Exploring multifractal-based features for mild Alzheimer's disease classification
Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classi...
Saved in:
Published in | Magnetic resonance in medicine Vol. 76; no. 1; pp. 259 - 269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.07.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25853 |
Cover
Abstract | Purpose
Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.
Methods
Rs‐fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network‐based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.
Results
We identified a multifractal feature,
Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by
Δf only) to up to 76%, when nonsparse MKL is used to combine
Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features,
α(0),
Δα and
Pc, could also improve traditional‐feature‐based AD classification.
Conclusion
Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs‐fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259–269, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.
Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.
We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification.
Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc. Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, [Formulaomitted], which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by [Formulaomitted] only) to up to 76%, when nonsparse MKL is used to combine [Formulaomitted] with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, [Formulaomitted], [Formulaomitted] and [Formulaomitted], could also improve traditional-feature-based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, [Delta]f, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by [Delta]f only) to up to 76%, when nonsparse MKL is used to combine [Delta]f with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, [alpha] (0 ), [Delta][alpha] and P c, could also improve traditional-feature-based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc. Purpose Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field. Methods Rs‐fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network‐based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features. Results We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional‐feature‐based AD classification. Conclusion Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs‐fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259–269, 2016. © 2015 Wiley Periodicals, Inc. Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.PURPOSEMultifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.METHODSRs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.We identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification.RESULTSWe identified a multifractal feature, Δf, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by Δf only) to up to 76%, when nonsparse MKL is used to combine Δf with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, α(0), Δα and Pc, could also improve traditional-feature-based AD classification.Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONOur work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects. Magn Reson Med 76:259-269, 2016. © 2015 Wiley Periodicals, Inc. |
Author | Wang, Lei Ni, Huangjing Ning, Xinbao Zhou, Luping |
Author_xml | – sequence: 1 givenname: Huangjing surname: Ni fullname: Ni, Huangjing organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China – sequence: 2 givenname: Luping surname: Zhou fullname: Zhou, Luping organization: School of Computer Science and Software Engineering, University of Wollongong, NSW, Wollongong, Australia – sequence: 3 givenname: Xinbao surname: Ning fullname: Ning, Xinbao organization: School of Electronic Science and Engineering, Nanjing University, Nanjing, China – sequence: 4 givenname: Lei surname: Wang fullname: Wang, Lei email: leiw@uow.edu.au organization: School of Computer Science and Software Engineering, University of Wollongong, NSW, Wollongong, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26193379$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKcDC_4AisSiZZHWb8fLqiqlUqelPARiYznONbg4yWAn6uPXk3ZmWFQgVnfzfUe65-ygra7vAKGXBO8TjOlBm9p9KirBnqAZEZSWVGi-hWZYcVwyovk22sn5CmOsteLP0DaVRDOm9AxdHt8sY59C971oxzgEn6wbbCxrm6EpPNhhTJAL36eiDbEpDuPdDwgtpN1cNCHDhBUu2pyDD84Ooe-eo6fexgwv1neOPr89_nT0rjy7ODk9OjwrndCClVDLSjOilFeWONpgKgVXnhOvKlBAas6sE1jWjWx0YxtNQDlGVWU5eMUom6O9Ve4y9b9GyINpQ3YQo-2gH7MhFa6kJEzK_6NKK8HFFD6hrx-hV_2YuumRe0pyyslU3Ry9WlNj3UJjlim0Nt2aTa8TcLACXOpzTuCNC8NDPUOyIRqCzf1yZlrOPCw3GW8eGZvQv7Hr9OsQ4fbfoFl8WGyMcmWEPMDNH8Omn0YqpoT5cn5iFh-_4m_48r2p2G8lkrXp |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_3389_fnins_2021_667614 crossref_primary_10_1109_TCYB_2020_3016953 crossref_primary_10_1007_s11604_018_0794_4 crossref_primary_10_1016_j_eswa_2021_115549 crossref_primary_10_1166_jon_2023_2003 crossref_primary_10_1007_s11517_020_02256_z crossref_primary_10_1002_brb3_2047 crossref_primary_10_3389_fnagi_2022_793298 crossref_primary_10_3390_math11020376 crossref_primary_10_1016_j_nicl_2018_03_013 crossref_primary_10_1103_PhysRevResearch_6_033276 crossref_primary_10_1016_j_jalz_2016_11_007 crossref_primary_10_3390_e23121591 crossref_primary_10_1109_ACCESS_2022_3221458 crossref_primary_10_1007_s10462_019_09766_9 crossref_primary_10_1007_s11571_022_09787_1 crossref_primary_10_1038_s41598_022_26958_6 |
Cites_doi | 10.1002/hbm.22335 10.1006/nimg.2001.0978 10.1073/pnas.1301119110 10.1109/ICASSP.2005.1415970 10.1073/pnas.1007841107 10.1073/pnas.0308627101 10.1109/CBMI.2009.44 10.3233/JAD-2011-101782 10.1038/scientificamerican0290-42 10.1109/JBHI.2013.2285378 10.1016/j.neuroimage.2010.10.081 10.3949/ccjm.76a.072178 10.1038/nrn2201 10.1016/j.neuroimage.2011.10.003 10.1002/hbm.460020402 10.1103/PhysRevE.71.062902 10.1523/JNEUROSCI.3307-05.2005 10.1016/j.geoderma.2006.03.023 10.1016/j.media.2009.05.003 10.1002/hbm.20593 10.1103/PhysRevE.77.036104 10.1016/j.neuroimage.2004.03.007 10.1103/PhysRevLett.62.1327 10.1002/hbm.20324 10.1016/j.neuroimage.2004.10.044 10.1002/mrm.1910340409 10.1016/j.neuroimage.2010.11.059 10.1016/B978-0-08-052087-2.50018-9 10.3389/fphys.2012.00186 10.1103/PhysRevE.47.875 10.3233/JAD-2011-0014 10.1109/MSP.2007.4286563 10.1006/nimg.1997.0263 10.1109/NER.2013.6696231 10.1103/PhysRevA.33.1141 10.1016/j.artmed.2011.05.005 10.1148/radiol.10100734 10.1016/j.jneumeth.2008.06.037 10.1103/PhysRevB.68.024206 10.1002/hbm.20326 10.1016/j.pscychresns.2011.06.014 10.1016/j.neuroimage.2006.11.042 10.1148/radiol.2251011301 10.1126/science.1194144 10.1109/JSTSP.2008.2006663 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative (ADNI) Alzheimer's Disease Neuroimaging Initiative (ADNI) |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative (ADNI) – name: Alzheimer's Disease Neuroimaging Initiative (ADNI) |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25853 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database Biochemistry Abstracts 1 MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 269 |
ExternalDocumentID | 4088876201 26193379 10_1002_mrm_25853 MRM25853 ark_67375_WNG_MSX0Z0QP_8 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Vice Chancellor Research Grant in University of Wollongong – fundername: State Scholarship Fund of China Scholarship Council (CSC) – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c5953-eb6893177f7a1c2d026547f41f78e7e1b43ac506bd6d9dad91e7c3278a4ef7323 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 09:50:29 EDT 2025 Thu Jul 10 23:32:54 EDT 2025 Fri Jul 25 12:08:25 EDT 2025 Wed Feb 19 02:41:40 EST 2025 Thu Apr 24 22:52:27 EDT 2025 Sun Sep 21 06:15:57 EDT 2025 Wed Jan 22 16:25:59 EST 2025 Sun Sep 21 06:16:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | multiple kernel learning multifractal classification Alzheimer's disease |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5953-eb6893177f7a1c2d026547f41f78e7e1b43ac506bd6d9dad91e7c3278a4ef7323 |
Notes | istex:93E784F539629C58404D96150FFC4E3E246DB8D9 State Scholarship Fund of China Scholarship Council (CSC) Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) Vice Chancellor Research Grant in University of Wollongong ark:/67375/WNG-MSX0Z0QP-8 ArticleID:MRM25853 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25853 |
PMID | 26193379 |
PQID | 1796424119 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1808661366 proquest_miscellaneous_1797545278 proquest_journals_1796424119 pubmed_primary_26193379 crossref_citationtrail_10_1002_mrm_25853 crossref_primary_10_1002_mrm_25853 wiley_primary_10_1002_mrm_25853_MRM25853 istex_primary_ark_67375_WNG_MSX0Z0QP_8 |
PublicationCentury | 2000 |
PublicationDate | July 2016 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Haller S, Lovblad KO, Giannakopoulos P. Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 2011;26:389-394. Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13. Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. SimpleMKL. J Mach Learn Res 2008;9:2491-2521. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 2007;28:967-978. Friston KJ, Holmes AP, Worsley KJ, Poline J, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1994;2:189-210. Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal 2009;13:634-649. Chhabra A, Jensen RV. Direct determination of the f (α) singularity spectrum. Phys Rev Lett 1989;62:1327-1330. Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010;329:1358-1361. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am 1990;262:42-49. Ciuciu P, Abry P, Rabrait C, Wendt H. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity. IEEE J Sel Top Signal Process 2008;2:929-943. Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011;55:574-589. Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 2008;174:292-300. Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012;59:2187-2195. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986;33:1141. Perrier E, Tarquis AM, Dathe A. A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 2006;134:284-294. Schafe GE, Doyère V, LeDoux JE. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. J Neurosci 2005;25:10010-10014. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711. Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin soft Matter Phys 2008;77:036104. Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based multifractal analysis of fMRI time series. Neuroimage 2004;22:1195-1202. Hinrichs C, Singh V, Xu G, Johnson S. MKL for robust multi-modality AD classification. Med Image Comput Assist Interv 2009;12(Pt 2):786-794. Wang J, Ning X, Ma Q, Bian C, Xu Y, Chen Y. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E 2005;71:62902. Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011;24:547-557. Li S, Li Z, Wu G, Zhang M, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253-259. Muzy JC, Bacry E, Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 1993;47:875. Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011;53:35-45. Wee CY, Yap PT, Zhang D, Wang L, Shen D. Constrained sparse functional connectivity networks for MCI classification. Med Image Comput Assist Interv 2012;15(Pt 2):212-219. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 2012;3:186. Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin KP. Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration. Proc Natl Acad Sci U S A 2013;110:9944-9949. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage 2007;35:488-500. Wink A, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 2008;29:791-801. LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Hum Brain Mapp 2007;28:1033-1044. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541. Fayao L, Luping Z, Chunhua S, Jianping Y. Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J Biomed Health Inform 2014;18:984-990. Binnewijzend MA, Adriaanse SM, Flier WM, Teunissen CE, Munck JC, Stam CJ, Scheltens P, Berckel BN, Barkhof F, Wink AM. Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 2014;35:2383-2393. Kloft M, Brefeld U, Sonnenburg S, Zien A. Lp-norm multiple kernel learning. J Mach Learn Res 2011;12:953-997. Maxim VC, CSendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005;25:141-158. Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Process Mag 2007;24:38-48. Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li S. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259:213. Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res 2011;194:7-13. Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Assist Interv 2006;9(Pt 2):340-347. Cuevas E. f (α) multifractal spectrum at strong and weak disorder. Phys Rev B 2003;68:24206. Salloway S, Correia S. Alzheimer disease: time to improve its diagnosis and treatment. Clev Clin J Med 2009;76:49-58. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011;55:287-295. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289. Van de Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 2010;107:18179-18184. Zarahn E, Aguirre GK, D'Esposito M. Empirical analyses of BOLD fMRI statistics. Neuroimage 1997;5:179-197. 2004; 22 2002; 15 2010; 107 1986; 33 1995; 34 2011; 53 2008; 9 2011; 55 2008; 77 2011; 12 2012; 59 2012; 15 1997; 5 2008; 2 2011; 194 2007; 35 1990; 262 2006; 134 2005; 25 2007; 28 2009; 12 2009; 13 2004; 72 2008; 29 2007; 8 2002; 225 2011; 24 2011; 26 2014; 18 2005; 71 2013; 110 2010; 4 2007; 24 2011; 259 2004; 101 1989; 62 1993; 47 2010; 329 2006; 9 2009 2008 2005 1994 2012; 3 2009; 76 2003; 68 2014; 35 2013 1994; 2 2008; 174 e_1_2_7_5_1 e_1_2_7_3_1 Rakotomamonjy A (e_1_2_7_37_1) 2008; 9 e_1_2_7_9_1 Wee CY (e_1_2_7_42_1) 2012; 15 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Haller S (e_1_2_7_20_1) 2011; 26 e_1_2_7_50_1 e_1_2_7_52_1 e_1_2_7_23_1 Hinrichs C (e_1_2_7_25_1) 2009; 12 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 Jaffard S. (e_1_2_7_31_1) 2004 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Chao‐Gan Y (e_1_2_7_26_1) 2010; 4 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Wang K (e_1_2_7_22_1) 2006; 9 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 Kloft M (e_1_2_7_39_1) 2011; 12 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – reference: Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011;53:35-45. – reference: Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986;33:1141. – reference: Salloway S, Correia S. Alzheimer disease: time to improve its diagnosis and treatment. Clev Clin J Med 2009;76:49-58. – reference: Van de Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 2010;107:18179-18184. – reference: Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011;55:287-295. – reference: Cuevas E. f (α) multifractal spectrum at strong and weak disorder. Phys Rev B 2003;68:24206. – reference: Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. SimpleMKL. J Mach Learn Res 2008;9:2491-2521. – reference: Ciuciu P, Abry P, Rabrait C, Wendt H. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity. IEEE J Sel Top Signal Process 2008;2:929-943. – reference: Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011;24:547-557. – reference: Kloft M, Brefeld U, Sonnenburg S, Zien A. Lp-norm multiple kernel learning. J Mach Learn Res 2011;12:953-997. – reference: Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541. – reference: Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010;329:1358-1361. – reference: Hinrichs C, Singh V, Xu G, Johnson S. MKL for robust multi-modality AD classification. Med Image Comput Assist Interv 2009;12(Pt 2):786-794. – reference: Wee CY, Yap PT, Zhang D, Wang L, Shen D. Constrained sparse functional connectivity networks for MCI classification. Med Image Comput Assist Interv 2012;15(Pt 2):212-219. – reference: Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Process Mag 2007;24:38-48. – reference: Schafe GE, Doyère V, LeDoux JE. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. J Neurosci 2005;25:10010-10014. – reference: Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642. – reference: He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage 2007;35:488-500. – reference: Friston KJ, Holmes AP, Worsley KJ, Poline J, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1994;2:189-210. – reference: Wink A, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 2008;29:791-801. – reference: Fayao L, Luping Z, Chunhua S, Jianping Y. Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J Biomed Health Inform 2014;18:984-990. – reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289. – reference: Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res 2011;194:7-13. – reference: Zarahn E, Aguirre GK, D'Esposito M. Empirical analyses of BOLD fMRI statistics. Neuroimage 1997;5:179-197. – reference: Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011;55:574-589. – reference: LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Hum Brain Mapp 2007;28:1033-1044. – reference: Wang J, Ning X, Ma Q, Bian C, Xu Y, Chen Y. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E 2005;71:62902. – reference: Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am 1990;262:42-49. – reference: Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 2010;4:13. – reference: Haller S, Lovblad KO, Giannakopoulos P. Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 2011;26:389-394. – reference: Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin soft Matter Phys 2008;77:036104. – reference: Muzy JC, Bacry E, Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 1993;47:875. – reference: Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 2012;3:186. – reference: Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 2008;174:292-300. – reference: Binnewijzend MA, Adriaanse SM, Flier WM, Teunissen CE, Munck JC, Stam CJ, Scheltens P, Berckel BN, Barkhof F, Wink AM. Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum Brain Mapp 2014;35:2383-2393. – reference: Maxim VC, CSendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005;25:141-158. – reference: Li S, Li Z, Wu G, Zhang M, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253-259. – reference: Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 2007;28:967-978. – reference: Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Assist Interv 2006;9(Pt 2):340-347. – reference: Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin KP. Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration. Proc Natl Acad Sci U S A 2013;110:9944-9949. – reference: Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li S. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 2011;259:213. – reference: Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based multifractal analysis of fMRI time series. Neuroimage 2004;22:1195-1202. – reference: Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal 2009;13:634-649. – reference: Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012;59:2187-2195. – reference: Chhabra A, Jensen RV. Direct determination of the f (α) singularity spectrum. Phys Rev Lett 1989;62:1327-1330. – reference: Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711. – reference: Perrier E, Tarquis AM, Dathe A. A program for fractal and multifractal analysis of two-dimensional binary images: computer algorithms versus mathematical theory. Geoderma 2006;134:284-294. – volume: 12 start-page: 953 year: 2011 end-page: 997 article-title: Lp‐norm multiple kernel learning publication-title: J Mach Learn Res – volume: 28 start-page: 967 year: 2007 end-page: 978 article-title: Altered functional connectivity in early Alzheimer's disease: a resting‐state fMRI study publication-title: Hum Brain Mapp – volume: 15 start-page: 212 issue: Pt 2 year: 2012 end-page: 219 article-title: Constrained sparse functional connectivity networks for MCI classification publication-title: Med Image Comput Assist Interv – start-page: 161 year: 2005 end-page: 164 – volume: 101 start-page: 4637 year: 2004 end-page: 4642 article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc Natl Acad Sci U S A – volume: 5 start-page: 179 year: 1997 end-page: 197 article-title: Empirical analyses of BOLD fMRI statistics publication-title: Neuroimage – volume: 29 start-page: 791 year: 2008 end-page: 801 article-title: Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI publication-title: Hum Brain Mapp – volume: 76 start-page: 49 year: 2009 end-page: 58 article-title: Alzheimer disease: time to improve its diagnosis and treatment publication-title: Clev Clin J Med – volume: 55 start-page: 287 year: 2011 end-page: 295 article-title: Frequency‐dependent changes in the amplitude of low‐frequency fluctuations in amnestic mild cognitive impairment: a resting‐state fMRI study publication-title: Neuroimage – start-page: 7 year: 2009 end-page: 12 – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci – volume: 33 start-page: 1141 year: 1986 article-title: Fractal measures and their singularities: the characterization of strange sets publication-title: Phys Rev A – volume: 24 start-page: 547 year: 2011 end-page: 557 article-title: Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis – volume: 2 start-page: 189 year: 1994 end-page: 210 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 3 start-page: 186 year: 2012 article-title: scale‐free and multifractal time dynamics of fMRI signals during rest and task publication-title: Front Physiol – volume: 53 start-page: 35 year: 2011 end-page: 45 article-title: A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment publication-title: Artif Intell Med – volume: 4 start-page: 13 year: 2010 article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Front Syst Neurosci – volume: 35 start-page: 2383 year: 2014 end-page: 2393 article-title: Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers publication-title: Hum Brain Mapp – volume: 329 start-page: 1358 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – year: 2008 – volume: 110 start-page: 9944 year: 2013 end-page: 9949 article-title: Heightened emotional contagion in mild cognitive impairment and Alzheimer's disease is associated with temporal lobe degeneration publication-title: Proc Natl Acad Sci U S A – volume: 47 start-page: 875 year: 1993 article-title: Multifractal formalism for fractal signals: the structure‐function approach versus the wavelet‐transform modulus‐maxima method publication-title: Phys Rev E – volume: 68 start-page: 24206 year: 2003 article-title: f (α) multifractal spectrum at strong and weak disorder publication-title: Phys Rev B – start-page: 1505 year: 2013 end-page: 1508 – volume: 55 start-page: 574 year: 2011 end-page: 589 article-title: Predictive markers for AD in a multi‐modality framework: an analysis of MCI progression in the ADNI population publication-title: Neuroimage – volume: 2 start-page: 929 year: 2008 end-page: 943 article-title: Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity publication-title: IEEE J Sel Top Signal Process – volume: 9 start-page: 340 issue: Pt 2 year: 2006 end-page: 347 article-title: Discriminative analysis of early Alzheimer's disease based on two intrinsically anti‐correlated networks with resting‐state fMRI publication-title: Med Image Comput Assist Interv – volume: 25 start-page: 10010 year: 2005 end-page: 10014 article-title: Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage publication-title: J Neurosci – volume: 25 start-page: 141 year: 2005 end-page: 158 article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease publication-title: Neuroimage – volume: 28 start-page: 1033 year: 2007 end-page: 1044 article-title: Real‐time fMRI using brain‐state classification publication-title: Hum Brain Mapp – volume: 107 start-page: 18179 year: 2010 end-page: 18184 article-title: EEG microstate sequences in healthy humans at rest reveal scale‐free dynamics publication-title: Proc Natl Acad Sci U S A – volume: 225 start-page: 253 year: 2002 end-page: 259 article-title: Alzheimer disease: evaluation of a functional MR imaging index as a marker publication-title: Radiology – volume: 174 start-page: 292 year: 2008 end-page: 300 article-title: Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance publication-title: J Neurosci Methods – volume: 194 start-page: 7 year: 2011 end-page: 13 article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity publication-title: Psychiatry Res – volume: 259 start-page: 213 year: 2011 article-title: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large‐scale network analysis based on resting‐state functional MR imaging publication-title: Radiology – volume: 26 start-page: 389 year: 2011 end-page: 394 article-title: Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease publication-title: J Alzheimers Dis – volume: 18 start-page: 984 year: 2014 end-page: 990 article-title: Multiple kernel learning in the primal for multimodal Alzheimer's disease classification publication-title: IEEE J Biomed Health Inform – volume: 77 start-page: 036104 year: 2008 article-title: Fractal connectivity of long‐memory networks publication-title: Phys Rev E Stat Nonlin soft Matter Phys – volume: 59 start-page: 2187 year: 2012 end-page: 2195 article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3) publication-title: Neuroimage – volume: 12 start-page: 786 issue: Pt 2 year: 2009 end-page: 794 article-title: MKL for robust multi‐modality AD classification publication-title: Med Image Comput Assist Interv – start-page: 325 year: 1994 end-page: 344 – volume: 72 start-page: 91 year: 2004 end-page: 151 – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – volume: 262 start-page: 42 year: 1990 end-page: 49 article-title: Chaos and fractals in human physiology publication-title: Sci Am – volume: 62 start-page: 1327 year: 1989 end-page: 1330 article-title: Direct determination of the f (α) singularity spectrum publication-title: Phys Rev Lett – volume: 22 start-page: 1195 year: 2004 end-page: 1202 article-title: Wavelet‐based multifractal analysis of fMRI time series publication-title: Neuroimage – volume: 24 start-page: 38 year: 2007 end-page: 48 article-title: Bootstrap for empirical multifractal analysis publication-title: IEEE Signal Process Mag – volume: 134 start-page: 284 year: 2006 end-page: 294 article-title: A program for fractal and multifractal analysis of two‐dimensional binary images: computer algorithms versus mathematical theory publication-title: Geoderma – volume: 13 start-page: 634 year: 2009 end-page: 649 article-title: Fractal and multifractal analysis: a review publication-title: Med Image Anal – volume: 71 start-page: 62902 year: 2005 article-title: Multiscale multifractality analysis of a 12‐lead electrocardiogram publication-title: Phys Rev E – volume: 35 start-page: 488 year: 2007 end-page: 500 article-title: Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting‐state functional MRI study publication-title: Neuroimage – volume: 9 start-page: 2491 year: 2008 end-page: 2521 article-title: SimpleMKL publication-title: J Mach Learn Res – ident: e_1_2_7_50_1 doi: 10.1002/hbm.22335 – ident: e_1_2_7_28_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_7_52_1 doi: 10.1073/pnas.1301119110 – ident: e_1_2_7_32_1 doi: 10.1109/ICASSP.2005.1415970 – ident: e_1_2_7_46_1 doi: 10.1073/pnas.1007841107 – volume: 12 start-page: 953 year: 2011 ident: e_1_2_7_39_1 article-title: Lp‐norm multiple kernel learning publication-title: J Mach Learn Res – ident: e_1_2_7_6_1 doi: 10.1073/pnas.0308627101 – ident: e_1_2_7_38_1 doi: 10.1109/CBMI.2009.44 – ident: e_1_2_7_51_1 doi: 10.3233/JAD-2011-101782 – ident: e_1_2_7_19_1 doi: 10.1038/scientificamerican0290-42 – ident: e_1_2_7_35_1 doi: 10.1109/JBHI.2013.2285378 – volume: 15 start-page: 212 issue: 2 year: 2012 ident: e_1_2_7_42_1 article-title: Constrained sparse functional connectivity networks for MCI classification publication-title: Med Image Comput Assist Interv – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2010.10.081 – ident: e_1_2_7_2_1 doi: 10.3949/ccjm.76a.072178 – volume: 4 start-page: 13 year: 2010 ident: e_1_2_7_26_1 article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Front Syst Neurosci – ident: e_1_2_7_4_1 doi: 10.1038/nrn2201 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2011.10.003 – ident: e_1_2_7_27_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_7_45_1 doi: 10.1103/PhysRevE.71.062902 – ident: e_1_2_7_48_1 doi: 10.1523/JNEUROSCI.3307-05.2005 – ident: e_1_2_7_43_1 doi: 10.1016/j.geoderma.2006.03.023 – ident: e_1_2_7_18_1 doi: 10.1016/j.media.2009.05.003 – ident: e_1_2_7_16_1 doi: 10.1002/hbm.20593 – ident: e_1_2_7_15_1 doi: 10.1103/PhysRevE.77.036104 – ident: e_1_2_7_13_1 doi: 10.1016/j.neuroimage.2004.03.007 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevLett.62.1327 – ident: e_1_2_7_10_1 doi: 10.1002/hbm.20324 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2004.10.044 – volume: 12 start-page: 786 issue: 2 year: 2009 ident: e_1_2_7_25_1 article-title: MKL for robust multi‐modality AD classification publication-title: Med Image Comput Assist Interv – ident: e_1_2_7_3_1 doi: 10.1002/mrm.1910340409 – volume: 9 start-page: 340 issue: 2 year: 2006 ident: e_1_2_7_22_1 article-title: Discriminative analysis of early Alzheimer's disease based on two intrinsically anti‐correlated networks with resting‐state fMRI publication-title: Med Image Comput Assist Interv – ident: e_1_2_7_9_1 doi: 10.1016/j.neuroimage.2010.11.059 – ident: e_1_2_7_54_1 doi: 10.1016/B978-0-08-052087-2.50018-9 – ident: e_1_2_7_17_1 doi: 10.3389/fphys.2012.00186 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevE.47.875 – volume: 26 start-page: 389 year: 2011 ident: e_1_2_7_20_1 article-title: Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-0014 – ident: e_1_2_7_29_1 doi: 10.1109/MSP.2007.4286563 – ident: e_1_2_7_12_1 doi: 10.1006/nimg.1997.0263 – start-page: 91 volume-title: Proceedings of Symposia in Pure Mathematics year: 2004 ident: e_1_2_7_31_1 – ident: e_1_2_7_40_1 – ident: e_1_2_7_41_1 doi: 10.1109/NER.2013.6696231 – ident: e_1_2_7_34_1 doi: 10.1103/PhysRevA.33.1141 – ident: e_1_2_7_23_1 doi: 10.1016/j.artmed.2011.05.005 – ident: e_1_2_7_5_1 doi: 10.1148/radiol.10100734 – ident: e_1_2_7_14_1 doi: 10.1016/j.jneumeth.2008.06.037 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevB.68.024206 – ident: e_1_2_7_21_1 doi: 10.1002/hbm.20326 – ident: e_1_2_7_49_1 doi: 10.1016/j.pscychresns.2011.06.014 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroimage.2006.11.042 – ident: e_1_2_7_8_1 doi: 10.1148/radiol.2251011301 – ident: e_1_2_7_53_1 doi: 10.1126/science.1194144 – ident: e_1_2_7_47_1 doi: 10.1109/JSTSP.2008.2006663 – volume: 9 start-page: 2491 year: 2008 ident: e_1_2_7_37_1 article-title: SimpleMKL publication-title: J Mach Learn Res |
SSID | ssj0009974 |
Score | 2.3058143 |
Snippet | Purpose
Multifractal applications to resting state functional MRI (rs‐fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to... Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address... Purpose Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 259 |
SubjectTerms | Aged Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain - diagnostic imaging classification Diagnosis, Differential Female Fractals Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male multifractal multiple kernel learning Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Severity of Illness Index Subtraction Technique Support Vector Machine |
Title | Exploring multifractal-based features for mild Alzheimer's disease classification |
URI | https://api.istex.fr/ark:/67375/WNG-MSX0Z0QP-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25853 https://www.ncbi.nlm.nih.gov/pubmed/26193379 https://www.proquest.com/docview/1796424119 https://www.proquest.com/docview/1797545278 https://www.proquest.com/docview/1808661366 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuKLl3obrTKKaF9mO5nMJBN8KmotwhRtLS4ihCST0NLdbdnZBemTP8Hf6C8xJ3MplSri28CczORyTvKd5OQ7AM8tSR13ZZoYpnG3qhCJKixPjNYWCc2MCHnIql22c5C_HxfjFXjV34Vp-SGGDTe0jDBfo4Er3Wyek4ZO59NR5sEuMn0SypA3_83eOXWUEC0DM89xnhF5zyqUZptDyQtr0RXs1m-XAc2LuDUsPNs34Wtf5Tbe5Hi0XOiROfuNzfE_23QLbnSANN5qNeg2rNjZGlyruiP3NbgaYkRNcwf2h3i9OIQhOrxgpSY_v__ApbCOnQ0koU3scXA8PZrU8dbk7NAeTe38ZRN3J0GxQbiO8UlBJe7CwfbbT693ki4nQ2IKUdDEauYRDuHccUVMVnsXrsi5y4njpeWW6JwqU6RM16wWtaoFsdzQjJcqt47TjN6D1dnJzD6AmNfUu1Mi56LQfhrB76alUc4jtpLljkSw0Y-ONB1hOebNmMiWajmTvrtk6K4Ing2ipy1Lx2VCL8IQDxJqfoxhbbyQn3ffyWp_nH5JP36QZQTrvQ7IzqIbSfDOroc7RETwdHjtbREPWNTMniyDDMec7bz8i0zpnUiPoRiL4H6rX0OF0JullPs_bAQt-XNbZLVXhYeH_y76CK57tMfaWON1WF3Ml_axR1QL_SSYzi8szRtD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVlBeuBQogQIBIehLtknsxLHES4UoCzQr6EWskJBlO7aourtFe5FQn_gEvpEvweNcqqKCEG-RMrnYnrHPeMZnAJ6aJLbMFnGkc4W7VRmPZGZYpJUySGimua9DVg7y_iF9O8yGS_CiPQtT80N0G25oGX6-RgPHDemtM9bQ8XTcSx3aJZdgxcfnEBLtnZFHcV5zMDOKMw2nLa9QnG51j55bjVawY79dBDXPI1e_9Oxch8_tT9cZJ8e9xVz19OlvfI7_26obcK3BpOF2rUQ3YclM1uBK2UTd1-CyTxPVs1uw36XshT4T0eIZKzn6-f0HroZVaI3nCZ2FDgqH46NRFW6PTr-Yo7GZPp-FTTAo1IjYMUXJa8VtONx5dfCyHzVlGSKd8YxERuUO5CSMWSYTnVbOi8soszSxrDDMJIoSqbM4V1Ve8UpWPDFMk5QVkhrLSEruwPLkZGLuQsgq4jwqThnPlJtJ8L1xoaV1oK3IqU0C2GyHR-iGsxxLZ4xEzbacCtddwndXAE860a81UcdFQs_8GHcScnqMmW0sEx8Hr0W5P4w_xR_eiyKAjVYJRGPUM5HgsV2HeBIewOPutjNHjLHIiTlZeBmGZdtZ8ReZwvmRDkbleQDrtYJ1P4QOLSHMfWHTq8mf2yLKvdJf3Pt30Uew2j8od8Xum8G7-3DVgb-8Tj3egOX5dGEeOIA1Vw-9Hf0C1cIfYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlS8cJQrUMAgBH3JNokdOxZPFbCUI6vSQ6wQkuX4EFV3t9UeEuoTP4HfyC_Bdo6qqCDEW6RMDtsznm_s8TcAT02aWGaLJFa08qtVOY9lblisqsp4QjPFQx2yckC3D8i7YT5cghftWZiaH6JbcPOWEeZrb-An2m6ekYaOp-Ne5sAuvgQrhDo36RHR7hl3FOc1BTMjfqLhpKUVSrLN7tFzzmjF9-u3i5DmeeAaPE__Gnxp_7lOODnqLeZVT53-Ruf4n426DlcbRIq2ahW6AUtmsgarZbPnvgaXQ5Komt2EvS5hD4U8ROtPWMnRz-8_vC_UyJrAEjpDDgij8eFIo63R6VdzODbT5zPUbAUh5fG6T1AKOnELDvqv919ux01RhljlPMexqaiDOCljlslUZdrFcDlhlqSWFYaZtCJYqjyhlaaaa6l5apjCGSskMZbhDN-G5cnxxNwFxDR28RQnjOeVm0f8e5NCSesgW0GJTSPYaEdHqIax3BfOGImaazkTrrtE6K4InnSiJzVNx0VCz8IQdxJyeuTz2lguPg3eiHJvmHxOPu6IIoL1VgdEY9IzkfpDuw7vpDyCx91tZ4x-h0VOzPEiyDBftJ0Vf5EpXBTpQBSlEdyp9av7IR_OYszcFzaClvy5LaLcLcPFvX8XfQSrO6_64sPbwfv7cMUhP1rnHa_D8ny6MA8cuppXD4MV_QJg3h4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+multifractal-based+features+for+mild+Alzheimer%27s+disease+classification&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ni%2C+Huangjing&rft.au=Zhou%2C+Luping&rft.au=Ning%2C+Xinbao&rft.au=Wang%2C+Lei&rft.date=2016-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=76&rft.issue=1&rft.spage=259&rft_id=info:doi/10.1002%2Fmrm.25853&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4088876201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |