Exploring multifractal-based features for mild Alzheimer's disease classification

Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 76; no. 1; pp. 259 - 269
Main Authors Ni, Huangjing, Zhou, Luping, Ning, Xinbao, Wang, Lei
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25853

Cover

Abstract Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs‐fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network‐based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional‐feature‐based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs‐fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259–269, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification. Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, [Formulaomitted], which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by [Formulaomitted] only) to up to 76%, when nonsparse MKL is used to combine [Formulaomitted] with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, [Formulaomitted], [Formulaomitted] and [Formulaomitted], could also improve traditional-feature-based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016.
Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, [Delta]f, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by [Delta]f only) to up to 76%, when nonsparse MKL is used to combine [Delta]f with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, [alpha] (0 ), [Delta][alpha] and P c, could also improve traditional-feature-based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs‐fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network‐based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional‐feature‐based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs‐fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259–269, 2016. © 2015 Wiley Periodicals, Inc.
Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.PURPOSEMultifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.METHODSRs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification.RESULTSWe identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification.Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONOur work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.
Author Wang, Lei
Ni, Huangjing
Ning, Xinbao
Zhou, Luping
Author_xml – sequence: 1
  givenname: Huangjing
  surname: Ni
  fullname: Ni, Huangjing
  organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Luping
  surname: Zhou
  fullname: Zhou, Luping
  organization: School of Computer Science and Software Engineering, University of Wollongong, NSW, Wollongong, Australia
– sequence: 3
  givenname: Xinbao
  surname: Ning
  fullname: Ning, Xinbao
  organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China
– sequence: 4
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: leiw@uow.edu.au
  organization: School of Computer Science and Software Engineering, University of Wollongong, NSW, Wollongong, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26193379$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKcDC_4AisSiZZHWb8fLqiqlUqelPARiYznONbg4yWAn6uPXk3ZmWFQgVnfzfUe65-ygra7vAKGXBO8TjOlBm9p9KirBnqAZEZSWVGi-hWZYcVwyovk22sn5CmOsteLP0DaVRDOm9AxdHt8sY59C971oxzgEn6wbbCxrm6EpPNhhTJAL36eiDbEpDuPdDwgtpN1cNCHDhBUu2pyDD84Ooe-eo6fexgwv1neOPr89_nT0rjy7ODk9OjwrndCClVDLSjOilFeWONpgKgVXnhOvKlBAas6sE1jWjWx0YxtNQDlGVWU5eMUom6O9Ve4y9b9GyINpQ3YQo-2gH7MhFa6kJEzK_6NKK8HFFD6hrx-hV_2YuumRe0pyyslU3Ry9WlNj3UJjlim0Nt2aTa8TcLACXOpzTuCNC8NDPUOyIRqCzf1yZlrOPCw3GW8eGZvQv7Hr9OsQ4fbfoFl8WGyMcmWEPMDNH8Omn0YqpoT5cn5iFh-_4m_48r2p2G8lkrXp
CODEN MRMEEN
CitedBy_id crossref_primary_10_3389_fnins_2021_667614
crossref_primary_10_1109_TCYB_2020_3016953
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1016_j_eswa_2021_115549
crossref_primary_10_1166_jon_2023_2003
crossref_primary_10_1007_s11517_020_02256_z
crossref_primary_10_1002_brb3_2047
crossref_primary_10_3389_fnagi_2022_793298
crossref_primary_10_3390_math11020376
crossref_primary_10_1016_j_nicl_2018_03_013
crossref_primary_10_1103_PhysRevResearch_6_033276
crossref_primary_10_1016_j_jalz_2016_11_007
crossref_primary_10_3390_e23121591
crossref_primary_10_1109_ACCESS_2022_3221458
crossref_primary_10_1007_s10462_019_09766_9
crossref_primary_10_1007_s11571_022_09787_1
crossref_primary_10_1038_s41598_022_26958_6
Cites_doi 10.1002/hbm.22335
10.1006/nimg.2001.0978
10.1073/pnas.1301119110
10.1109/ICASSP.2005.1415970
10.1073/pnas.1007841107
10.1073/pnas.0308627101
10.1109/CBMI.2009.44
10.3233/JAD-2011-101782
10.1038/scientificamerican0290-42
10.1109/JBHI.2013.2285378
10.1016/j.neuroimage.2010.10.081
10.3949/ccjm.76a.072178
10.1038/nrn2201
10.1016/j.neuroimage.2011.10.003
10.1002/hbm.460020402
10.1103/PhysRevE.71.062902
10.1523/JNEUROSCI.3307-05.2005
10.1016/j.geoderma.2006.03.023
10.1016/j.media.2009.05.003
10.1002/hbm.20593
10.1103/PhysRevE.77.036104
10.1016/j.neuroimage.2004.03.007
10.1103/PhysRevLett.62.1327
10.1002/hbm.20324
10.1016/j.neuroimage.2004.10.044
10.1002/mrm.1910340409
10.1016/j.neuroimage.2010.11.059
10.1016/B978-0-08-052087-2.50018-9
10.3389/fphys.2012.00186
10.1103/PhysRevE.47.875
10.3233/JAD-2011-0014
10.1109/MSP.2007.4286563
10.1006/nimg.1997.0263
10.1109/NER.2013.6696231
10.1103/PhysRevA.33.1141
10.1016/j.artmed.2011.05.005
10.1148/radiol.10100734
10.1016/j.jneumeth.2008.06.037
10.1103/PhysRevB.68.024206
10.1002/hbm.20326
10.1016/j.pscychresns.2011.06.014
10.1016/j.neuroimage.2006.11.042
10.1148/radiol.2251011301
10.1126/science.1194144
10.1109/JSTSP.2008.2006663
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative (ADNI)
Alzheimer's Disease Neuroimaging Initiative (ADNI)
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative (ADNI)
– name: Alzheimer's Disease Neuroimaging Initiative (ADNI)
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25853
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
Biochemistry Abstracts 1

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 269
ExternalDocumentID 4088876201
26193379
10_1002_mrm_25853
MRM25853
ark_67375_WNG_MSX0Z0QP_8
Genre article
Journal Article
GrantInformation_xml – fundername: Vice Chancellor Research Grant in University of Wollongong
– fundername: State Scholarship Fund of China Scholarship Council (CSC)
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c5953-eb6893177f7a1c2d026547f41f78e7e1b43ac506bd6d9dad91e7c3278a4ef7323
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 09:50:29 EDT 2025
Thu Jul 10 23:32:54 EDT 2025
Fri Jul 25 12:08:25 EDT 2025
Wed Feb 19 02:41:40 EST 2025
Thu Apr 24 22:52:27 EDT 2025
Sun Sep 21 06:15:57 EDT 2025
Wed Jan 22 16:25:59 EST 2025
Sun Sep 21 06:16:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multiple kernel learning
multifractal
classification
Alzheimer's disease
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5953-eb6893177f7a1c2d026547f41f78e7e1b43ac506bd6d9dad91e7c3278a4ef7323
Notes istex:93E784F539629C58404D96150FFC4E3E246DB8D9
State Scholarship Fund of China Scholarship Council (CSC)
Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
Vice Chancellor Research Grant in University of Wollongong
ark:/67375/WNG-MSX0Z0QP-8
ArticleID:MRM25853
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25853
PMID 26193379
PQID 1796424119
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1808661366
proquest_miscellaneous_1797545278
proquest_journals_1796424119
pubmed_primary_26193379
crossref_citationtrail_10_1002_mrm_25853
crossref_primary_10_1002_mrm_25853
wiley_primary_10_1002_mrm_25853_MRM25853
istex_primary_ark_67375_WNG_MSX0Z0QP_8
PublicationCentury 2000
PublicationDate July 2016
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Haller S, Lovblad KO, Giannakopoulos P. Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 2011;26:389-394.
Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13.
Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. SimpleMKL. J Mach Learn Res 2008;9:2491-2521.
Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 2007;28:967-978.
Friston KJ, Holmes AP, Worsley KJ, Poline J, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1994;2:189-210.
Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal 2009;13:634-649.
Chhabra A, Jensen RV. Direct determination of the f (α) singularity spectrum. Phys Rev Lett 1989;62:1327-1330.
Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010;329:1358-1361.
Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am 1990;262:42-49.
Ciuciu P, Abry P, Rabrait C, Wendt H. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity. IEEE J Sel Top Signal Process 2008;2:929-943.
Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011;55:574-589.
Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 2008;174:292-300.
Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012;59:2187-2195.
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642.
Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986;33:1141.
Perrier E, Tarquis AM, Dathe A. A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 2006;134:284-294.
Schafe GE, Doyère V, LeDoux JE. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. J Neurosci 2005;25:10010-10014.
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin soft Matter Phys 2008;77:036104.
Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based multifractal analysis of fMRI time series. Neuroimage 2004;22:1195-1202.
Hinrichs C, Singh V, Xu G, Johnson S. MKL for robust multi-modality AD classification. Med Image Comput Assist Interv 2009;12(Pt 2):786-794.
Wang J, Ning X, Ma Q, Bian C, Xu Y, Chen Y. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E 2005;71:62902.
Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011;24:547-557.
Li S, Li Z, Wu G, Zhang M, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253-259.
Muzy JC, Bacry E, Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 1993;47:875.
Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011;53:35-45.
Wee CY, Yap PT, Zhang D, Wang L, Shen D. Constrained sparse functional connectivity networks for MCI classification. Med Image Comput Assist Interv 2012;15(Pt 2):212-219.
Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 2012;3:186.
Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin KP. Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration. Proc Natl Acad Sci U S A 2013;110:9944-9949.
He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage 2007;35:488-500.
Wink A, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 2008;29:791-801.
LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Hum Brain Mapp 2007;28:1033-1044.
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541.
Fayao L, Luping Z, Chunhua S, Jianping Y. Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J Biomed Health Inform 2014;18:984-990.
Binnewijzend MA, Adriaanse SM, Flier WM, Teunissen CE, Munck JC, Stam CJ, Scheltens P, Berckel BN, Barkhof F, Wink AM. Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 2014;35:2383-2393.
Kloft M, Brefeld U, Sonnenburg S, Zien A. Lp-norm multiple kernel learning. J Mach Learn Res 2011;12:953-997.
Maxim VC, CSendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005;25:141-158.
Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Process Mag 2007;24:38-48.
Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li S. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259:213.
Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res 2011;194:7-13.
Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Assist Interv 2006;9(Pt 2):340-347.
Cuevas E. f (α) multifractal spectrum at strong and weak disorder. Phys Rev B 2003;68:24206.
Salloway S, Correia S. Alzheimer disease: time to improve its diagnosis and treatment. Clev Clin J Med 2009;76:49-58.
Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011;55:287-295.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289.
Van de Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 2010;107:18179-18184.
Zarahn E, Aguirre GK, D'Esposito M. Empirical analyses of BOLD fMRI statistics. Neuroimage 1997;5:179-197.
2004; 22
2002; 15
2010; 107
1986; 33
1995; 34
2011; 53
2008; 9
2011; 55
2008; 77
2011; 12
2012; 59
2012; 15
1997; 5
2008; 2
2011; 194
2007; 35
1990; 262
2006; 134
2005; 25
2007; 28
2009; 12
2009; 13
2004; 72
2008; 29
2007; 8
2002; 225
2011; 24
2011; 26
2014; 18
2005; 71
2013; 110
2010; 4
2007; 24
2011; 259
2004; 101
1989; 62
1993; 47
2010; 329
2006; 9
2009
2008
2005
1994
2012; 3
2009; 76
2003; 68
2014; 35
2013
1994; 2
2008; 174
e_1_2_7_5_1
e_1_2_7_3_1
Rakotomamonjy A (e_1_2_7_37_1) 2008; 9
e_1_2_7_9_1
Wee CY (e_1_2_7_42_1) 2012; 15
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Haller S (e_1_2_7_20_1) 2011; 26
e_1_2_7_50_1
e_1_2_7_52_1
e_1_2_7_23_1
Hinrichs C (e_1_2_7_25_1) 2009; 12
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
Jaffard S. (e_1_2_7_31_1) 2004
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Chao‐Gan Y (e_1_2_7_26_1) 2010; 4
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Wang K (e_1_2_7_22_1) 2006; 9
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
Kloft M (e_1_2_7_39_1) 2011; 12
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011;53:35-45.
– reference: Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986;33:1141.
– reference: Salloway S, Correia S. Alzheimer disease: time to improve its diagnosis and treatment. Clev Clin J Med 2009;76:49-58.
– reference: Van de Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 2010;107:18179-18184.
– reference: Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011;55:287-295.
– reference: Cuevas E. f (α) multifractal spectrum at strong and weak disorder. Phys Rev B 2003;68:24206.
– reference: Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. SimpleMKL. J Mach Learn Res 2008;9:2491-2521.
– reference: Ciuciu P, Abry P, Rabrait C, Wendt H. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity. IEEE J Sel Top Signal Process 2008;2:929-943.
– reference: Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011;24:547-557.
– reference: Kloft M, Brefeld U, Sonnenburg S, Zien A. Lp-norm multiple kernel learning. J Mach Learn Res 2011;12:953-997.
– reference: Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541.
– reference: Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010;329:1358-1361.
– reference: Hinrichs C, Singh V, Xu G, Johnson S. MKL for robust multi-modality AD classification. Med Image Comput Assist Interv 2009;12(Pt 2):786-794.
– reference: Wee CY, Yap PT, Zhang D, Wang L, Shen D. Constrained sparse functional connectivity networks for MCI classification. Med Image Comput Assist Interv 2012;15(Pt 2):212-219.
– reference: Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Process Mag 2007;24:38-48.
– reference: Schafe GE, Doyère V, LeDoux JE. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. J Neurosci 2005;25:10010-10014.
– reference: Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642.
– reference: He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage 2007;35:488-500.
– reference: Friston KJ, Holmes AP, Worsley KJ, Poline J, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1994;2:189-210.
– reference: Wink A, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 2008;29:791-801.
– reference: Fayao L, Luping Z, Chunhua S, Jianping Y. Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J Biomed Health Inform 2014;18:984-990.
– reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289.
– reference: Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res 2011;194:7-13.
– reference: Zarahn E, Aguirre GK, D'Esposito M. Empirical analyses of BOLD fMRI statistics. Neuroimage 1997;5:179-197.
– reference: Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011;55:574-589.
– reference: LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Hum Brain Mapp 2007;28:1033-1044.
– reference: Wang J, Ning X, Ma Q, Bian C, Xu Y, Chen Y. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E 2005;71:62902.
– reference: Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am 1990;262:42-49.
– reference: Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13.
– reference: Haller S, Lovblad KO, Giannakopoulos P. Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 2011;26:389-394.
– reference: Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin soft Matter Phys 2008;77:036104.
– reference: Muzy JC, Bacry E, Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 1993;47:875.
– reference: Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 2012;3:186.
– reference: Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 2008;174:292-300.
– reference: Binnewijzend MA, Adriaanse SM, Flier WM, Teunissen CE, Munck JC, Stam CJ, Scheltens P, Berckel BN, Barkhof F, Wink AM. Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 2014;35:2383-2393.
– reference: Maxim VC, CSendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005;25:141-158.
– reference: Li S, Li Z, Wu G, Zhang M, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253-259.
– reference: Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 2007;28:967-978.
– reference: Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Assist Interv 2006;9(Pt 2):340-347.
– reference: Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin KP. Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration. Proc Natl Acad Sci U S A 2013;110:9944-9949.
– reference: Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li S. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259:213.
– reference: Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based multifractal analysis of fMRI time series. Neuroimage 2004;22:1195-1202.
– reference: Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal 2009;13:634-649.
– reference: Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012;59:2187-2195.
– reference: Chhabra A, Jensen RV. Direct determination of the f (α) singularity spectrum. Phys Rev Lett 1989;62:1327-1330.
– reference: Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
– reference: Perrier E, Tarquis AM, Dathe A. A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 2006;134:284-294.
– volume: 12
  start-page: 953
  year: 2011
  end-page: 997
  article-title: Lp‐norm multiple kernel learning
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 967
  year: 2007
  end-page: 978
  article-title: Altered functional connectivity in early Alzheimer's disease: a resting‐state fMRI study
  publication-title: Hum Brain Mapp
– volume: 15
  start-page: 212
  issue: Pt 2
  year: 2012
  end-page: 219
  article-title: Constrained sparse functional connectivity networks for MCI classification
  publication-title: Med Image Comput Assist Interv
– start-page: 161
  year: 2005
  end-page: 164
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: Proc Natl Acad Sci U S A
– volume: 5
  start-page: 179
  year: 1997
  end-page: 197
  article-title: Empirical analyses of BOLD fMRI statistics
  publication-title: Neuroimage
– volume: 29
  start-page: 791
  year: 2008
  end-page: 801
  article-title: Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI
  publication-title: Hum Brain Mapp
– volume: 76
  start-page: 49
  year: 2009
  end-page: 58
  article-title: Alzheimer disease: time to improve its diagnosis and treatment
  publication-title: Clev Clin J Med
– volume: 55
  start-page: 287
  year: 2011
  end-page: 295
  article-title: Frequency‐dependent changes in the amplitude of low‐frequency fluctuations in amnestic mild cognitive impairment: a resting‐state fMRI study
  publication-title: Neuroimage
– start-page: 7
  year: 2009
  end-page: 12
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
– volume: 33
  start-page: 1141
  year: 1986
  article-title: Fractal measures and their singularities: the characterization of strange sets
  publication-title: Phys Rev A
– volume: 24
  start-page: 547
  year: 2011
  end-page: 557
  article-title: Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 186
  year: 2012
  article-title: scale‐free and multifractal time dynamics of fMRI signals during rest and task
  publication-title: Front Physiol
– volume: 53
  start-page: 35
  year: 2011
  end-page: 45
  article-title: A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment
  publication-title: Artif Intell Med
– volume: 4
  start-page: 13
  year: 2010
  article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Front Syst Neurosci
– volume: 35
  start-page: 2383
  year: 2014
  end-page: 2393
  article-title: Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers
  publication-title: Hum Brain Mapp
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magn Reson Med
– year: 2008
– volume: 110
  start-page: 9944
  year: 2013
  end-page: 9949
  article-title: Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration
  publication-title: Proc Natl Acad Sci U S A
– volume: 47
  start-page: 875
  year: 1993
  article-title: Multifractal formalism for fractal signals: the structure‐function approach versus the wavelet‐transform modulus‐maxima method
  publication-title: Phys Rev E
– volume: 68
  start-page: 24206
  year: 2003
  article-title: f (α) multifractal spectrum at strong and weak disorder
  publication-title: Phys Rev B
– start-page: 1505
  year: 2013
  end-page: 1508
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  article-title: Predictive markers for AD in a multi‐modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
– volume: 2
  start-page: 929
  year: 2008
  end-page: 943
  article-title: Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity
  publication-title: IEEE J Sel Top Signal Process
– volume: 9
  start-page: 340
  issue: Pt 2
  year: 2006
  end-page: 347
  article-title: Discriminative analysis of early Alzheimer's disease based on two intrinsically anti‐correlated networks with resting‐state fMRI
  publication-title: Med Image Comput Assist Interv
– volume: 25
  start-page: 10010
  year: 2005
  end-page: 10014
  article-title: Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage
  publication-title: J Neurosci
– volume: 25
  start-page: 141
  year: 2005
  end-page: 158
  article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease
  publication-title: Neuroimage
– volume: 28
  start-page: 1033
  year: 2007
  end-page: 1044
  article-title: Real‐time fMRI using brain‐state classification
  publication-title: Hum Brain Mapp
– volume: 107
  start-page: 18179
  year: 2010
  end-page: 18184
  article-title: EEG microstate sequences in healthy humans at rest reveal scale‐free dynamics
  publication-title: Proc Natl Acad Sci U S A
– volume: 225
  start-page: 253
  year: 2002
  end-page: 259
  article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker
  publication-title: Radiology
– volume: 174
  start-page: 292
  year: 2008
  end-page: 300
  article-title: Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance
  publication-title: J Neurosci Methods
– volume: 194
  start-page: 7
  year: 2011
  end-page: 13
  article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Res
– volume: 259
  start-page: 213
  year: 2011
  article-title: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large‐scale network analysis based on resting‐state functional MR imaging
  publication-title: Radiology
– volume: 26
  start-page: 389
  year: 2011
  end-page: 394
  article-title: Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease
  publication-title: J Alzheimers Dis
– volume: 18
  start-page: 984
  year: 2014
  end-page: 990
  article-title: Multiple kernel learning in the primal for multimodal Alzheimer's disease classification
  publication-title: IEEE J Biomed Health Inform
– volume: 77
  start-page: 036104
  year: 2008
  article-title: Fractal connectivity of long‐memory networks
  publication-title: Phys Rev E Stat Nonlin soft Matter Phys
– volume: 59
  start-page: 2187
  year: 2012
  end-page: 2195
  article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3)
  publication-title: Neuroimage
– volume: 12
  start-page: 786
  issue: Pt 2
  year: 2009
  end-page: 794
  article-title: MKL for robust multi‐modality AD classification
  publication-title: Med Image Comput Assist Interv
– start-page: 325
  year: 1994
  end-page: 344
– volume: 72
  start-page: 91
  year: 2004
  end-page: 151
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: Neuroimage
– volume: 262
  start-page: 42
  year: 1990
  end-page: 49
  article-title: Chaos and fractals in human physiology
  publication-title: Sci Am
– volume: 62
  start-page: 1327
  year: 1989
  end-page: 1330
  article-title: Direct determination of the f (α) singularity spectrum
  publication-title: Phys Rev Lett
– volume: 22
  start-page: 1195
  year: 2004
  end-page: 1202
  article-title: Wavelet‐based multifractal analysis of fMRI time series
  publication-title: Neuroimage
– volume: 24
  start-page: 38
  year: 2007
  end-page: 48
  article-title: Bootstrap for empirical multifractal analysis
  publication-title: IEEE Signal Process Mag
– volume: 134
  start-page: 284
  year: 2006
  end-page: 294
  article-title: A program for fractal and multifractal analysis of two‐dimensional binary images: computer algorithms versus mathematical theory
  publication-title: Geoderma
– volume: 13
  start-page: 634
  year: 2009
  end-page: 649
  article-title: Fractal and multifractal analysis: a review
  publication-title: Med Image Anal
– volume: 71
  start-page: 62902
  year: 2005
  article-title: Multiscale multifractality analysis of a 12‐lead electrocardiogram
  publication-title: Phys Rev E
– volume: 35
  start-page: 488
  year: 2007
  end-page: 500
  article-title: Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting‐state functional MRI study
  publication-title: Neuroimage
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
– ident: e_1_2_7_50_1
  doi: 10.1002/hbm.22335
– ident: e_1_2_7_28_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_7_52_1
  doi: 10.1073/pnas.1301119110
– ident: e_1_2_7_32_1
  doi: 10.1109/ICASSP.2005.1415970
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.1007841107
– volume: 12
  start-page: 953
  year: 2011
  ident: e_1_2_7_39_1
  article-title: Lp‐norm multiple kernel learning
  publication-title: J Mach Learn Res
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.0308627101
– ident: e_1_2_7_38_1
  doi: 10.1109/CBMI.2009.44
– ident: e_1_2_7_51_1
  doi: 10.3233/JAD-2011-101782
– ident: e_1_2_7_19_1
  doi: 10.1038/scientificamerican0290-42
– ident: e_1_2_7_35_1
  doi: 10.1109/JBHI.2013.2285378
– volume: 15
  start-page: 212
  issue: 2
  year: 2012
  ident: e_1_2_7_42_1
  article-title: Constrained sparse functional connectivity networks for MCI classification
  publication-title: Med Image Comput Assist Interv
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2010.10.081
– ident: e_1_2_7_2_1
  doi: 10.3949/ccjm.76a.072178
– volume: 4
  start-page: 13
  year: 2010
  ident: e_1_2_7_26_1
  article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Front Syst Neurosci
– ident: e_1_2_7_4_1
  doi: 10.1038/nrn2201
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: e_1_2_7_27_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_7_45_1
  doi: 10.1103/PhysRevE.71.062902
– ident: e_1_2_7_48_1
  doi: 10.1523/JNEUROSCI.3307-05.2005
– ident: e_1_2_7_43_1
  doi: 10.1016/j.geoderma.2006.03.023
– ident: e_1_2_7_18_1
  doi: 10.1016/j.media.2009.05.003
– ident: e_1_2_7_16_1
  doi: 10.1002/hbm.20593
– ident: e_1_2_7_15_1
  doi: 10.1103/PhysRevE.77.036104
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2004.03.007
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevLett.62.1327
– ident: e_1_2_7_10_1
  doi: 10.1002/hbm.20324
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2004.10.044
– volume: 12
  start-page: 786
  issue: 2
  year: 2009
  ident: e_1_2_7_25_1
  article-title: MKL for robust multi‐modality AD classification
  publication-title: Med Image Comput Assist Interv
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.1910340409
– volume: 9
  start-page: 340
  issue: 2
  year: 2006
  ident: e_1_2_7_22_1
  article-title: Discriminative analysis of early Alzheimer's disease based on two intrinsically anti‐correlated networks with resting‐state fMRI
  publication-title: Med Image Comput Assist Interv
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2010.11.059
– ident: e_1_2_7_54_1
  doi: 10.1016/B978-0-08-052087-2.50018-9
– ident: e_1_2_7_17_1
  doi: 10.3389/fphys.2012.00186
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevE.47.875
– volume: 26
  start-page: 389
  year: 2011
  ident: e_1_2_7_20_1
  article-title: Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-0014
– ident: e_1_2_7_29_1
  doi: 10.1109/MSP.2007.4286563
– ident: e_1_2_7_12_1
  doi: 10.1006/nimg.1997.0263
– start-page: 91
  volume-title: Proceedings of Symposia in Pure Mathematics
  year: 2004
  ident: e_1_2_7_31_1
– ident: e_1_2_7_40_1
– ident: e_1_2_7_41_1
  doi: 10.1109/NER.2013.6696231
– ident: e_1_2_7_34_1
  doi: 10.1103/PhysRevA.33.1141
– ident: e_1_2_7_23_1
  doi: 10.1016/j.artmed.2011.05.005
– ident: e_1_2_7_5_1
  doi: 10.1148/radiol.10100734
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jneumeth.2008.06.037
– ident: e_1_2_7_44_1
  doi: 10.1103/PhysRevB.68.024206
– ident: e_1_2_7_21_1
  doi: 10.1002/hbm.20326
– ident: e_1_2_7_49_1
  doi: 10.1016/j.pscychresns.2011.06.014
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2006.11.042
– ident: e_1_2_7_8_1
  doi: 10.1148/radiol.2251011301
– ident: e_1_2_7_53_1
  doi: 10.1126/science.1194144
– ident: e_1_2_7_47_1
  doi: 10.1109/JSTSP.2008.2006663
– volume: 9
  start-page: 2491
  year: 2008
  ident: e_1_2_7_37_1
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
SSID ssj0009974
Score 2.3058143
Snippet Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to...
Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address...
Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 259
SubjectTerms Aged
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Brain - diagnostic imaging
classification
Diagnosis, Differential
Female
Fractals
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
multifractal
multiple kernel learning
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Severity of Illness Index
Subtraction Technique
Support Vector Machine
Title Exploring multifractal-based features for mild Alzheimer's disease classification
URI https://api.istex.fr/ark:/67375/WNG-MSX0Z0QP-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25853
https://www.ncbi.nlm.nih.gov/pubmed/26193379
https://www.proquest.com/docview/1796424119
https://www.proquest.com/docview/1797545278
https://www.proquest.com/docview/1808661366
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuKLl3obrTKKaF9mO5nMJBN8KmotwhRtLS4ihCST0NLdbdnZBemTP8Hf6C8xJ3MplSri28CczORyTvKd5OQ7AM8tSR13ZZoYpnG3qhCJKixPjNYWCc2MCHnIql22c5C_HxfjFXjV34Vp-SGGDTe0jDBfo4Er3Wyek4ZO59NR5sEuMn0SypA3_83eOXWUEC0DM89xnhF5zyqUZptDyQtr0RXs1m-XAc2LuDUsPNs34Wtf5Tbe5Hi0XOiROfuNzfE_23QLbnSANN5qNeg2rNjZGlyruiP3NbgaYkRNcwf2h3i9OIQhOrxgpSY_v__ApbCOnQ0koU3scXA8PZrU8dbk7NAeTe38ZRN3J0GxQbiO8UlBJe7CwfbbT693ki4nQ2IKUdDEauYRDuHccUVMVnsXrsi5y4njpeWW6JwqU6RM16wWtaoFsdzQjJcqt47TjN6D1dnJzD6AmNfUu1Mi56LQfhrB76alUc4jtpLljkSw0Y-ONB1hOebNmMiWajmTvrtk6K4Ing2ipy1Lx2VCL8IQDxJqfoxhbbyQn3ffyWp_nH5JP36QZQTrvQ7IzqIbSfDOroc7RETwdHjtbREPWNTMniyDDMec7bz8i0zpnUiPoRiL4H6rX0OF0JullPs_bAQt-XNbZLVXhYeH_y76CK57tMfaWON1WF3Ml_axR1QL_SSYzi8szRtD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVlBeuBQogQIBIehLtknsxLHES4UoCzQr6EWskJBlO7aourtFe5FQn_gEvpEvweNcqqKCEG-RMrnYnrHPeMZnAJ6aJLbMFnGkc4W7VRmPZGZYpJUySGimua9DVg7y_iF9O8yGS_CiPQtT80N0G25oGX6-RgPHDemtM9bQ8XTcSx3aJZdgxcfnEBLtnZFHcV5zMDOKMw2nLa9QnG51j55bjVawY79dBDXPI1e_9Oxch8_tT9cZJ8e9xVz19OlvfI7_26obcK3BpOF2rUQ3YclM1uBK2UTd1-CyTxPVs1uw36XshT4T0eIZKzn6-f0HroZVaI3nCZ2FDgqH46NRFW6PTr-Yo7GZPp-FTTAo1IjYMUXJa8VtONx5dfCyHzVlGSKd8YxERuUO5CSMWSYTnVbOi8soszSxrDDMJIoSqbM4V1Ve8UpWPDFMk5QVkhrLSEruwPLkZGLuQsgq4jwqThnPlJtJ8L1xoaV1oK3IqU0C2GyHR-iGsxxLZ4xEzbacCtddwndXAE860a81UcdFQs_8GHcScnqMmW0sEx8Hr0W5P4w_xR_eiyKAjVYJRGPUM5HgsV2HeBIewOPutjNHjLHIiTlZeBmGZdtZ8ReZwvmRDkbleQDrtYJ1P4QOLSHMfWHTq8mf2yLKvdJf3Pt30Uew2j8od8Xum8G7-3DVgb-8Tj3egOX5dGEeOIA1Vw-9Hf0C1cIfYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlS8cJQrUMAgBH3JNokdOxZPFbCUI6vSQ6wQkuX4EFV3t9UeEuoTP4HfyC_Bdo6qqCDEW6RMDtsznm_s8TcAT02aWGaLJFa08qtVOY9lblisqsp4QjPFQx2yckC3D8i7YT5cghftWZiaH6JbcPOWEeZrb-An2m6ekYaOp-Ne5sAuvgQrhDo36RHR7hl3FOc1BTMjfqLhpKUVSrLN7tFzzmjF9-u3i5DmeeAaPE__Gnxp_7lOODnqLeZVT53-Ruf4n426DlcbRIq2ahW6AUtmsgarZbPnvgaXQ5Komt2EvS5hD4U8ROtPWMnRz-8_vC_UyJrAEjpDDgij8eFIo63R6VdzODbT5zPUbAUh5fG6T1AKOnELDvqv919ux01RhljlPMexqaiDOCljlslUZdrFcDlhlqSWFYaZtCJYqjyhlaaaa6l5apjCGSskMZbhDN-G5cnxxNwFxDR28RQnjOeVm0f8e5NCSesgW0GJTSPYaEdHqIax3BfOGImaazkTrrtE6K4InnSiJzVNx0VCz8IQdxJyeuTz2lguPg3eiHJvmHxOPu6IIoL1VgdEY9IzkfpDuw7vpDyCx91tZ4x-h0VOzPEiyDBftJ0Vf5EpXBTpQBSlEdyp9av7IR_OYszcFzaClvy5LaLcLcPFvX8XfQSrO6_64sPbwfv7cMUhP1rnHa_D8ny6MA8cuppXD4MV_QJg3h4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+multifractal-based+features+for+mild+Alzheimer%27s+disease+classification&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ni%2C+Huangjing&rft.au=Zhou%2C+Luping&rft.au=Ning%2C+Xinbao&rft.au=Wang%2C+Lei&rft.date=2016-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=76&rft.issue=1&rft.spage=259&rft_id=info:doi/10.1002%2Fmrm.25853&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4088876201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon