhbtTapmkQMnvgJ_EZ-CcdxkmloTIi3KDmxbOc7t_j4M0KvQzkQlKWem_CEujRV0pVESNcT2vCF8zDRZjfyeC_YPaSfpmy6ht61e2EsP0T3w81oRm2vjYILWWyfk4YuVos-OGff7CT3_KBOpybn1FGcWwbmkBo7w2nLKjQg292bF3zRNTOtZ5cFmrfRzSpbim9fxXx-MYatndDoLjpqu29rT077VSn7yfc_mB3_c3z30J0mOMVDi6b7aE1lG-jGuFl-30DX63rRpHiAZsP5cb6alScLDFEv1qIoMQA6V2fLPDMFSNCMntU11dg4yhTnGR5WZf7rx8-JOrbFt5m5CckwKBveXyqLxQL3hpPP-29xrrEpX32IDkcfDnZ23ebUBjdhnIWu1NLkaJKpNGWa-zrgEBRKoVUUEi1JQn2fa09TJYIUEnBNeMAY0ZyAfUl14D9C6xl09THCIcSuGlIupn0AFIU2Ib3xpfYCNRCKDxzUa79fnDSU5uZkjXlsyZhJDJMY15PooJed6NLyeFwm9KYGQSchVqem8C1k8Ze9jzELR9Md8p7HBw7aalESNzpfxJB4sghMZhQ56EX3GLTVLMGITOWVkWHEkKrxq2XAe0U89By0aRHYdYiY0wAoh56-6iB51Xh6NcL-LhGPJ-P64sm_iz5FtyBqZLZ0fQutl6tKPYPIrJTPaxX8DVddM0o
  priority: 102
  providerName: Wiley-Blackwell
Title Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data
URI https://api.istex.fr/ark:/67375/WNG-57FXC2D9-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25137
https://www.ncbi.nlm.nih.gov/pubmed/24664497
https://www.proquest.com/docview/1645830788
https://www.proquest.com/docview/1652438198
https://www.proquest.com/docview/1654678971
http://doi.org/10.1002/mrm.25137
UnpaywallVersion submittedVersion
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbg9cBm3wJjMRag8pLROnNSP0aBMiHaoWkV5iuzEHtXapGoSMXjiJ_Ab-SUcJ2lExTbxFiUnlu2c4_Md-ctngJe-7AmXxX074pFru7GStqRC2n2hjV449yNt_kYejb3DqfthxmY7sDmybnv7nr5ZrpddzMCOfwXaHkO03YL2dPwp-FKpa5olpDzrELMQtRHJuxvxoL_f3Uo5bTN7Z-fhyZtwvUhW4vs3sVhsQ9Uy1wxvV5zHrJQoNBST026Ry270418BxwuHcQdu1UCTBJVn3IUdlezCtVG9lb4LV0vuZ5Tdg3mwOEnX8_zrkiCCJVpkOUHnTNXZKk0MmQib0fOSH01M0otJmpCgyNPfP39N1ElFpE3MTSxsMXDI0UpVfpWRTjD5ePSapJoYKup9mA7fHR8c2vUJDHbEOPNtqaWptyRTccw0d7THEeBJodXAp1rSyHUcrvvaVcKLsZjWlHuMUc0prhWx9pwH0Eqwq4-A-IhDNZZPTDvoHC62iaWKI3XfUz2heM-CzuYjhVEtT25OyViElbAyDXESw3ISLXjemK4qTY7zjF6VX7qxEOtTQ2LzWfh5_D5k_nB2QN_y8NiCvY0rhHX8ZiEWkWyAy99gYMGz5jFGntlOEYlKC2PDqBFI45fbYCYacL9vwcPKzZoOUaPs73Ls6YvG7y4bT6f0yIstwtFkVF48_q8Gn8ANBH-sYqDvQStfF-opAqxc7mNpMaH7daT9AZxSH7w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am2DwwGXcCgPMRag8pGsdO6klXqpBKdB2UtWJviDLTuxRrU2qNhWDJ34Cv5FfwnHSZhoaE-ItSk4i2_mOz3eck88AL0JdV4zHDS8SEfNYbLSnqdJeQ1mnFy7CyLq_kXv9oHPIPoz4aANer_-FKfQhygU35xn5fO0c3C1I752qhk7n0xpGZz-8BFsswDzFUaLBqXiUEIUGc8jcTCPYWleoTvfKW89Eoy03sCfnUc1rsL1MZurbVzWZnGWxeRhq34DP6w4U1SfHtWWma9H3P7Qd_7eHN-H6ip-SVgGoW7Bhkh240lt9gd-By3nJaLS4DePW5Cidj7MvU4LEl1i1yAhiOjUnszRxNUj4GDvOy6qJi5UxSRPSWmbprx8_B-aoqL9N3EnMh9HfyMHMFHBckGpr0D14RVJLXAXrHThsvx3ud7zVxg1exAUPPW21S9M0N3HMrfBtIJAXamVNM6RW04j5vrANy4wKYszBLRUB59QKilNMbAP_Lmwm2NT7QEKkrxazLm59xBTDZ2KG42vbCExdGVGvQHX9AmW0UjV3m2tMZKHHTCUOoswHsQLPStNZIeVxntHLHAWlhZofu9q3kMtP_XeSh-3RPn0j5LACu2uYyJXbLyTmnryJs2azWYGn5WV0WPcVRiUmXTobTp2umrjYBgNYU4SNCtwrIFg2iLoNAZjAlj4vMXlRf6o5xP5uIXuDXn7w4N9Nn8B2Z9jryu77_seHcBVJJC8q2XdhM5svzSMkapl-nPvjb4JdN2s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amxjwwGXcCgPMRag8pGsdO4klXqqVMmDdULWJviDLTuxRrU2qNhWDJ34Cv5FfwnHSZhoaE-ItSk4i2_mOzznxl88AL0LdVIwnLS8WMfNYYrSnqdJeS1mnFy7C2Lq_kXt7wc4hez_ggxV4vfwXptSHqD64Oc8o5mvn4GaS2K1T1dDxdNzA6OyHl2CNcRE5Ql-nfyoeJUSpwRwyN9MIttQVatKt6tYz0WjNDezJeanmNbgyTyfq21c1Gp3NYosw1L0Bn5cdKNknx415rhvx9z-0Hf-3hzfh-iI_Je0SULdgxaQbsN5brMBvwOWCMhrPbsOwPTrKpsP8y5hg4kusmuUEMZ2Zk0mWOg4SPsYOC1o1cbEyIVlK2vM8-_XjZ98clfzb1J3Eehj9jexPTAnHGam3-7v7r0hmiWOw3oHD7puD7R1vsXGDF3PBQ09b7co0zU2ScCt8GwjMC7WyJgqp1TRmvi9syzKjggRrcEtFwDm1guIUk9jAvwurKTb1PpAQ01eLVRe3PmKK4TOxwvG1bQWmqYxo1qC-fIEyXqiau801RrLUY6YSB1EWg1iDZ5XppJTyOM_oZYGCykJNjx33LeTy095bycPuYJt2hDyoweYSJnLh9jOJtSePcNaMoho8rS6jw7pVGJWabO5sOHW6auJiGwxgkQhbNbhXQrBqEHUbAjCBLX1eYfKi_tQLiP3dQvb6veLgwb-bPoH1j52u3H239-EhXMUckpdE9k1Yzadz8wjztFw_LtzxN9-8Nu8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4arbg9cBm3wEDmIlQeUlonTuLHaFAmRDtUrVp5iuzEHtXapGpSMXjiJ_Ab-SUcJ2lExTbxFiUnlu2c4_Md-ctngFe-7AmXJX075rFru4mStqRC2n2hjV4492Nt_kYejryDiftxyqY7sDmybnv7nr5drBZdzMCOfwXaHkO03YL2ZPQ5_FKpa5olpDzrELMQtRHJuxvxoL_f3Uo5bTN7Z-fhyZtwfZ0uxfdvYj7fhqplrhncrjiPeSlRaCgmp911Ibvxj38FHC8cxh24VQNNElaecRd2VLoL14b1VvouXC25n3F-D2bh_CRbzYqvC4IIlmiRFwSdM1Nnyyw1ZCJsRs9KfjQxSS8hWUrCdZH9_vlrrE4qIm1qbmJhi4FDDpeq8qucdMLxp8M3JNPEUFHvw2Tw_mj_wK5PYLBjxplvSy1NvSWZShKmuaM9jgBPCq0Cn2pJY9dxuO5rVwkvwWJaU-4xRjWnuFYk2nMeQCvFrj4C4iMO1Vg-Me2gc7jYJpYqjtR9T_WE4j0LOpuPFMW1PLk5JWMeVcLKNMJJjMpJtOBFY7qsNDnOM3pdfunGQqxODYnNZ9Hx6EPE_MF0n77j0ZEFextXiOr4zSMsIlmAy18QWPC8eYyRZ7ZTRKqytbFh1Aik8cttMBMF3O9b8LBys6ZD1Cj7uxx7-rLxu8vG0yk98mKLaDgelheP_6vBJ3ADwR-rGOh70CpWa_UUAVYhn9Ux9gfjxx7T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+fast+monoexponential+fitting+based+on+Auto-Regression+on+Linear+Operations+%28ARLO%29+of+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pei%2C+Mengchao&rft.au=Nguyen%2C+Thanh+D&rft.au=Thimmappa%2C+Nanda+D&rft.au=Salustri%2C+Carlo&rft.date=2015-02-01&rft.eissn=1522-2594&rft.volume=73&rft.issue=2&rft.spage=843&rft_id=info:doi/10.1002%2Fmrm.25137&rft_id=info%3Apmid%2F24664497&rft.externalDocID=24664497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon